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Abstract

Let ρn be the fraction of structures of “size” n which are “connected”; e.g., (a) the fraction
of labeled or unlabeled n-vertex graphs having one component, (b) the fraction of partitions
of n or of an n-set having a single part or block, or (c) the fraction of n-vertex forests that
contain only one tree. Various authors have considered limρn, provided it exists. It
is convenient to distinguish three cases depending on the nature of the power series for
the structures: purely formal, convergent on the circle of convergence, and other. We
determine all possible values for the pair (lim inf ρn, lim sup ρn) in these cases. Only in
the convergent case can one have 0 < lim ρn < 1. We study the existence of lim ρn in this
case.
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1. Introduction

Throughout, An will denote the number of structures of size n, Cn will denote the number
that are connected, and ρn = Cn/An whenever An 6= 0. We consider two situations: either
the objects are labeled and the exponential generating functions are related by

A(x) = exp
(
C(x)

)
(1)

or the objects are unlabeled and the ordinary generating functions are related by

A(x) = exp
(∑
k≥1

C(xk)/k
)
. (2)

Perhaps the most interesting omissions are
• objects with “noncrossing” parts, which lead to functional equations as in Beissinger

[2] and Flajolet and Noy [12], and
• multiplicative objects, which lead to Dirichlet series.

We are interested in the three asymptotic probabilities

ρ inf = lim inf ρn, ρsup = lim supρn, and ρ = lim ρn,

where the limits are taken through those n for which An 6= 0 and ρ is defined only when
that limit exists.

When C(x) is a polynomial, we immediately have ρ = 0.
Therefore we assume that C(x) is not a polynomial. (3)

Information on possible values for ρ inf and ρsup are given in Theorem 1.
Various authors have obtained results about when ρ exists. See the papers by Comp-

ton [10], Knopfmacher and Knopfmacher [18] and Bender, Cameron, Odlyzko and Rich-
mond [5]. Related to this is the question of whether first-order limit laws exist [6–8, 21].

If ρ exists, one may ask about various limiting probability distributions. Perhaps the
three most interesting questions are as follows.
• What, if any, is the limiting behavior of probability distribution of the number of

components when objects of size n are selected uniformly at random? More on this
shortly.
• What, if any, is the limiting behavior of the joint distribution of objects of various

sizes? We do not discuss this. See Arratia, Barbour, and Tavaré [1] for some results.
• What, if any, is the limiting behavior of probability distribution of the size of the

largest component when objects of size n are selected uniformly at random? We do
not discuss this. See Gourdon [14] for some results.

The limiting distribution of the number of components, when it exists, has four common
behaviors.
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Let 0 ≤ R ≤ ∞ be the radius of convergence of C(x). If R = 0, the mass of the
distribution is concentrated at 1 because Cn/An → 1 by Theorem 1. If C(R) diverges, the
distribution is often normal. Arguments for normality usually rely on analytic properties
of the generating function as in Flajolet and Soria [13]. When there is a logarithmic
singularity on the circle of convergence, Hwang [17] obtained refinements which are similar
to what happens when C(R) converges: The labeled case leads to a shifted Poisson and
unlabeled case is more complicated. Compton [10] obtained some results in these cases,
and we present additional ones in Theorem 2. In contrast to the analytic approaches for
normality, our method relies on direct estimations of sums.

We thank A. Meir for helpful comments and references.

2. Results and Discussion

It is useful to consider cases depending on R and the convergence of C(R). With L for
labeled and U for unlabeled:

L0 or U0 means R = 0,
LD or UD means R > 0 and C(R) diverges,
LC or UC means R > 0 and C(R) converges.

For case LD we may have R =∞. Since Cn counts objects, it is an integer and so, in the
unlabeled case, R ≤ 1 and C(1) diverges. From (3) and the fact that Cn is an integer, we
have R < 1 for case UC.

Theorem 1. The following three cases completely describe all possibilities for the pair
ρ inf , ρsup, subject to the obvious constraint that 0 ≤ ρ inf ≤ ρsup ≤ 1.
(a) For L0 and U0, ρsup = 1 and all values are possible for ρ inf .
(b) For LD and UD, ρ inf = 0 and all values are possible for ρsup.
(c) For LC and UC, all values are possible for the pair (ρ inf , ρsup) except (0, 0) and (1, 1).
These results still hold if we also require that Cn 6= 0 for all sufficiently large n.

“All values are possible” means that for each possible R in each of the six cases and
for any possible value, there exist nonnegative integers Cn so that the value occurs. We
immmediately have the following corollaries.

Corollary 1.1. Only (ρ inf , ρsup) = (0, 1) can occur in all six cases.

Corollary 1.2. If ρ exists, then
(a) for L0 and U0 ρ = 1,
(b) for LD and UD ρ = 0,
(c) for LC and UC any value in the interval (0, 1) is possible.

For any power series F (x), let fn = [xn]F (x). (Thus cn = Cn/n! in the labeled case
and cn = Cn in the unlabeled case.) Let c(k)

n = [xn]C(x)k. There is a close relation
between the existence of ρ and the statement limn→∞ c

(2)
n /cn = 2C(R):
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• Suppose R = 0. We know by Theorem 1(a) that ρ = 1 if it exists. Wright [25, 26]
proved that ρ = 1 if and only if c(2)

n /cn → 0. Since R = 0, C(R) = 0.
• When C(R) diverges, the conditions are not equivalent. Cameron [9] proved that
c
(2)
n /cn → ∞ implies ρ = 0, but the converse is false. To see this for LD (UD is

similar), let Cn = n!2n if n is a perfect square and Cn = 1 otherwise. If p is a prime
congruent to 3 modulo 4 and n = p2, then n is not the sum of two nonzero squares
and so at most one of ck and cn−k exceeds 1. Thus

c(2)
n ≤ n+ 2

∑
k2<n

2k
2 ≤ n+ 2n2(p−1)2

= o(cn).

If σk(n) is the number of ways to write n as a sum of k nonzero squares, then k!an ≥
c
(k)
n ≥ σk(n)cn. Since lim infn→∞ σk(n) =∞ for sufficiently large k, we have ρ = 0.

• In cases LC and UC, the next theorem proves the equivalence of the conditions under
the additional assumption that lim cn−1/cn exists.

Theorem 2. Suppose that R > 0 and C(R) converges. Let A(x, y) enumerate structures
by size and number of components. Thus

A(x, y) =


exp(yC(x)) for labeled structures,

exp
(∑

k≥1 y
kC(xk)/k

)
for unlabeled structures.

Suppose that
(a) cn > 0 for all sufficiently large n and
(b) lim cn−1/cn exists (it will be R).
Then the following statements are equivalent:
(c)

∑
ckcn−k ∼ 2C(R)cn.

(d) If ω = ω(n)→∞, then
∑n−ω

k=ω ckcn−k = o(cn).
(e) ρ exists. (By Theorem 1, we then have ρ > 0.)
(f) If the number of components in a random structure is Xn, then for each fixed d > 0

Pr(Xn = d) ∼ [yd−1]A(R, y)
A(R, 1)

(4)

and

E(Xn) ∼ 1 +
∂A(R, y)
A(r, 1) ∂y

∣∣∣∣
y=1

. (5)

In particular, with d = 1 in (4), we have ρ = 1/A(R, 1) = 1/A(R).

It may be possible to improve the theorem. In particular, we make the following conjec-
tures.

Conjecture 1. Theorem 2(b) can be replaced by
(b’) liman−1/an exists (it will be R).

Conjecture 2. The existence of ρ implies (b).
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Some comments on the conditions in the theorem are in order:

• The equivalence of (c) and (e) in the labeled case was given by Embrechts [11] in
a more general context involving probability measures. (A subexponential measure
satisfying (b) and (c) is said to belong to SD(R).)

• In the labeled case, (f) asserts that Xn − 1 is asymptotically Poisson with λ = C(R).

• Conditions (a) and (b) are not sufficient to deduce the existence of ρ. To see this,
define

cn = [2n/nd(n)] where d(n) = 2 + 9 min
k
|n− 2k|/n. (6)

Then cn−1/cn ∼ 1/2 and cn = O(2n/n2). Hence R = 1/2 and C(R) converges. Let
m = 2k and note that cm ∼ 2m/m2, c2m ∼ 22m/(2m)2, and c3m ∼ 23m/(3m)5.
Hence c3m = o(cmc2m) in violation of (d). Rudin [23, p.990] constructs a log-convex
counterexample.

• When lim cn−1/cn exists, perturbing the cn’s by o(cn) does not affect the existence of
ρ. To see this, note that the perturbations do not affect the validity of (b) or (d) in
the theorem.

Knopfmacher and Knopfmacher’s [18] abstract prime number theorem for additive
semigroups follows from case UC of Theorem 2 since (a), (b), and (d) are easily verified.

Compton [10] dealt with LC and UC in his Theorems 10 and 11, respectively. He
allowed either (a) cn−1/cn → R or (b) an−1/an → R. Our theorem is stronger than
Compton’s (a) and would be stronger than his (b) if Conjecture 1 is true. To see that our
theorem is stronger than Compton’s (a), first note that our theorem applies to

an =
[
x(n)
Rnnlnn

]
where x(n) = 1 for UC and x(n) = n! for LC,

but his does not. Second, note that our (c) and hence his Theorems 10 and 11 follow from
the last sentence in his Lemma 9 by setting α(x) = β(x) = δ(x) = C(x). Although some of
Compton’s results are weaker than ours, they may be easier to apply since verifying (c) or
(d) in our theorem may be difficult. In this connection, it should be noted that Lemma 2.4
of Embrechts [11], which follows from Compton’s result, also has conditions that may be
easier to verify.

Forests of various sorts provide easy examples for the application of Theorem 2. These
and other graphical examples are discussed by Compton [10] and by Knopfmacher and
Knopfmacher [18] in their interesting papers. Inevitably, our examples overlap with these
papers.

Example 1: For forests of trees, C(x) enumerates trees and A(x) enumerates forests. The
verification of (a) is trivial. Crude asymptotic results on the number of trees are sufficient
to prove convergence, (b), and (d); however, more refined asymptotics are usually available.
Thus, when C(R) converges, (a), (b), and (d) are easily verified and so a nonvanishing
fraction of the forests consist of a single tree. Here are some observations about certain
types of trees.
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• Unlabeled Trees: Let Tn (resp. tn) be the number of unlabeled, n-vertex, rooted
(resp. unrooted) trees of some type. See Harary, Robinson, and Schwenk [15] for
information on estimating Tn and tn. In many cases, it can be shown that Tn ∼
An−3/2R−n and tn ∼ bn−5/2R−n and so our theorem applies.
• Labeled Trees: In a variety of cases the exponential generating function for the

rooted enumerator satisfies T (x) = xϕ(T (x)). Under reasonable conditions on ϕ, one
obtains Tn ∼ An−3/2R−nn! and so the theorem applies. Meir and Moon [19] have
strengthened (f) by showing that, when 0 ≤ α < 1 and d− αn ∼ λn1/2, we have

Pr(Xn = d) ∼ B1e
λ2/2B2Bd3B

n
4 ,

where the Bi depend on ϕ and α. Compton [10, p. 76] points out that the generat-
ing functions need not be well behaved and gives the example of rooted trees where
the root must not be the centroid of a tree with 2k + 1 vertices. In this case, the
circle of convergence is a natural boundary for T (x), but Theorem 2 and Compton’s
Theorem 10 still apply.
• Plane Trees: Again, the theorem applies in many cases, but there are interesting

cases that fall under UD. Then one can show that cn/c
(2)
n → 0 and so, by the result

of Cameron [9] noted before Theorem 2, almost all forests of such trees contain more
than one tree. We mention two examples. Various people have studied achiral trees;
that is, rooted plane trees that are the same as their mirror images. In this case,
tn ∼ 2n/

√
πn. Odlyzko [20] studied the asymptotics of 2,3-trees, that is, trees in

which each nonleaf node has 2 or 3 successors and all leaves are at the same depth.
(The depth condition holds for each tree in the forest—not for the forest as a whole.)
In this case, the asymptotics is more complicated:

tn ∼ R−nu(lnn)/n, where R < 1 and u is periodic.

Example 2: A map is an unlabeled graph embedded in a compact, boundaryless surface
so that all faces are homeomorphic to discs. (The disc requirement implies that the graph
is connected.) Various types of maps have been studied; e.g., all maps, 2-connected maps,
Eulerian maps, and triangulations. A rooting procedure destroys symmetries. In many
cases, it is known that the number of n-edged such maps is asymptotic to

ABn/n1+5χ/4 (unrooted case) or 4ABn/n5χ/4 (rooted case) (7)

where χ is the Euler characteristic of the surface, B depends on the type of map, and
A depends on both the type of map and the surface. See [22] for a proof of (7) for the
unrooted case and for further references.

Zvonkin [28, p. 290] remarks that it is sometimes necessary in physics to consider maps
which are not connected. In that case, each component is embedded in a separate surface.
Since generating functions are often not available, analytic methods cannot be applied;
however, (7) allows us to apply Theorem 2 when the surfaces are all spheres. We omit
details. The result can be extended to surfaces whose genuses have some fixed arbitrary
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sum: There are only finitely many combinations of nonspherical surfaces whose genuses
add up to some fixed value. These can then be combined with an arbitrary number of
spheres. For the nonspherical surfaces, we must consider sums of products of series whose
asymptotics have the form (7). Consider a single term. If it is a product of k series where
the ith has Euler characteristic χi, then 2 +

∑
(χi − 2) is the same for all terms. Since

2− χi > 0,
∑
ni = n, and

∏
n
−5χi/4
i =

(∏
n

5(2−χi)/4
i

)(∏ 1
ni

)10/4

,

it is straightforward to show that the coefficients will grow fastest for the product containing
only one factor. This result can then be convolved with the result for the all-spheres case.
Again, we omit details.

We conclude with some observations that may be of interest but are not worth being
called separate theorems. The bound in (b) is the value of ρ in Theorem 2.

Theorem 3. Suppose that Cn > 0 for all sufficiently large n.

(a) If lim supn c
(2)
n /cn <∞, then C(R) converges.

(b) If lim cn−1/cn = R, then ρsup ≤ 1/A(R). In particular, if lim cn−1/cn = R and
A(R) =∞, then ρ = 0.

(c) In the labeled cases, supn c
(2)
n /cn ≤M implies that ρ inf ≥M/(eM − 1).

(d) Monotonicity is not very informative: Cn ≥ 1 for all n makes An monotonic and,
even if Cn is monotonic, ρ may not exist, as (6) shows.

3. Proof of Theorem 1 Part I: Only Listed Values Can Occur

In this section we prove that only the values listed in Theorem 1 for (ρ inf , ρsup) can occur.
The proof that these values actually do occur is deferred to the last section because it
involves a series of fairly lengthy constructions and is not needed for the proof of the other
theorems.

The case R = 0 of Theorem 1 was done by Bell [3], who also showed that ρ = 1 implies
R = 0, from which it follows that ρ inf < 1 when R 6= 0. To show that only the claimed
values can occur, it suffices to prove the following lemma.

Lemma 1. When C(R) diverges, ρ inf = 0. When R > 0 and C(R) converges, ρsup > 0.

We require Theorem 3 of Stam [24]:

Theorem 4 (Stam). Let g(x) be a power series with nonnegative coefficients, g(0) = 0,
and radius of convergence R > 0. Let

∑
qn(y)xn/n! = exp{yg(x)}. Then

(i) If g(R) converges, then lim sup qn(y)/qn(1) > 0 for all y > 0.

(ii) If R =∞ or g(R) diverges, then lim inf qn(y)/qn(1) = 0 for 0 ≤ y < 1.
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Proof (when C(R) diverges): We prove ρ inf = 0 even when the Cn are only required to
be nonnegative real numbers. With the same values of cn, the unlabeled an is at least as
large as the labeled value because the exponential in (2) contains more terms than in (1).
Hence ρ inf = 0 for the unlabeled case will follow from the labeled. Apply Theorem 4(ii)
with g(x) = C(x). We have qn(1) = An and

qn(y) = n! [xn]
(

exp(yC(x))
)

= n! [xn]
(
yC(x) + . . .

)
= yCn + . . . .

Thus qn(y)/qn(1) ≥ yCn/An = yρn. By Theorem 4(ii), the liminf of the left side is zero
and so ρ inf = 0.

Proof (when C(R) converges): It suffices to prove that ρ = 0 is impossible.
We begin with the labeled case. Apply Theorem 4(i) with g(x) = 2C(x) and y = 1/2

to conclude that lim sup qn(1/2)/qn(1) > 0. We proceed by contradiction, assuming that
ρ = 0. From xA′(x) = xC′(x)A(x), we have

qn(1/2) = an =
1
n

n∑
k=0

kckan−k =
n∑
k=0

kck
nak

akan−k

<
∑

k<n1/2

n−1/2akan−k +
∑

k≥n1/2

(ck/ak)akan−k

= o(1)
n∑
k=0

akan−k = o(1) qn(1),

contradicting lim sup qn(1/2)/qn(1) > 0.
We now consider the unlabeled case. Since the coefficients of C(x) are nonnegative

integers, 0 < R < 1. Replacing cn with cn + 1 for all n multiplies A(x) by the partition
generating function and so increases an by at least the partition function pn and so does
not increase ρ inf . Hence we can assume that an ≥ pn for all n. It follows that there is a
function N(z) such that an > z whenever n > N(z).

Let

H(x) =
∞∑
k=1

C(xk)
k

so hn =
∑
d|n

cn/d
d
.

One easily has that H(x) converges on the circle of convergence since C(x) does. By case
LC, ρsup > 0. Hence there is an ε > 0 and an infinite set N of positive integers such that
hn/an > ε for n ∈ N . Suppose that n ∈ N and n > 2N(z). Using A′(x) = H ′(x)A(x) we
have

an =
1
n

n∑
k=1

khkan−k ≥ hn +
∑
d|n
d>1

hn/dan−n/d
d

≥ hn + z
∑
d|n
d>1

hn/d
d

.

Since n ∈ N , it follows that an < hn/ε and so∑
d|n
d>1

hn/d
d

< hn(1/ε− 1)/z = o(hn) as n→∞ through N .
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By Möbius inversion,

cn − hn =
∑
d|n
d>1

µ(d)hn/d
d

.

Since |µ(d)| ≤ 1, cn−hn = o(hn) as n→∞ through N . Hence cn/an ≥ ε for all sufficiently
large n ∈ N .

4. Proof of Theorem 2

We will show
(c)⇐⇒ (d) =⇒ (f) =⇒ (e) =⇒ (c).

Since (e) is contained in the last part of (f), the proof that (f) implies (e) is trivial.

Proof (of (c) and (d) equivalence): Note that for fixed ω∑
k≤ω

ckcn−k ∼
∑
k≤ω

ckR
kcn = (C(R)− E(ω))cn,

where E(ω) → 0 as ω → ∞. By a diagonal argument, it follows that for all sufficiently
slowly growing ω = ω(n) we have∑

k≤ω
ckcn−k ∼ C(R)cn.

Since, for fixed n, the sum in (d) is monotonic decreasing in ω, the equivalence of (c) and
(d) follows.

Proof (that (d) implies (f)): We begin by proving the implication for case LC in three
steps:

(i) c(d)n < Kd−1cn for some K and all sufficiently large n.

(ii) c(d)n ∼ dC(R)d−1cn uniformly for d ≤ D(n), where D(n)→∞ suffciently slowly.
(iii) an ∼ A(R, 1)cn.
Equation (4) will then follow:
• [yd] A(x, y) = C(x)d/d! counts the number of structures having exactly d components,

• (ii) tells us that [xn]
(
C(x)d

d!

)
∼ C(R)d−1cn

(d−1)! , which equals [yd−1] A(r, y)cn, and

• (iii) tells us that cn/an ∼ A(R, 1).
We also obtain (5):

anE(Xn) = [xn]
∂A(x, y)
∂y

∣∣∣∣
y=1

= [xn] C(x)eC(x) =
∑

[xn]
(
C(x)d+1

d!

)
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∼
∑

0≤d<D(n)

(d+ 1)C(R)dcn
d!

+O

( ∑
d≥D(n)

Kdcn
d!

)

∼ cn
∑
d≥0

(d+ 1)C(R)d

d!
= cne

C(R)(C(R) + 1)

∼ an(C(R) + 1) (8)

and ∂A(R, y)/∂y = C(R)A(R, y).
We now prove (i). Let bn = cn if cn > 0 and bn = 1 if cn = 0. Since cn > 0 when

n > N , it follows that (b) and (d) hold for the bn’s. Hence (c) holds and so, since bn > 0
for all n, we have

b(2)
n < Kbn for some K and all n ≥ 0.

Inducting on d, we have b(d+1)
n < Kdbn because

b(d+1)
n =

n∑
k=0

bk b
(d)
n−k <

n∑
k=0

bkK
d−1bn−k = Kd−1

n∑
k=0

bkbn−k < Kdbn.

Since bk ≥ ck and cn = bn for n > N , (i) is proved.
By a diagonal argument, is suffices to prove (ii) for fixed d, which we now do by

induction on d. The case d = 1 is trivial. By definition

c(d+1)
n =

n∑
k=0

c
(d)
k cn−k.

We split the sum into three pieces for n→∞ and fixed large ω:∑
k<ω

c
(d)
k cn−k ∼

∑
k<ω

c
(d)
k Rkcn by (b),∑

k<ω

c
(d)
n−kck ∼

∑
k<ω

dC(R)d−1cn−kck by induction

∼ dC(R)d−1
∑
k<ω

cnR
kck by (b),

n−ω∑
k=ω

c
(d)
k cn−k ≤ Kd−1

n−ω∑
k=ω

ckcn−k by (i).

By a diagonal argument, if ω = ω(n)→∞ sufficiently slowly, the three sums are asymp-
totically C(R)dcn, dC(R)d−1C(R)cn and o(cn), respectively. (The first two since C(R)
converges and the last by (d).) This completes the induction.

Step (iii) is simple: Since A(x) =
∑
C(x)d/d!, we can apply (ii) to those d < D(n)

and (i) to those d ≥ D(n) to obtain an ∼ A(R)cn = A(R, 1)cn.
In proving the implication for case UC, we shall need Schur’s Theorem:



the electronic journal of combinatorics 7 (2000), #R33 11

Theorem 5 (Schur). If F (x) and G(x) are power series such that fn−1/fn → R, G(x)
has larger radius of convergence than R, and G(R) 6= 0, then

[xn]
(
F (x)G(x)

)
∼ G(R)fn.

A proof is given in Theorem 2 of [4].
Let

L(x, y) =
∑

C(x)kyk/k! = eyC(x)

and
U(x, y) =

∑
Uk(x)yk = A(x, y)/L(x, y). (9)

Note that Uk(x) is finite sum of weighted finite products and the factors in the products
are of the form C(xd)/d with d ≥ 2. It follows that Uk(x) has radius of convergence at
least R1/2. This exceeds R since 0 < R < 1. The generating function for structures with
exactly d components is

[yd]
(
L(x, y)U(x, y)

)
=

d∑
k=1

(C(x)k/k!)Ud−k(x) + Ud(x).

From (f) for case LC,

[xn]
(
C(x)k/k!

)
∼
(
C(R)k−1/(k − 1)!

)
cn.

By (b), the ratio of consecutive coefficients of C(x)k/k! approaches R and so, by Theorem 5,

[xn]
(

(C(x)k/k!)Ud−k(x)
)
∼
(
Ud−k(R)C(R)k−1/(k − 1)!

)
cn.

Choose S such that R < S < R1/2. Since Ud(x) has radius of convergence at least R1/2,
its coefficients are o(S−n) whereas, by (b), cn grows faster than S−n. It follows that

[xn]
( d∑
k=1

(C(x)k/k!)Ud−k(x) + Ud(x)
)
∼ cn

d∑
k=1

Ud−k(R)C(R)k−1/(k − 1)!

= cn[yd−1]
(
U(R, y)eC(R)y

)
= cn[yd−1]A(R, y).

To complete the proof of (4), we estimate an. We have A(x) = A(x, 1) = L(x, 1)U(x, 1).
From LC, the coefficients of L(x, 1) are asymptotic to eC(R)cn. The radius of convergence
of U(x, 1) exceeds R since, for x < R1/2,

∑
k≥2

C(xk)
k

=
∑
k≥2

(
C(xk)
xk

)(
xk

k

)
<
∑
k≥2

(
C(R)
R

)(
Rk/2

k

)
<∞.
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Apply Theorem 5 to conclude that an ∼ cnA(R) = cnA(R, 1). The claim concerning ρ is
immediate:

ρn = Pr(Xn = 1) ∼ 1/A(R, 1) = 1/A(R).

We now prove (5). Note that

anE(Xn) = [xn]
∂A(x, y)
∂y

∣∣∣∣
y=1

= [xn] C(x)eC(x)U(x, 1) + [xn]
∑
d>1

C(xd)A(x, 1).

By (8), [xn] C(x)eC(x) ∼ cne
C(R)(C(R) + 1). Since U(x, 1) and

∑
d>1 C(xd) converge for

x < R1/2, it follows from Theorem 5 that

anE(Xn) ∼ cneC(R)(C(R) + 1)U(R, 1) +
∑
d>1

C(Rd)an.

Since cneC(R)U(R, 1) = cnA(R, 1) ∼ cn, the proof is complete.

Proof (that (e) implies (c)): We first prove (c) for case LC. Throughout, ω denotes of
function of n that goes to infinity in a sufficiently slow manner. From A′(x) = C′(x)A(x)
and the fact that ρ 6= 0 we have

nan =
n∑
k=0

kckan−k ∼
∑
k>ω

kckan−k ∼
∑
k>ω

kρakan−k,

where we could neglect the terms less that ω as long as ω = o(n) because for k ≤ ω and n
large

kckan−k ≤ ωakan−k = o((n− k)an−kak)

and (n − k)an−kak is included in the second sum over k > ω. Similarly, we can restore
such terms to obtain

nan ∼ ρ
n∑
k=0

kakan−k

=
ρ

2

( n∑
k=0

kakan−k +
n∑
k=0

(n− k)an−kak

)

=
nρ

2

n∑
k=0

akan−k.

Hence

an ∼
ρ

2

n∑
k=0

akan−k =
ρ a

(2)
n

2
. (10)
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From (10) and a “diagonal” argument,

cn ∼ ρan ∼
ρ2a

(2)
n

2

= ρcn
∑
k<ω

ak
cn−k
cn

ρan−k
cn−k

+
1
2

n−ω∑
k=ω

ckcn−k
ρak
ck

ρan−k
cn−k

∼ ρcn
∑
k<ω

akR
k +

1
2

n∑
k=0

ckcn−k − cn
∑
k<ω

ck
cn−k
cn

∼ ρcnA(R) + Lncn − cnC(R),

where Ln is defined by
∑
ckcn−k = 2Lncn. Factoring out cn, we see that

1 ∼ ρA(R) + Ln − C(R) and so Ln ∼ L = 1 + C(R)− ρA(R).

Solving for ρA(R) gives
ρA(R) = 1 + C(R)− L. (11)

Now consider replacing cn by 2cn and an by a
(2)
n . From (10), the hypotheses of

the theorem are still valid provided we replace ρ by ρ2. Hence (11) still holds with the
appropriate values for A(R), C(R), and L, namely A(R)2, 2C(R) and 2L. Thus

ρ2A(R)2 = 1 + 2C(R)− 2L.

Equating this to the square of (11) we obtain (1+δ)2 = 1+2δ where δ = C(R)−L. Hence
δ = 0.

We now prove the implication for the case UC. Since ρ exists and is nonzero, it
follows from (a) that an−1/an ∼ R. Let U(x, y) be as in (9) and recall that U(x, 1)
converges for x < R1/2. Applying Theorem 5 to eC(x) = A(x)/U(x, 1), we conclude that
[xn] eC(x) ∼ an/U(R, 1). Hence

lim
n→∞

(
cn

[xn] eC(x)

)
exists.

Regarding C(x) as a generating function for labeled structures, we have just shown that
(e) holds and so, case LC implies (c).

5. Proof of Theorem 3

Proof (of (a)): If R = 0, there is nothing to prove. Otherwise, the hypothesis asserts
that [xn]C(x)2 ≤ [xn]MC(x) for some M < ∞ and n sufficiently large. Thus, for some
polynomial p, C(r)2 ≤MC(r) + p(r) for 0 < r < R. Divide by C(r). We claim p(r)/C(r)



the electronic journal of combinatorics 7 (2000), #R33 14

is bounded as r → R. This is obvious if R < ∞. When R = ∞, it follows from the
assumption that Cn > 0 for sufficiently large n.

Proof (of (b)): Since A(0) = 1, there is nothing to prove when R = 0.
We now show that it suffices to deal with the labeled cases. In case UD, A(R) =∞.

Hence the result for case LD implies the result for case UD. In case UC, let

bn = min
(

[xn] eC(x), eC(R)cn

)
.

It follows from case LC that lim sup
(
cn/[xn] eC(x)

)
≤ 1/eC(R). Hence bn ∼ eC(R)cn. From

Theorem 5,

[xn]
(
B(x) exp

{∑
k≥2C(xk)/k

})
∼ exp

{∑
k≥2 C(Rk)/k

}
bn ∼ A(R)cn.

Since C(xk) has nonnegative coefficients and 0 ≤ bn ≤ [xn] eC(x),

[xn]
(
B(x) exp

{∑
k≥2 C(xk)/k

})
≤ an.

Combining the last two displayed equations gives lim sup cn/an ≤ 1/A(R).
We now prove the labeled cases. Fix 0 < r < R. Let K = K(n) < n/2 be such that

(i) cn−k/cn ≥ rk for 0 ≤ k ≤ K and (ii) K(n) →∞. This is possible since cn−1/cn ∼ R.
For every nonnegative integer d

[xn]C(x)d+1 ≥ (d+ 1)
∑

i1+···+id≤K
ci1 · · · cidri1+···+idcn ∼ (d+ 1)C(r)dcn.

Hence

lim inf [xn]
(∑
d<D

C(x)d+1

cn(d+ 1)!

)
≥
∑
d<D

C(r)d

d!
.

Since D is arbitrary, it follows that lim inf [xn] eC(x)/cn ≥ eC(r). Now let r → R.

Proof (of (c)): If M =∞, there is nothing to prove since M
eM−1

= 0. Suppose M is finite
and regard C(x) as a formal power series. We have C(x)2 ≤ MC(x), with the inequality
understood coefficientwise. By induction on k and the fact that cn ≥ 0, it follows that
C(x)k ≤Mk−1C(x) and so

A(x) =
∞∑
k=0

C(x)k/k! ≤ 1 +
eM − 1
M

C(x).

The result follows.

Proof (of (d)): Define new enumerators for connected structures by C∗n = Cn− 1 and let
A∗n be the associated enumerators for all structures. In the labeled case, A(x) = exA∗(x)
and so

An =
n∑
k=0

(
n

k

)
A∗k.
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Since
(
n
k

)
is an increasing function of n, we are done. In the unlabeled case,

An =
n∑
k=0

pn−kA
∗
k

where pn−k, the number of partitions of n− k, is an increasing function of n.
Equation (6) can be used to construct a monotonic Cn for which ρ does not exist. It

is easily shown that cn is eventually monotonic. By changing enough initial values of cn,
we can guarantee that Cn is monotonic for all n.

6. Proof of Theorem 1 Part II: All Listed Values Do Occur

As already noted, Bell [3] proved the R = 0 case, so we assume R > 0. Our proof consists of
a variety of constructions which are dealt with in a series of lemmas. All our constructions
produce integers Cn ≥ 0 which are nonzero for sufficiently large n. Here is how the lemmas
deal with the various parts:
• Lemma 2 proves all cases when ρ inf = 0 and ρsup = 1.
• Lemma 5 proves the convergent case for 0 ≤ ρ inf ≤ ρsup < 1.
• Lemma 6 proves the convergent case for 0 < ρ inf < ρsup = 1.
• Lemma 7 proves the divergent case when ρsup < 1.

As always, assume that C(x) and A(x) are related by (1) and (2). Define

τ(n) =
{

1, in the unlabeled case,
n!, in the labeled case.

Lemma 2. Fix R > 0 subject to the constraints discussed at the beginning of Section 2.
In all four cases LC, UC, LD and UD, there are positive integers Cn such that C(R) has
radius of convergence R, ρ inf = 0, and ρsup = 1.

Proof: Set

En =


[τ(n)/n2Rn] for the convergent cases,

[n!/(lnn)1/4] for the R =∞ case,

[exp(n3/4)] for the unlabeled R = 1 case,
[τ(n)/Rn] for the remaining divergent cases.

We will set Cn = 1 for most values of n. For the exceptional values of n (which will be
specified later), we set Cn = En. Since Cn ≥ 1, it follows that An → ∞. Because there
will be infinitely many nonexceptional indices, we have ρ inf = 0.

We prove that, if only finitely many values of n are exceptional, then An/En → 0.
Let K be an integer such that Cn ≤ K for all n. In the labeled case with r = 1/ lnn,

An/n! ≤ [x0]
(
x−neK(ex−1)

)
< r−neKe

r

= (eK/ lnn)n, (12)
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and so An/En → 0 in this case. In the unlabeled case, An is bounded by the K-fold
convolution of the partition function pn = exp

(
O(n1/2)

)
with itself. This convolution is

bounded by (n+ 1)K−1pKn = exp
(
O(n1/2)

)
, and so An/En → 0.

Denote the indices of the exceptional Cn by n1, n2, . . .. Set n1 = 3. Suppose ni
has been chosen for i < k. Let Ãn be the values of An computed using those exceptional
values and Cn = 1 otherwise. By the preceding paragraph, there is an n > nk−1 +1 so that
Ãn/En < 1/k. Choose such an n for nk and note that, for n = nk, the new value of An is
En−1 larger than Ãn since the only change to C(x) was to increase it by (En−1)xn/τ(n).
Thus

Cn
An

=
En
An

=
En

(En − 1) + Ãn
>

1
1 + 1/k

.

Since we make no more changes in Cj for j ≤ nk, it follows that Cn/An will not change
and so ρsup = 1.

Lemma 3. Suppose that α > 0, ξ > 1, p > 1, R > 0, and that A is an infinite set of
positive integers forming an arithmetic progression. Then there are nonnegative integers
Cn such that

(i) Cn = 0 for n 6∈ A,
(ii) Cn ∼ ατ(n)/npRn for n ∈ A, and

(iii) A(R) = ξ.

Proof: Find an N ∈ A such that setting

Cn =
{
α τ(n)/npRn, if n ≥ N and n ∈ A,
0, otherwise,

leads to A(R) ≤ ξ. Increase CN so that A(R) = ξ. Call this sequence C[N]
n . Let l < k be

two consecutive elements of A and suppose the sequence C[l]
n has been defined. Define the

sequence C[k]
n by

C[k]
n =


C

[l]
n , for n 6= l, k,⌊
C

[l]
l

⌋
, for n = l,

C
[l]
k + xl, for n = k,

where xk is chosen so that A(R) will be unchanged. Thus 0 ≤ xk and, in the labeled case

xk =
{
C

[l]
l

} Rl/l!
Rk/k!

= o(k!/kpRk) = o(C[k]
k ),

where {z} is the fractional part of z. In the unlabeled case, changing Ci by δ changes
lnA(R) by ∑

k>0

δRik/k = −δ ln(1−Ri).
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Hence

xk = {C[l]
l }

ln(1−Rl)
ln(1−Rk)

= O(Rl−k) = O(1).

Thus xk = o
(
C

[k]
k

)
. Note that C[m]

n changes for at most two values of m: once for m = n

and once for the preceding element in A. Let Cn be value of C[m]
n for m > n.

Lemma 4. Suppose a, b, d, α, R are all greater than zero, p, q are greater than one, and
a2 + 2a > b2. Then there are nonnegative integers Cn with

Cn ∼


ατ(n)
npRn

, if n is even,

αd τ(n)
nqRn

, if n is odd,

∑
n≥0

A2nR
2n

τ(2n)
= 1 + a, and

∑
n≥0

A2n+1R
2n+1

τ(2n+ 1)
= b,

where A(x) is given by (1) or (2).

Proof: The last displayed equations are equivalent to

A(R) = 1 + a+ b and A(−R) = 1 + a− b.

Call these values A+ and A−, respectively. Since

A+A− = (1 + a+ b)(1 + a− b) = (1 + a)2 − b2 > 1,

it follows by Lemma 3 that we can find C̃n vanishing at odd n and asymptotic to α τ(n)/npRn

at even n such that Ã(R) =
√
A+A−. Since A+/A− > 1, it again follows that we

can find Ĉn vanishing at even n and asymptotic to αd τ(n)/nqRn at odd n such that
Â(R) =

√
A+/A−. Let Cn = C̃n + Ĉn. Then A(x) = Ã(x)Â(x) and so

A(R) = Ã(R)Â(R) = A+ and A(−R) = Ã(−R)Â(−R) = Ã(R)/Â(R) = A−.

Lemma 5. Suppose R > 0, 1 > ρsup ≥ ρ inf ≥ 0 and ρsup > 0. In the unlabeled case, also
suppose R < 1. Then there are integers Cn such that function C(x) has radius of conver-
gence R, C(R) converges, lim infn→∞ Cn/An = ρ inf , and lim supn→∞Cn/An = ρsup.

Proof: We begin by choosing values to use in Lemma 4, according as whether ρ inf = 0 or
not.

Suppose ρ inf = 0. Let d = 1, a = (1/ρsup)− 1, α = 1, p = 2, q = 3 and b = a.
Now suppose ρ inf > 0. Let α = 1, p = q = 2, µ = (1/ρsup)− 1 and ν = (1/ρ inf)− 1.

Note that ν ≥ µ > 0. If µ = ν, let d = 1 and a = b = µ/2; otherwise, we claim that for
sufficiently small d there exist a, b > 0 such that a(a+ 2) > b2 and(

1 d
1 1/d

)(
a
b

)
=
(
µ
ν

)
.
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To see this, solve and note that, as d→ 0, we have a ∼ µ and b ∼ (ν − µ)d. Choose such
a small d.

Using the values in the preceding two paragraphs, apply Lemma 4. Choose k such that
ak > 0, and ak−1 > 0 and suppose n > 2k. Let H(x) = lnA(x). From A′(x) = H ′(x)A(x),
we have

nan =
∑

(n− k)hn−kak. (13)

Hence

nan =
∑

(n− i)hn−iai ≥ (n/2)(akcn−k + ak−1cn−k+1) = Θ(1/nRn). (14)

Replacing Cn with larger values that are asymptotic to αmax(1, d)τ(n)/n2Rn increases
the value of an and allows us to use Theorem 2 to conclude that the new an, and hence
the old an, are O(1/n2Rn). Combining this with (14), we have

An = Θ(τ(n)/n2Rn). (15)

In the labeled case, hn = cn and in the unlabeled case

hn =
∑
d|n

cd
n/d

= cn +O

( ∑
d≤n/2

R−d
)

= cn +O(R−n/2),

and so hn ∼ cn. From this and (13), it follows easily that

an ∼ cn
∑
k even

akR
k + cn−1

∑
k odd

akR
k−1 = cn(1 + a) + cn−1

b

R
. (16)

We now use this, treating ρ inf > 0 and ρ inf = 0 separately. For ρ inf > 0

a2n

c2n
∼ (1 + a) +

c2n−1b

Rc2n
∼ 1 + a+

b

d
= 1 + µ =

1
ρ inf

and, similarly, a2n+1/c2n+1 ∼ 1/ρsup. For ρ inf = 0, we have a2n/c2n ∼ 1 + a = 1/ρsup

from (16), and, from (15) and the asymptotics for C2n+1, C2n+1/A2n+1 → 0.

Lemma 6. In both the labeled and unlabeled convergent cases, if 0 < λ < 1, there are
integers Cn tending to infinity such that C(x) has radius of convergence R, ρ inf = λ, and
ρsup = 1.

Proof: Let ζn = τ(n)R−n/nν(n) where

ν(n) = 3−
log3(log3 n)∑

i=1

2−i.

Find an N > 0 such that setting

Cn =
{
ζn, for n ≥ N ,
0, otherwise,
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leads to A(R) ≤ 1/λ. Increase CN so that A(R) = 1/λ. Call this sequence C[N]
n . Proceed

as in the proof of Lemma 3 so as to obtain a sequence of integers Cn with Cn ∼ ζn and
A(R) = 1/λ. Clearly C(x) has radius of convergence R and converges at R.

We now show that ρ inf = 1/A(R). Let H(x) = lnA(x). As in the proof of Lemma 5,
hn ∼ cn. Let ĥk = hkk

ν(k)−ν(n). From nan =
∑
khkan−k, we have

nan ≤
∑

kĥkan−k ∼ nĥnA(R) ∼ ncnA(R).

Hence ρ inf ≥ 1/A(R). Letting n → ∞ through n = 33k − 1, one easily sees that nan ∼
hnA(R) and so ρ inf = 1/A(R).

We now show that ρsup = 1. Let n → ∞ through n = 33k . For such an n, let
c̃n = cn/n

ν(n−1)−ν(n) and let ãn be the value of an obtained when cn is replaced by c̃n.
By the argument in the preceding paragraph, c̃n/ãn → ρ inf . Since A(x) = eH(x) and since
H(x) and H̃(x)+(cn− c̃n)xn agree through terms of degree n, we have an = ãn+(cn− c̃n).
Thus

cn
an

=
1

1 + (ãn/c̃n − 1)c̃n/cn
∼ 1

1 + (1− 1/ρ inf)c̃n/cn
.

Since n = 33k and ν(n)− ν(n− 1) = 2−k, we have

c̃n
cn
∼ (33k)−2−k = 3−(3/2)k → 0.

Thus limk→∞ cn/an = 1 where n = 33k .

Lemma 7. Suppose R > 0 and 0 < α < 1. In the the labeled and unlabeled cases, there are
integers Cn > 0 such that the function C(x) has radius of convergence R, C(R) diverges,
and ρsup = α.

Proof: Define β = (1− 1/α)−1 and

Rn =


(lnn)n/2, if R =∞,
exp(−n−1/3), if unlabeled and R = 1,
R, otherwise.

Let C[1]
n = 1 for all n > 1 and let C[1]

1 be any integer greater than 1/αR. If C[k−1]
n has

been defined for all n, let A[k−1]
n be the corresponding A(x) sequence and let

C[k]
n =


C

[k−1]
n , if n 6= k,

C
[k−1]
k , if n = k and A

[k−1]
k ≥ τ(k)/Rkk,⌈

βτ(k)A[k−1]
k

⌉
, otherwise.

(17)

Since C[k]
n is unchanging for k > n, we define Cn = C

[n+1]
n . Let K be the set of k for which

the third alternative is used. We will show that



the electronic journal of combinatorics 7 (2000), #R33 20

(a) K is infinite.

(b) The radius of convergence of C(x) is at least R.

(c) limn→∞Cn/An = α, where the limit is taken through n ∈ K.

(d) C(R) =∞.

The lemma follows immediately from these claims.
To prove (a), it suffices to show that limn→∞A

[k]
n Rnn/τ(n) = 0. In the labeled case,

A[k](x) = exp(p(x)+ex−1), where p(x) is a polynomial with no constant term. Proceeding
as in (12), we obtain

A[k]
n /n! < exp

(
p(lnn)

)
× (e/ lnn)n = o

(
1/(lnn)n/2

)
.

By the definition of Rn, this completes the proof of (a) for the labeled case. In the unlabeled
case, A[k](x) equals the partition generating function p(x) times finitely many factors of
the form (1− xi)−bi . Hence there are constants B and l depending on the bi such that

A[k]
n ≤ [xn]

(
p(x)

(1− x)l

)
≤ [xn]

(
1

(1− x)l
pn

1− x

)
≤ nl+1pn = o

(
exp(n2/3)

)
= O

((
exp(−n−1/3)

)−n)
.

This completes the proof of (a).
From the definition of C[k]

n , it follows that C[k]
n < 1 + βτ(n)/Rnn for all k and n. This

proves (b).
To prove (c) we use A[k]

k = A
[k−1]
k −C[k−1]

k +C
[k]
k . When k ∈ K, C[k−1]

k = 1/τ(k) and
C

[k]
k differs from βA

[k]
k by less than 1. Hence C[k]

k /A
[k]
k ∼ β/(1 + β) = α.

Finally, we prove that C(R) = ∞. It suffices to show that the middle condition in
(17) holds infinitely often. Suppose not. It follows from (c) that ρ exists and equals α.
With H(x) = lnA(x) we have A′(x) = H ′(x)A(x) and so

nan =
n∑
k=1

khkan−k ≥ (n− 1)hn−1a1 ≥ (n− 1)cn−1a1 = (n− 1)cn−1C1.

Hence an/cn ≥ C1(1− 1/n)cn−1/cn and so

1
α

= lim
n→∞

an
cn
≥ C1 lim sup

n→∞

cn−1

cn
.

Since lim supn→∞ |bn−1/bn| is at least the radius of convergence of a power series
∑
bnx

n

and since C1 > 1/(αR), we have 1/α > (1/(αR))R, a contradiction.
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