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Abstract

A (multi)hypergraph H with vertices in N contains a permutation p =
a1a2 . . . ak of 1, 2, . . . , k if one can reduce H by omitting vertices from the edges
so that the resulting hypergraph is isomorphic, via an increasing mapping, to
Hp = ({i, k + ai} : i = 1, . . . , k). We formulate six conjectures stating that if H
has n vertices and does not contain p then the size of H is O(n) and the num-
ber of such Hs is O(cn). The latter part generalizes the Stanley–Wilf conjecture
on permutations. Using generalized Davenport–Schinzel sequences, we prove the
conjectures with weaker bounds O(nβ(n)) and O(β(n)n), where β(n) → ∞ very
slowly. We prove the conjectures fully if p first increases and then decreases or if
p−1 decreases and then increases. For the cases p = 12 (noncrossing structures)
and p = 21 (nonnested structures) we give many precise enumerative and extremal
results, both for graphs and hypergraphs.
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1 Notation, conjectures, and motivation

We shall investigate numbers and sizes of pattern-free hypergraphs. A hypergraph H is
a finite multiset of finite nonempty subsets of N = {1, 2, . . .}. More explicitly, H = (Hi :
i ∈ I) where the edges Hi, ∅ 6= Hi ⊂ N, and the index set I are finite. If Hi = Hj, we
say that the edges Hi and Hj are parallel . Simple hypergraphs have no parallel edges
with i 6= j. The union of all edges is denoted

⋃H. The elements of
⋃H ⊂ N are called

vertices. Two isomorphic hypergraphs H1 and H2 are considered as identical only if
they are isomorphic via an increasing mapping F :

⋃H1 →
⋃H2, otherwise they are

distinct. We write | · · · | for the cardinality of a set. The order of H is the number of
vertices v(H) = |⋃H|, the size is the number of edges e(H) = |I|, and the weight is
the number of incidences between vertices and edges i(H) =

∑
i∈I |Hi|. We write [a, b]

for the interval a ≤ x ≤ b, x ∈ N, and [k] for [1, k]. If X, Y ⊂ N and x < y for all
x ∈ X, y ∈ Y , we write X < Y . The important feature of our hypergraphs is that their
vertex sets are linearly ordered.

To simplify H means to keep just one edge from each family of mutually parallel
edges of H. A subhypergraph of H = (Hi : i ∈ I) is any hypergraph (Hi : i ∈ I ′) with
I ′ ⊂ I. A reduction of H is any hypergraph (H ′i : i ∈ I ′) with I ′ ⊂ I and H ′i ⊂ Hi for
each i ∈ I ′. A restriction H|X of H to X ⊂ ⋃H is the hypergraph (Hi ∩X : i ∈ I)
with empty edges deleted.

We deal also with classes of particular hypergraphs. Permutations are simple H for
which (i) |X| = 2, (ii) X ∩ Y = ∅, and (iii) X 6< Y holds for all X, Y ∈ H, X 6= Y .
Matchings are simple hypergraphs satisfying (i) and (ii). Graphs are (not necessarily
simple) hypergraphs satisfying (i). Partitions are simple hypergraphs satisfying (ii).

A pattern is any k-permutation p = a1a2 . . . ak of [k]. We associate with it the
hypergraph Hp = ({i, k + ai} : i = 1, . . . , k). H contains p if H has a reduction
identical to Hp. Otherwise we say that H is p-free. H is a maximal simple p-free
hypergraph if H ceases to be simple or p-free when any X ⊂ ⋃H is added to the edges.

We propose to investigate the numbers, sizes, and weights of p-free hypergraphs of
a given order. We believe that the following six conjectures are true. The constants ci
depend only on the pattern p.

C1. The number of simple p-free H with v(H) = n is < cn1 .

C2. The number of maximal simple p-free H with v(H) = n is < cn2 .

C3. For every simple p-free H with v(H) = n we have e(H) < c3n.

C4. For every simple p-free H with v(H) = n we have i(H) < c4n.

C5. The number of simple p-free H with i(H) = n is < cn5 .

C6. The number of p-free H with i(H) = n is < cn6 .

One can consider the more general situation when the forbidden reduction R is any
hypergraph, not just Hp. But if R has an edge with more than two vertices or two
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intersecting edges or two two-element edges X < Y , then the conjecture C1 does not
hold — no permutation has R as a reduction and we have at least n! simple R-free Hs
of order 2n. Therefore C1 can possibly hold only if R has only disjoint singleton and
doubleton edges and the doubletons form an Hp.

Our enumerative and extremal hypergraph problems are motivated by the problem
of forbidden permutations (introduced by Simion and Schmidt [22]) and the Stanley–
Wilf conjecture (posed in 1992) which we extend to hypergraphs. The problem asks,
for a k-permutation p = a1a2 . . . ak, to find the numbers Sn(p) of n-permutations q =
b1b2 . . . bn that avoid p. Here avoidance of p means that for no k-element subsequence
1 ≤ i1 < · · · < ik ≤ n of 1, . . . , n we have, for every r and s, ar < as iff bir < bis .
The conjecture says that Sn(p) < cn for each p. Strong partial results of Bóna [2] and
Alon and Friedgut [1] (see also Klazar [12]) support it. Connection to hypergraphs is
this: Sn(p) is in fact the number of size n = order 2n = weight 2n permutations not
containing p. Thus each of the conjectures C1, C5, and C6 generalizes the Stanley–Wilf
conjecture by embedding permutations in the class of hypergraphs.

How far can one extend the world of permutations so that there is still a chance
for an exponential upper bound on the number of permutation-free objects? In Klazar
[11] we considered partitions, that is H with disjoint edges. C1, C5, and C6 generalize
a conjecture stated there. Although partitions will be mentioned here only briefly, we
continue in the investigations of [11] and thus the title.

The paper consists of the extremal part in Sections 2 and 3 and the enumerative
part in Sections 4 and 5. Section 6 contains some remarks and comments.

In Section 2 we prove in Theorem 2.6 that the conjectures C1–C6 hold in the weaker
form when ci is replaced by βi(n). The nondecreasing functions βi(n) are unbounded
but grow very slowly. In Section 3 in Theorem 3.1 we prove the conjectures C1–C6
completely, provided p looks like ”A” or p−1 looks like ”V”.

Section 4 is concerned with exact enumeration of 12-free hypergraphs. In Theo-
rem 4.1 we count maximal simple 12-free hypergraphs and bound their sizes and weights.
Theorems 4.2 and 4.3 count 12-free graphs. In Theorem 4.4 we prove quickly that one
can take c6 < 10. Theorems 4.5, 4.6, and 4.7 determine the best values of c6, c5, and
c1, respectively. In summary, for p = 12 the best values of ci are: c1 = 63.97055 . . .,
c2 = 5.82842 . . ., c3 = 4, c4 = 8, c5 = 5.79950 . . ., and c6 = 6.06688 . . . (n > n0). Section
5 deals, less successfully, with p = 21. Theorem 5.1 counts 21-free graphs. Surprisingly
(?), their numbers equal those of 12-free graphs. In Theorem 5.2 we count and bound
maximal simple 21-free hypergraphs. We prove that for p = 21 the best values of ci
satisfy relations c1 < 64, c2 = 3.67871 . . ., c3 = 4, c4 = 8, c5 < 64, and c6 < 128
(n > n0).

2 The conjectures C1–C6 almost hold

We begin with a few straightforward relations. The simple inequalities established in
the proof of the following lemma will be useful later.
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Lemma 2.1 For each pattern p, (i) C1⇐⇒ C2 & C3, (ii) C4 =⇒ C3, (iii) C1 =⇒ C5,
(iv) C5 & C4 =⇒ C1, and (v) C5⇐⇒ C6.

Proof. Let qi(n), i ∈ [6] be the quantities introduced in C1–C6; for i = 3, 4 we
mean the maximum size and weight. It is easy to see that qi(n) is nondecreasing in
n. Trivially, q1(n) ≥ q2(n). Taking all subsets of H\{{v} : v ∈ ⋃H} for an H
witnessing q3(n), we see that q1(n) ≥ 2q3(n)−n. Also, q1(n) ≤ q2(n)2q3(n) because each
simple p-free H with

⋃H = [n] is a subset of a maximal such hypergraph. Thus we
have (i). The implication (ii) is trivial by q3(n) ≤ q4(n) (e(H) ≤ i(H)). So is (iii) by
q5(n) ≤ nq1(n) (v(H) ≤ i(H)). To prove (iv) realize only that q1(n) ≤ q4(n)q5(q4(n)).
Clearly, q5(n) ≤ q6(n). And q6(n) < 2nq5(n), because each p-free H of weight n can be
obtained from a simple p-free hypergraph of weight m,m ≤ n by repetitions of edges.
The number of repetitions is bounded by the number of compositions of n, which is
2n−1. Thus we have (v). 2

In Theorems 2.3–2.6 we prove that each of the conjectures C1–C6 is true if the
constant ci is replaced by a very slowly growing function βi(n). The almost linear bounds
in C3 and C4 come from the theory of generalized Davenport–Schinzel sequences. We
review the required facts.

A sequence v = a1a2 . . . al ∈ [n]∗ is k-sparse if ai = aj , i < j implies j − i ≥ k. In
other words, in each interval of length at most k all terms are distinct. In applications
it is often the case that v is not in general k-sparse but we know that it is composed of
m intervals v = I1I2 . . . Im such that in each Ii all terms are distinct. Clearly, then we
can delete at most (k − 1)(m − 1) terms from v, at most k − 1 from the beginning of
each of I2, . . . , Im, so that the resulting subsequence w is k-sparse.

The length of v is denoted |v|. If u, v ∈ [n]∗ are two sequences and v has a subsequence
that differs from u only by an injective renaming f : [n] → [n] of symbols, we say that
v contains u. For example, v = 2131425 contains u = 4334 but v does not contain
u = 2323. We use u(k, l) to denote the sequence 12 . . . k12 . . . k . . . 12 . . . k ∈ [k]∗ with l
segments 12 . . . k.

In Klazar [9] it was proved that if v ∈ [n]∗ is k-sparse and does not contain u(k, l),
where k ≥ 2 and l ≥ 3, then for every n ∈ N

|v| ≤ n · 2k2kl−4(10k)2(α(n))kl−4+8(α(n))kl−5

(1)

where α(n) is the inverse of the Ackermann function A(n) known from the recursion
theory. (If k = 1 or l ≤ 2, one can easily prove that |v| = O(n).)

We remind the reader the definition of A(n) and α(n). If F1(n) = 2n, F2(n) = 2n,
and Fi+1(n) = Fi(Fi(. . . Fi(1) . . .)) with n iterations of Fi, then A(n) = Fn(n) and
α(n) = min{m : A(m) ≥ n}. Although α(n)→∞, in practice α(n) is bounded:

α(n) ≤ 4 for n ≤ 22·
··

2

where the tower has 216 = 65536 twos. We use β(k, l, n) to denote the factor at n in
(1). Thus

β(k, l, n) = 2k2kl−4(10k)2(α(n))kl−4+8(α(n))kl−5

. (2)
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First we derive from the bound (1) an almost linear bound for sizes of p-free graphs.

Lemma 2.2 Let p be a k-permutation. For every simple p-free graph G of order n,

e(G) < n · 2β(k, 2k, n)

where β(k, l, n) is defined in (2).

Proof. For G,⋃G = [n] as described consider the sequence v = N1N2 . . .Nn where
Ni is the arbitrarily ordered list of all js such that j < i and {j, i} ∈ G. By the above
remark, v has a k-sparse subsequence w, |v| < |w|+ kn. It is not difficult to see that if
v contains the sequence u(k, 2k), G contains p. (Take all k elements of the 1st segment
of the copy of u(k, 2k) in v and the right element from the 2nd, 4th, 6th, . . . , 2k-th
segment.) Thus w does not contain u(k, 2k) and we can apply (1):

e(G) = |v| < kn+ |w| < kn+ nβ(k, 2k, n) ≤ n · 2β(k, 2k, n).

2

Let l ∈ N and p be a k-permutation. We replace each vertex v in Hp by l new
vertices v1 < v2 < · · · < vl so that for each two vertices v < w we have vl < w1. The
edge {v, w}< is replaced by the group of l new edges {vi, wi}. (Any other matching of vis
with wjs can be used.) The simple graph obtained is identical toHq for a kl-permutation
q, the blown up p. We denote it q = p(l).

We extend the bound to sizes of p-free hypergraphs.

Theorem 2.3 Let p be a k-permutation. Every simple p-free hypergraph H of order n
satisfies the inequality

e(H) < n · 3k(16)β(r,2r,n)β(k, 2k, n) = n · β3(n) (3)

where r = k3 − k2 + k and β(k, l, n) is defined in (2).

Proof. Let H,H = [n] be as described. We show that there always exists a pair (=2-
set) E contained in few edges of H. Thus we can select a pair from each edge so that
the multiplicity of each pair is small. This reduces the hypergraph problem to graphs.

We put in H1 all H ∈ H with 1 < |H| < 2k and for each H ∈ H, |H| ≥ 2k one
arbitrarily chosen subset X ⊂ H, |X| = 2k. H2 is the simplification of H1. Clearly, each
edge of H2 has in H1 multiplicity less than k; otherwise H1 and H would contain p. Let
G3 be the simple graph defined by E ∈ G3 iff E ⊂ H for some H ∈ H2.
G3 may contain p. In fact, each H ∈ H2 with 2k vertices creates a copy of Hp.

However, G3 does not contain q = p(k(k − 1) + 1). Suppose to the contrary that Hq

is a subgraph of G3. In each group of k2 − k + 1 new edges in the copy of Hq only at
most k may come from one H ∈ H2. So a subset of k of them comes from k distinct
Hs. Selecting one new edge from each subset, we obtain the contradiction that H2 and
H contain p.
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Hence, G3 is simple and q-free. Certainly v(G3) = n′ ≤ n. The previous lemma tells
us that

e(G3) < n′ · 2β(r, 2r, n′)

where r = k3 − k2 + k. Thus G3 has a vertex v∗ with degree

d = deg(v∗) < 4β(r, 2r, n′) ≤ 4β(r, 2r, n).

We fix an edge E ∈ G3 incident with v∗ and show that E ⊂ H for few H ∈ H2.
Let m be the number of the edges H ∈ H2 with E ⊂ H and X their union. We have

the inequalities
d ≥ |X| − 1 and m < 2|X|−1

which imply that
m < 2d < 16β(r,2r,n) = γ(n).

(For simplicity we overestimate here, m is bounded polynomially in d.) Hence a pair
exists, E, that is contained in at least one but less than γ(n) edges of H2. This is true
also for each subhypergraph of H2.

We define a mapping F : H2 →
(⋃
H2

2

)
. We start with the rare pair E and the

edges containing it. We define the value of F on those edges as E, delete them from
H2, and process the remaining subhypergraph in the same way until F is defined on all
edges. It is clear that (i) F (H) ⊂ H for each H ∈ H2 and (ii) |F−1(E)| < γ(n) for each

E ∈
(⋃
H2

2

)
.

Let G4 be the image of F . G4 is a simple and p-free graph of order at most n. Thus,
using in the last inequality the previous lemma,

e(H) ≤ e(H1) + n < ke(H2) + n < kγ(n)e(G4) + n ≤ kγ(n) · n · 2β(k, 2k, n) + n

which gives the stated bound. 2

We extend the bound further to weights.

Theorem 2.4 Let p be a k-permutation. Every simple p-free hypergraph H of order n
satisfies the inequality

i(H) < n · 2β3(n)β(k, 3k, nβ3(n)) = n · β4(n) (4)

where β3(n) is defined in (3) and β(k, l, n) in (2).

Proof. LetH,H = [n] be as stated. We label the edges 1, 2, . . . ,m = e(H) and consider
the sequence v = L1L2 . . . Ln ∈ [m]∗ where Li is the list of the edges containing the vertex
i. Li is ordered arbitrarily. We take the k-sparse subsequence w of v, |v| < |w| + kn.
A moment of thought reveals that if v contains u(k, 3k), H contains p. (Take, for
i = 1, 2, . . . , k, from the ith segment of the copy of u(k, 3k) in v the ith element and
the right element from the (k + 2)th, (k + 4)th, . . . , 3k-th segment.) Thus w does not
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contain u(k, 3k). Bound (1) gives us |w| < mβ(k, 3k,m). By the previous theorem,
m < nβ3(n). Thus

i(H) = |v| < kn+ |w| < kn+ nβ3(n)β(k, 3k, nβ3(n)).

2

Finally, we use the bound for weights to obtain a bound for numbers.

Theorem 2.5 Let p be a k-permutation. The number of simple p-free hypergraphs H
of order n is smaller than (

9(32k+2k)β4(n)
)n

= β1(n)n (5)

where β4(n) is defined in (4).

Proof. Let M(n) be the set of simple p-free hypergraphs with the vertex set [n] and
let n > 1. We replace each H ∈ M(n) by a hypergraph H′ with the vertex set [m],
m = dn/2e as follows. For H = (Hi : i ∈ I) we define

H ′i = {j ∈ [m] : Hi ∩ {2j − 1, 2j} 6= ∅}

and set H′ = (H ′i : i ∈ I). Clearly, H and H′ are in bijection but H′ is in general not
simple. Thus we simplify H′ to H′′.

It is immediate that H′′ ∈M(m). We bound the number of Hs that are transformed
to one H′′. Since Hi can intersect {2j− 1, 2j} in 3 ways, we see that one H′ arises from
at most ∏

v∈H∈H′
31 = 3i(H

′)

hypergraphs H ∈ M(n). For each H ∈ H′′ with |H| ≥ 2k the multiplicity of H in H′
is < k; otherwise H′ would contain p and so would H. If H ∈ H′′ and |H| < 2k, the
multiplicity of H in H′ is < 32k, because H is simple and H arises from distinct edges
of H. Thus each edge of H′′ has in H′ multiplicity < 32k. One H′′ ∈M(m) arises from
less than (

32k
)e(H′′)

hypergraphs H′. By the previous theorem, e(H′′) ≤ i(H′′) < mβ4(m). Also, i(H′) <
32ki(H′′) < 32kmβ4(m). Combining the estimates, we obtain

|M(n)| < 3(32k+2k)dn/2eβ4(dn/2e) · |M(dn/2e)|.

Iterating the inequality until we reach |M(1)| = 1, we obtain

|M(n)| <
(
32(32k+2k)β4(n)

)n
.

2

We summarize what we have achieved.
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Theorem 2.6 Let p be a k-permutation, β1(n), β3(n), and β4(n) as defined in (2)–(5),
β2(n) = β1(n), β5(n) = 2β1(n), and β6(n) = 4β1(n). The conjectures C1–C6 of Section
1 hold when the constant ci is replaced by the function βi(n).

Proof. The results for C1, C3, and C4 are proved in Theorems 2.5, 2.3, and 2.4,
respectively. The results for C2, C5, and C6 follow by the inequalities in the proof of
Lemma 2.1. 2

The fact that β1(n) is roughly triple exponential in α(n) does not bother us. The
function α(n) grows so slowly that each βi(n) is still almost constant, e.g., βi(n) =
O(log log . . . log n) for any fixed number of logarithms.

3 The conjectures C1–C6 hold for A-patterns and

inverse V-patterns

A k-permutation p = a1a2 . . . ak is a V-pattern if, for some i, a1a2 . . . ai decreases and
aiai+1 . . . ak increases. Similarly, p is an A-pattern if it first increases and then decreases.
We write p∗ to denote the permutation p∗ = (k−ak+1)(k−ak−1 +1) . . . (k−a1 +1). For
a hypergraph H we obtain H by reverting the linear order of

⋃H. We have Hp = Hq

where q = (p−1)∗ = (p∗)−1. Hence, H contains p iff H contains (p∗)−1. In this section
we prove the following result.

Theorem 3.1 The conjectures C1–C6 hold for each p such that p−1 is a V-pattern or
p is an A-pattern.

The operation ∗ interchanges A-patterns and V-patterns. Therefore p is an A-pattern
iff ((p∗)−1)−1 is a V-pattern. It suffices to prove only the first part of the theorem. The
second part follows by replacing each p-free H with H. So we assume that p is such
that p−1 is a V-pattern; p is an inverse V-pattern for short. That is, p itself can be
partitioned into a decreasing and an increasing subsequence so that all terms of the
former are smaller than all terms of the latter.

We strengthen, for inverse V-patterns, the almost linear bounds of Section 2 to
linear bounds. We build on a result for generalized Davenport–Schinzel sequences which
concerns the forbidden N-shaped sequence uN(k, l) of length 3kl,

uN(k, l) = 1l2l . . . (k − 1)lk2l(k − 1)l . . . 2l12l2l . . . (k − 1)lkl ∈ [k]∗

where il = ii . . . i with l terms. In Klazar and Valtr [13] (Theorem B and Consequence
B) we proved that if v ∈ [n]∗ is k-sparse and does not contain uN(k, l) then

|v| < cn (6)

where c depends only on k and l. A more readable proof is given in Valtr [25] (Theorem
18).
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Consider the simple graph

N (k) = ({i, 2k − i+ 1}, {i, 2k + i} : i ∈ [k]).

([k] is matched with [k + 1, 2k] decreasingly and with [2k + 1, 3k] increasingly.) Recall
that for a simple graph G,

⋃G = [n] the sequence v = N1N2 . . .Nn consists of the lists
of neighbours Ni = {j : j < i& {j, i} ∈ G}.

Lemma 3.2 Let G,
⋃G = [n] be a simple graph such that v = N1N2 . . .Nn contains

uN(k2 − 2k + 2, 2). Then G has N (k) as a subgraph.

Proof. Let r = k2 − 2k + 2 and v = N1N2 . . . Nn contain uN(r, 2). It follows that
there are r distinct and 6r not necessarily distinct vertices in G, x1 < x2 < · · · < xr
and y1 < y2 ≤ y3 < y4 ≤ · · · ≤ y6r−1 < y6r, and an r-permutation s1s2 . . . sr such
that, for each i ∈ [r], xsi < y2i−1 and xsi is connected in G to the six distinct vertices
y2i−1, y2i, y4r−2i+1, y4r−2i+2, y4r+2i−1, and y4r+2i. The 3r vertices y1 < y3 < y5 < · · · <
y6r−1 are distinct and xsi is connected to y2i−1, y4r−2i+1, and y4r+2i−1. By the classical
result of Erdős and Szekeres, s1s2 . . . sr has a monotonous subsequence of length k. For
simplicity of notation we take it to be the initial segment.

If s1 < s2 < · · · < sk then

({xsi, y4r−2i+1}, {xsi, y4r+2i−1} : i ∈ [k])

is the copy of N (k) in G. If s1 > s2 > · · · > sk, the same role plays

({xsi , y2i−1}, {xsi, y4r−2i+1} : i ∈ [k]).

2

Using Lemma 3.2, bound (6), and deleting less than kn terms from v, we obtain the
following extremal graph-theoretical result.

Theorem 3.3 Every simple graph G of order n that does not have N (k) as a subgraph
has O(n) edges.

Since N (k) contains (as a subgraph) each inverse V-pattern of length k, as a conse-
quence we obtain this strenghtening of Lemma 2.2.

Lemma 3.4 Let p be an inverse V-pattern. Then for every simple p-free graph G of
order n,

e(G) = O(n).

We proceed to the proof of Theorem 3.1. Let p be an inverse V-pattern. Using in the
proof of Theorem 2.3 Lemma 3.4 instead of Lemma 2.2, we obtain an O(n) bound. (Due
to the freedom in the definition of blown up permutations, we can take a q = p(k2−k+1)
that is also an inverse V-pattern.)
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In the proof of Theorem 2.4 the sequence v = L1L2 . . . Ln, Li being the list of the
edges of H containing the vertex i, was used. If v contains uN(k, 2), H contains as a
reduction the hypergraph identical to

({i, 2k − i+ 1, 2k + i} : i ∈ [k])

and thus each inverse V-pattern of length k. Using (6) and the strengthening of Theo-
rem 2.3 for inverse V-patterns, we obtain in Theorem 2.4 an O(n) bound as well.

Finally, if in the proof of Theorem 2.5 the bound i(H′′) < mβ4(m) is improved to
i(H′′) = O(m), β1(m) turns to a constant. Hence, for inverse V-patterns the conjectures
C1, C3, and C4 hold. So do C2, C5, and C6, by Lemma 2.1. This finishes the proof of
Theorem 3.1.

4 Noncrossing graphs and hypergraphs

Recall that for H to be 12-free means not to have vertices a < b < c < d and different
(but possibly parallel) edges X, Y such that a, c ∈ X and b, d ∈ Y . In consequence,
if Hi and Hj are edges, i 6= j, then |Hi ∩ Hj| ≤ 3 and equality is possible only when
Hi and Hj are parallel. Partitions, graphs, and other 12-free structures are usually
called noncrossing . Simion [21] gives a nice survey on noncrossing partitions. Before
proceeding to hypergraphs and graphs, we review terminology and known results for the
other classes.

There is only one 12-free permutation of a given size. The numbers of noncrossing
matchings and partitions of order (=weight) n are

1

n/2 + 1

(
n

n/2

)
(for even n, 0 else) and

1

n+ 1

(
2n

n

)
,

respectively. These Catalan results are by now classical, see Kreweras [14] and Stanley

[23] (exercises 6.19.o and 6.19.pp). The nth Catalan number is Cn = 1
n+1

(
2n
n

)
.

We show often that the generating function (abbreviated GF) counting numbers in
question satisfies an algebraic equation. A procedure is known that extracts, if one
does not have bad luck, from the equation an exact asymptotics for the coefficients.
We content ourselves with determining just the radius of convergence and need only
a simpler version of the procedure. We indicate it briefly in the end of the proof of
Theorem 4.5. For more information and references on this matter we refer the reader to
the interesting discussion in Flajolet and Noy [5] (part 4) and to Odlyzko [16] (section
10.5). It is well known that if F = a0 + a1x + · · · is a power series with the radius of
convergence R > 0, then lim sup |an|1/n = 1/R. We write |an| .= (1/R)n and speak of
the rough asymptotics .

Schröder numbers {Sn}n≥1 = {1, 3, 11, 45, 197, . . .} count, for example, the noncross-
ing arrangements of diagonals in a convex (n+ 2)-gon. Their GF S(x) =

∑
n≥0 Snx

n =
1 + x+ 3x2 + · · · is given by

S(x) = 1
4x

(1 + x−
√

1− 6x+ x2). (7)
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The rough asymptotics Sn
.
= (3 + 2

√
2)n = (5.82842 . . .)n is determined by the smallest

positive root of x2 − 6x+ 1.
By a tree T we mean a rooted plane tree, that is, a finite rooted tree in which sets of

siblings are linearly ordered. A leaf is a vertex with no child. The number of children of a
vertex is its outdegree. We establish a 1-1 correspondence between maximal noncrossing
hypergraphs and trees.

Theorem 4.1 Let M be the set of maximal simple noncrossing hypergraphs of order
n > 1. We have

|M | = Sn−2, max
H∈M

e(H) = 4n− 5, and max
H∈M

i(H) = 8n− 12.

Proof. We describe a bijection between M and the set of trees that have n−1 leaves and
no vertex with outdegree 1. Moreover, if H corresponds to T , e(H) = v(T ) + e(T ) + 2
and i(H) = v(T ) + 3e(T ) + 3. Let H ∈ M and

⋃H = [n], n > 1. If n = 2, H =
({1}, {2}, {1, 2}).

Suppose n > 2. By the maximality of H, {1, n}, {1, 2}, and {i}, i ∈ [n] are edges.
Let m, 1 < m ≤ n be the last vertex such that {1,m} ⊂ X for an edge X,X 6= {1, n}.
By the maximality of H, m = n; otherwise we could add {1,m, n} to H. Thus H
has a unique edge X = {x1 = 1, x2, . . . , xt = n}<, t ≥ 3. Each edge distinct from
{1, n}, X, and the singletons {i} lies in exactly one of the intervals [xi, xi+1], i ∈ [t− 1].
H decomposes in t − 1 ≥ 2 simplified restrictions Hi = H | [xi, xi+1] with the same
structure. Decomposing Hi further until hypergraphs of order 2 are reached, we define
in an obvious manner a tree T with the stated properties. H can be easily recovered
from T . Counting e(H) and i(H) in terms of v(T ) and e(T ) is straightforward and we
skip it.

Hence, |M | is the same as the number of trees of the described type. It is well known
that they are counted by the Schröder numbers ([23], exercise 6.39.b) and it is easy to
give a proof by GF; we omit the details. The extremal values of e(H) and i(H) follow
from the formulas by substituting the largest values of v(T ) and e(T ), which are 2n− 3
and 2n−4. (Alternatively, the argument from the beginning of the proof of Theorem 5.2
works for p = 12 as well.) 2

That for p = 12 the conjectures C1–C6 hold follows already from Theorem 3.1. However,
using the last theorem and the inequalities of Lemma 2.1, we get a much simpler proof
and realistic estimates for ci (n > n0): c2 = 5.82842 . . . , c3 = 4, c4 = 8, c1 ≤ c22c3 <
6 · 24 = 96, c5 < 96, and c6 < 2 · 96 = 192.

We turn to noncrossing graphs. A decomposition similar to that in the previous
proof provides a bijection between maximal simple 12-free graphs of order n and trees
which have n − 1 leaves and outdegrees only 2 or 0. It follows that each such a graph
has 2n−3 edges and there are Cn−2 of them. (It is well known that there are Cn−2 such
trees, see exercise 6.19.d in [23].)
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Theorem 4.2 If an is the number of simple 12-free graphs with n edges and F1(x) =∑
n≥0 anx

n = 1 + x+ 5x2 + 33x3 + 245x4 + · · ·, then

F1(x) = 1
16x

(1 + 11x−
√

1− 10x− 7x2). (8)

If bn is the number of 12-free graphs with n edges and F2(x) =
∑
n≥0 bnx

n = 1 + x +
6x2 + 44x3 + 360x4 + · · ·, then

F2(x) = 1
16x

(1 + 10x−
√

1− 12x+ 4x2). (9)

In fact, bn = 2n−1Sn. The rough asymptotics is

an
.
= (5 + 4

√
2)n = (10.65685 . . .)n and bn

.
= (6 + 4

√
2)n = (11.65685 . . .)n.

Proof. To find F1, we define G = 1 + 2x2 + · · · to be the GF of simple 12-free graphs
(counted by size) in which the first and last vertex are not adjacent. We show that

G = 1 + (F1 −G)(2F1 − 2) and F1 −G = x(3F1 − 3 +G). (10)

Suppose G is a simple 12-free graph and
⋃G = [m]. Consider the longest edge

E = {1, r} of G incident with 1 and decompose G in the restrictions G1 = G | [1, r]
and G2 = G | [r,m]. Since G is 12-free, each edge appears either in G1 or in G2. If
r < m, G is counted by G, G1 by F1 − G (it has the longest possible edge), and G2 by
2F1 − 2 (it is nonempty and we can identify min

⋃G2 and r or leave them separate).
Multiplying both factors and not forgetting G = ∅, we obtain the first equation. The
second equation corresponds to r = m. Then G is counted by F1 − G, G2 = ∅, and
deleting of E (counted by x) from G1 yields a simple 12-free graph G3. G3 is counted by
4(G− 1) + 3(F1 −G) + 1 = 3F1 − 3 + G, according to the possible non/identifications
of its endvertices with 1 and r = m. This gives the second equation.

Elimination of G in the system (10) produces the equation

8xF 2
1 − (1 + 11x)F1 + 1 + 4x = 0.

Quadratic formula gives us formula (8).
All noncrossing graphs arise from simple noncrossing graphs by repetitions of edges.

Thus F2(x) = F1(x/(1−x)). Substituting x/(1−x) for x in the last equation, we obtain

8xF 2
2 − (1 + 10x)F2 + 1 + 3x = 0.

Quadratic formula gives us formula (9). Comparing formulas (9) and (7) reveals that
F2(x) = (1 + S(2x))/2 and bn = 2n−1Sn. The radii of convergence of Fi(x) are the least
positive roots of the discriminants 1− 10x− 7x2 and 1− 12x+ 4x2. 2

Noncrossing simple graphs were enumerated, by the number of vertices and with
isolated vertices allowed, by Domb and Barrett [4] (and before them by Rev. T. P.
Kirkman, A. Cayley, G. N. Watson, . . . — see [4]). We refer the reader to [5] for a more
general and elegant treatment and to Rogers [18] for related results. For n ≥ 3 the
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number gn of noncrossing simple graphs with n (possibly isolated) vertices is given by
gn = 2nSn−2 [5]. We have just proved that bn, the number of noncrossing (possibly not
simple) graphs with n edges, is given by bn = 2n−1Sn. Hence, for n ≥ 3,

gn = 8bn−2.

Pavel Podbrdský [17], an undergraduate student of Charles University, has recently
found a bijective explanation of this identity.

Only little changes if we enumerate noncrossing graphs by order. We stress that in
our approach vertices are never isolated.

Theorem 4.3 If vn is the number of simple 12-free graphs with n vertices and F3(x) =∑
n≥0 vnx

n = 1 + x2 + 4x3 + 25x4 + 176x5 + · · ·, then

F3(x) = 1
2(1+x)3 (2 + 7x+ 3x2 − x

√
1− 10x− 7x2). (11)

The rough asymptotics of vn is the same as that of an in the previous theorem. For
n > 2 we have the companion identity vn + 3vn−1 + 3vn−2 + vn−3 = 8an−2.

Proof. F2 and F1 are related, as we know, by F2(x) = F1(x/(1 − x)). We know also
that G(x) =

∑
n≥0 gnx

n = 1 + x + 2x2 + 8x3 + 48x4 + · · · satisfies G(x) = 8x2F2(x) +
1 + x − 6x2. Finally, F3(x) = 1

1+x
G(x/(1 + x)). It is an inversion of the relation

G(x) = 1
1−xF3(x/(1−x)) that mirrors the insertions of isolated vertices before, between

of, and after the vertices of a 12-free simple graph. Using these relations, we express F3

in terms of F1: (1 + x)3F3(x) = 8x2F1(x) + 1 + 3x − 4x2. Thus the identity. Formula
(11) follows from (8). 2

An alternative way is to use the decomposition from the proof of Theorem 4.2. Equation
(1 + x)3F 2

3 − (2 + x)(1 + 3x)F3 + 1 + 4x = 0 is then obtained.
We return to 12-free hypergraphs and give yet another proof of the conjecture C6.

It supplies for c6 a value smaller than 10.

Theorem 4.4 Let an be the number of 12-free hypergraphs of weight n. Then, for
n > n0,

an < 10n.

Proof. If F1 = r0 + r1x + · · · and F2 = s0 + s1x + · · · are two power series with
real coefficients and ri ≤ si for all i = 0, 1, . . . , we write F1 ≤∗ F2. Let H be 12-free
and

⋃H = [m]. Of the edges X ∈ H such that 1 ∈ X we choose those having the
largest second vertex (the vertex min(X\{1})) and of them we choose those having the
largest cardinality t. Since H is 12-free, the edges X we get must be all parallel, say
to X = {x1 = 1, x2, . . . , xt}<. We define Hi, i ∈ [t] as consisting of the edges that lie
in [xi, xi+1], where xt+1 = m, and (if t = 2) that are nonparallel to X; singletons {xi}
are distributed arbitrarily among Hi and Hi−1. So each edge is in exactly one Hi or is
parallel to X. Each Hi is 12-free.
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Let F =
∑
n≥0 anx

n = 1 +x+ · · · be the GF counting 12-free hypergraphs by weight.
Bounding the number of non/identifications of the endvertices of the His by 4 if Hi 6= ∅
and by 1 else, and disregarding that for t > 3 the edge X is unique, we obtain the
inequality

F ≤∗ 1 +
∑
t≥1

xt(4F − 3)t

1− xt ≤∗ 1 +
1

1− x
∑
t≥1

xt(4F − 3)t = 1 +
x(4F − 3)

(1− x)(1− x(4F − 3))
.

We used that xt/(1 − xt) ≤∗ xt/(1 − x). Let G be the power series satisfying the
inequality as equality, that is,

G = 1 +
x(4G− 3)

(1− x)(1− x(4G− 3))
.

So 4x(1− x)G2 + (7x2 − 2x− 1)G− (3x2 + x− 1) = 0. The radius of convergence of G
is the least positive root α = 0.10325 . . . of the discriminant x4 + 4x3 + 22x2 − 12x+ 1.
Induction on exponents shows that F ≤∗ G. Thus, for ε > 0 and n > n0(ε),

an < (1/α+ ε)n = (9.68460 . . .+ ε)n.

2

We invest more effort and count the noncrossing hypergraphs exactly. The calcula-
tions below were performed by means of the computer algebra system MAPLE.

Theorem 4.5 Let an be the number of 12-free hypergraphs of weight n. F (x) =∑
n≥0 anx

n = 1 + x+ 3x2 + 10x3 + 40x4 + · · · satisfies the equation

P4(x)F 4 + P3(x)F 3 + P2(x)F 2 + P1(x)F + P0(x) = 0 (12)

where P4(x) = (2x)7(x − 1)3, P3(x) = −32x6(8x2 − 11x − 1)(x − 1)2, P2(x) = 4x(x −
1)(2x− 1)(24x7 − 54x6 + 12x5 + 14x4 + 8x3 + 5x2 + 3x+ 1), P1(x) = −64x10 + 264x9 −
336x8 + 98x7 + 34x6 + 2x5 + 8x4 + 11x3 − 6x − 1, and P0(x) = 8x10 − 36x9 + 50x8 −
15x7 − 7x6 − x5 − 3x4 − 3x3 + x2 + 3x+ 1. As to the rough asymptotics,

an
.
= (6.06688 . . .)n

where 6.06688 . . . is an algebraic number of degree 23.

Proof. Let bn, respectively cn, be the numbers of 12-free hypergraphs H of weight n
such that the 2-set {min

⋃H,max
⋃H}, respectively the singleton {min

⋃H}, is not an
edge ofH. Let G(x) =

∑
n≥0 bnx

n = 1+x+2x2+· · · and H(x) =
∑
n≥0 cnx

n = 1+x2+· · ·
be the corresponding GFs. We prove that the series F,G, and H satisfy the equations

F = 1 +
xF

1− x + (F −G)(F +H − 1) +
x3(2F + 2H − 3)2(F +H − 1)

(1− x)(1− x3)

+
(F +H − 1)x4(2F + 2H − 3)3

(1− x)(1− x(2F + 2H − 3))
(13)

F −G =
x2(3F +G− 2− 1/(1− x))

1− x2
(14)

F −H =
xF

1− x +
x(H − 1)

1− x . (15)
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Elimination of G and H from the system yields (12).
Suppose

⋃H = [m]. We define F (H) = {X ∈ H : 1 ∈ X, |X| ≥ 2}, J(H) to
be the multiset of the edges X ∈ F (H) attaining the maximum value of min(X\{1}),
and j(H) = max |X|, X ∈ J(H). To prove equation (13), we partition noncrossing
hypergraphs into five classes that correspond to the five summands on the right hand
side.

The first class consists ofH = ∅ and is counted by 1. In the remaining classes H 6= ∅.
In the second class F (H) = ∅. Such an H consists of parallel singletons {1} followed
by an 12-free hypergraph and the class is counted by (x+ x2 + · · ·)F . In the remaining
classes F (H) 6= ∅. In the third class j(H) = 2. For such an H all edges in J(H) are
parallel to {1,m′}, 1 < m′ ≤ m. We decompose H in H1 and H2: H1 has the edges
lying in [1,m′] and H2 the edges lying in [m′,m] except the singletons {m′}. By the
12-freeness, each edge is either in H1 or in H2. Hypergraphs H1 are counted by F −G.
To count H2, consider r = min

⋃H2. For {r} 6∈ H2 there are two options (except for
H2 = ∅): m′ and r can be identified or left separate. The counting series is 2H − 1. If
{r} ∈ H2, m′ and r must be distinct and the counting series is F −H. All possibilities
are counted by 2H − 1 + F −H = F +H − 1. Multiplying both factors, we obtain the
third summand.

In the fourth class j(H) = 3. All three-element edges in J(H) must be parallel
to {m0 = 1,m1,m2}<. We delete them and decompose the rest in Hi, i ∈ [3]. Hi

has the edges lying in [mi−1,mi], where m3 = m, except the singletons {mi−1}. By
the 12-freeness, each edge nonparallel with {1,m1,m2} and {1} is in exactly one Hi.
Edges parallel with {1,m1,m2} and {1} are counted by x3/(1 − x3) and 1/(1 − x).
We show that Hi, i ∈ [2] are counted by 2F + 2H − 3. Let r1 = min

⋃H1 and r2 =
max

⋃H1. The non/identification of r2 and m1 gives us always two options. For {r1} 6∈
H1 the non/identification of r1 and 1 gives two further options. So 4H − 3 counts the
possibilities. For {r1} ∈ H1 there are just two non/identifications (r2 and m1) and the
counting series is 2(F −H). Hence 4H − 3 + 2(F −H) = 2F + 2H − 3 in total. For H2

the argument is the same. H3 is counted by F +H−1, as in the third case. Multiplying
the five factors, we obtain the fourth summand.

In the fifth class t = j(H) ≥ 4. The argument is as in the fourth case, except that the
edge X ∈ J(H), |X| = t is unique. We delete X and decompose the rest in H1, . . . ,Ht

as in the previous case. Each edge distinct to X and nonparallel with {1} lies in exactly
one Hi. Each of H1, . . . ,Ht−1 is counted by 2F+2H−3 and Ht is counted by F+H−1.
Not forgetting to count the singleton edges {1}, we obtain the last fifth summand

1

1− x
∑
t≥4

xt(2F + 2H − 3)t−1(F +H − 1).

This concludes the proof of (13).
We prove equation (14). Consider an 12-free H having at least one edge {1,m},

m > 1; recall that m is the last vertex of H. On one hand H is counted by F − G.
On the other hand, consider the hypergraph H1 obtained by deleting the edges parallel
to {1,m}. Let m1 = min

⋃H1 and m2 = max
⋃H1. If m1 6= m2 and {m1,m2} 6∈ H1,
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we have four non/identifications of the pairs m1, 1 and m2,m. Then H1 is counted by
4(G−1/(1−x)). If m1 6= m2 and {m1,m2} ∈ H1, we have three non/identifications and
H1 is counted by 3(F −G). The remaining cases when H1 = ∅ or m1 = m2 are counted
by 3x/(1−x)+1. Since 4(G−1/(1−x))+3(F−G)+3x/(1−x)+1 = 3F+G−2−1/(1−x)
and the edges parallel to {1,m} are counted by x2/(1 − x2), multiplying both factors
we get (14).

To prove equation (15), consider 12-free hypergraphs H with at least one edge {1}.
They are counted by F −H. On the other hand, H arises either by appending an 12-
free hypergraph to a repeated singleton or by adding parallel edges {1} to a nonempty
12-free hypergraph that has 1 as its first vertex but {1} is not an edge. Summing the
corresponding counting series xF/(1−x) and x(H−1)/(1−x), we obtain equation (15).

It remains to determine the radius of convergence R > 0 of F (x). Let A(x, F ) be
the bivariate integral polynomial given in equation (12). By Pringsheim theorem, R is
a dominant singularity of F (x). So either R is a root of P4(x) (which is not) or, by the
implicit function theorem, there is an S such that the pair x = R,F = S is a solution
of the system

A(x, F ) = 0 &
∂A(x, F )

∂F
= 0.

Eliminating F , we find that all x-solutions are roots of (x+1)(x2 +x+1)(24x23−56x21−
232x20 + 96x19 + 824x18 + 652x17 − 1012x16 − 2236x15 − 304x14 + 2860x13 + 2824x12 −
78x11− 2246x10− 1025x9 + 527x8 + 780x7 + 84x6− 187x5− 75x4 + 8x3 + 20x2 + 3x− 1).
Since this polynomial has a single positive real root α = 0.16482 . . . (of the third factor),
we have R = α and an

.
= (1/R)n = (6.06688 . . .)n. 2

Theorem 4.6 Let an be the number of simple 12-free hypergraphs of weight n. F (x) =∑
n≥0 anx

n = 1 + x+ 2x2 + 7x3 + 27x4 + · · · satisfies the equation

P3(x)F 3 + P2(x)F 2 + P1(x)F + P0(x) = 0 (16)

where P3(x) = (2x)5, P2(x) = −16x6 − 68x5 + 8x3 + 8x2 + 4x, P1(x) = 2x7 + 21x6 +
46x5−5x4−16x3−15x2−8x−1, and P0(x) = −x7−6x6−8x5 +6x4+10x3+9x2+5x+1.
As to the rough asymptotics,

an
.
= (5.79950 . . .)n

where 5.79950 . . . is an algebraic number of degree 15.

Proof. Series G(x) = 1 + x + x2 + · · · and H(x) = 1 + x2 + · · · are defined as in the
previous proof (now for simple hypergraphs). We have the simpler algebraic system

F = 1 + xF + (F −G)(F +H − 1) +
(1 + x)(F +H − 1)x3(2F + 2H − 3)2

1− x(2F + 2H − 3)

(17)

F −G = x2(3F +G− x− 3) (18)

F −H = xF + x(H − 1). (19)
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Eliminating G and H, we obtain equation (16).
The proof of equations (17)–(19) is a simplification of the previous proof, due to

nonrepetition of edges, and is left to the reader. The radius of convergence is obtained
as before, by solving the system A(x, F ) = 0 & AF (x, F ) = 0 where A(x, F ) is given in
(16). 2

The next theorem shows that order is a more appropriate counting parameter.

Theorem 4.7 Let an be the number of simple 12-free hypergraphs of order n. F (x) =∑
n≥0 anx

n = 1 + x+ 5x2 + 109x3 + 3625x4 + · · · satisfies the equation

P3(x)F 3 + P2(x)F 2 + P1(x)F + P0(x) = 0 (20)

where P3(x) = (x+ 1)5, P2(x) = −(x+ 1)2(9x2 + 4x+ 3), P1(x) = 23x3 − 7x2 + 5x+ 3,
and P0(x) = 17x2 − 1. As to the rough asymptotics,

an
.
= (63.97055 . . .)n

where 63.97055 . . . is the only positive real root of 5x4 − 316x3 − 242x2 − 284x− 107.

Proof. It is not too difficult to adapt the decomposition used in the last two proofs
for counting by order. We obtain the algebraic system

F = 1 + xF + 1
x
(F −G)(xF +H − 1)

+
2(xF +H − 1)((x+ 1)H + (x2 + x)F − 2x− 1)2

x2 − x((x+ 1)H + (x2 + x)F − 2x− 1)

F −G = −1− 3x+ (2x+ x2)F +G

F −H = xF +H − 1

and proceed as before. We omit the details. However, notice that now A(x, F ) in
equation (20) does not determine F , F (0) = 1 uniquely, because A(0, 1) = AF (0, 1) = 0.
This can be avoided by working with F , where F = 1 + xF , instead of F . 2

5 21-free graphs and maximal 21-free hypergraphs

A hypergraph is 21-free if it does not have vertices a < b < c < d and distinct (but
possibly parallel) edges X, Y such that a, d ∈ X and b, c ∈ Y . Such structures could be
called nonnested ([21], section 7.3, but see our remark below). We review known results
for permutations, matchings, and partitions.

There is only one 21-free permutation of size n. The number of 21-free matchings
with n edges is the same as in the noncrossing case, the Catalan number Cn. The
proof goes via an easy bijection with trees and we leave it to the reader. (”Nonnested
matchings” seem to absent in the extensive list of Catalan structures in exercise 6.19 of
[23]).
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Let us look at nonnested partitions. A related but different concept is that of
nonnesting partitions. These are partitions of [n] such that if 1 ≤ a < b < c < d ≤ n
are four numbers such that a, d ∈ A and b, c ∈ B for two distinct blocks A and B, then
e ∈ A for some e, b < e < c (exercises 5.44 and 6.19.uu in [23]). A minor confusion arises
in [21] on p. 403 where Simion speaks of nonnested partitions (or abba-free partitions in
the terminology of Klazar [10]) but, apparently, means actually nonnesting partitions.
The claim maid there that the numbers of nonnested and noncrossing partitions of the
same order are equal is incorrect but it is true for nonnesting partitions, see exercise
6.19.uu in [23].

Anyway, if an is the number of 21-free (=nonnested=abba-free) partitions of order n
and F (x) =

∑
n≥1 anx

n = x+ 2x2 + 5x3 + 14x4 + · · ·, then, as proved in [10],

F (x) =
−x+ 3x2 − 2x3 − x

√
1− 2x− 3x2

−2 + 8x− 6x2 + 2x3
.

We leave to the interested reader to check as an exercise that there exist C5 = 42
noncrossing but a5 = 41 nonnested partitions of order 5. The numbers an, {an}n≥1 =
{1, 2, 5, 14, 41, 123, 374, 1147, 3538, . . .}, are closely related to the Motzkin numbers (for
them consult exercises 6.37 and 6.38 in [23]). In the case of edges with more than 2
elements the nonnested condition is more restrictive than the noncrossing condition.

In [10] it was also proved that if bn is the number of 21-free partitions of order n in
which no block contains two consecutive numbers and F (x) =

∑
n≥1 bnx

n = x + x2 +
2x3 + 5x4 + 13x5 + · · ·, then

F (x) =
x

2

1 +

√
1 + x

1− 3x

 .
Further values of bn are: {bn}n≥2 = {1, 2, 5, 13, 35, 96, 267, 750, 2123, . . .}. This GF, in
a slightly modified form, and its coefficients appeared first in Gouyou-Beauchamps and
Viennot [8] (see also exercise 6.46 in [23]). Stated in our notation, they proved that the
numbers bn count (i) (n− 1)-element sets X of plane lattice point in which each point
is connected to (0, 0) by a lattice path that makes steps only (0, 1) and (1, 0) and lies
completely in X and (ii) words over {−1, 0, 1} of length n− 2 with nonnegative partial
sums. In fact, they gave a bijection between the sets (i) and (ii). Very simple bijection
has been recently given by Shapiro [19]. Jan Němeček [15], an undergraduate student of
Charles University, has recently found a bijection between 21-free partitions and words
described in (ii).

We turn to 21-free graphs and begin with characterizing the maximal simple ones.
Let G be a maximal simple 21-free graph with

⋃G = [n], n ≥ 2. We set Ii = {v ∈ [i +
1, n] : {i, v} ∈ G}, i ∈ [n−1]. It follows that Ii are nonempty intervals, max Ii−1 = min Ii
for every i ∈ [n− 1] (we set I0 = [2]), and |Ii| ≥ 2 whenever i, i < n− 1 is the last but
one vertex of I0 ∪ I1 ∪ · · · ∪ Ii−1. We delete the n− 1 edges {i,max Ii}. The remaining
edges form a tree T with

⋃ T = [n − 1] (1 is the root and the vertices are ordered as
numbers). G can be uniquely recovered from T . Thus, as in the noncrossing case, every
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maximal simple 21-free graph of order n has n− 1 +n− 2 = 2n− 3 edges and there are
Cn−2 of them. (It is well known that the number of trees of order n is Cn−1, exercise
6.19.e in [23].)

Interestingly, this extends to all graphs: the numbers of 21-free graphs in each of the
four problems (counting by order or size, allowing isolated vertices or multiple edges)
are the same as those of noncrossing graphs.

Theorem 5.1 The numbers an of simple 21-free graphs of size n are the same as those
of noncrossing graphs in Theorem 4.2 and the GF is given by equation (8). The numbers
vn of simple 21-free graphs of order n are the same as those of noncrossing graphs in
Theorem 4.3 and the GF is given by equation (11).

Proof. We begin with the second problem and find the GF of the numbers vn. By the
last edge E = {a, n} of a simple 21-free graph G,⋃G = [n] we mean the shortest edge
incident with the last vertex n. We define the span of E as m = 2(n−a+1). Clearly, no
i ∈ [a+ 1, n] is the first vertex of an edge. A new last edge E′ = {a′, n′}< may be added
to G by selecting one of the m positions for a′ (the vertices in [a, n], the gaps between
them, and the space after n) and one of the two positions for n′ (n and the space after
n). All these 2m− 3 choices (3 choices a′ = n′ = n, a′ > n′ = n, and a′ = a, n′ = n must
be excluded) are available regardless of the structure of G. Consider the bivariate GF

F (x, y) =
∑

n,m≥2

vn,mx
nym = x2y4 + x3(3y4 + y6) + · · ·

of the numbers vn,m that count simple 21-free graphs of order n with the last edge of
span m. Of course, we are interested in F (x, 1).

Going through the 2m− 3 choices and determining the order of G′ = G ∪ {E′} and
the span of E′ in G′, we see that the addition of E′ amounts formally to the replacement

xnym → xn(y4 + y6 + · · ·+ ym−2) + xn+1(2(y4 + y6 + · · ·+ ym+2)− ym+2)

+xn+2(y4 + y6 + · · ·+ ym+2)

= xn
(
ym − 1

y2 − 1
− 1− y2

)
+ xn+1

(
2y4y

m − 1

y2 − 1
− ym+2

)
+ xn+2y4y

m − 1

y2 − 1
.

In terms of the GF,

F (x, y) = x2y4 +
F (x, y)− F (x, 1)

y2 − 1
− (1 + y2)F (x, 1) +

2xy4(F (x, y)− F (x, 1))

y2 − 1

−xy2F (x, y) +
x2y4(F (x, y)− F (x, 1))

y2 − 1
.

This can be rewritten as

((x+ x2)y4 + (x− 1)y2 + 2) · F (x, y) = (1 + x)2y4 · F (x, 1)− x2y4(y2 − 1). (21)

Solving (x+ x2)y4 + (x− 1)y2 + 2 = 0 for y2, we obtain

y2 = 1
2x(1+x)

(1− x−
√

1− 10x− 7x2).
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This series, substituted for y2, makes the left hand side of equation (21) vanish. Solving
the resulting equation for F (x, 1), we get

F (x, 1) =
x2(y2 − 1)

(1 + x)2
=
x− 3x2 − 2x3 − x

√
1− 10x− 7x2

2(1 + x)3
.

This coincides, after addition of 1, with formula (11).
The first problem, counting simple 21-free graphs by size, is similar and easier. It

suffices to adjust the above replacement xnym → · · · by changing xn, xn+1, and xn+2 on
the right hand side to xn+1 and to change the beginning of F (x, y) from x2y4 to xy4.
Proceeding as before and adding 1 to the result, we arrive at the formula (8). 2

Allowing multiple edges in the first problem corresponds to the substitution x→ x/(1−
x), as for noncrossing graphs. Thus the GF obtained is the same as in the noncrossing
case. Similarly when isolated vertices are allowed in the second problem.

We conclude with enumerating and bounding maximal 21-free hypergraphs.

Theorem 5.2 Let M be the set of maximal simple 21-free hypergraphs of order n and
an = |M |. Then, with F (x) =

∑
n≥0 anx

n = 1+x+x2 +x3 +3x4 +12x5 + · · · and n > 1,

F (x) =
−2x7 + 8x6 − 11x5 + 21x4 − 31x3 + 23x2 − 8x+ 1

(x− 1)2(4x4 − 15x3 + 16x2 − 7x+ 1)
, (22)

max
H∈M

e(H) = 4n− 5, and max
H∈M

i(H) = 8n− 12.

The rough asymptotics is an
.
= (3.67871 . . .)n where 3.67871 . . . is the largest positive

root of x4 − 7x3 + 16x2 − 15x+ 4.

Proof. In this proof a big edge is an edge with 3 or more elements. The other edges
are 1-edges and 2-edges. We prove the bounds on e(H) and i(H). Suppose H ∈ M
with

⋃H = [n], n ≥ 2. H has at most n 1-edges contributing weight ≤ n. By the
above characterization of maximal simple 21-free graphs, H has at most 2n− 3 2-edges
contributing weight ≤ 4n− 6. It is easy to see that if we delete from each big edge the
first and last element, the resulting sets are disjoint and lie in [2, n − 1]. Thus H has
at most n − 2 big edges contributing weight ≤ n − 2 + 2(n − 2) = 3n − 6. In total,
e(H) ≤ n + 2n− 3 + n − 2 = 4n − 5 and i(H) ≤ n + 4n − 6 + 3n− 6 = 8n − 12. The
hypergraphs

H1 = ({1, i, n}, {1, n}, {1, i}, {i, n}, {j} : i ∈ [2, n− 1], j ∈ [n])

and

H2 = ({i, i+ 1, i+ 2}, {i, i+ 2}, {j, j + 1}, {k} : i ∈ [n− 2], j ∈ [n− 1], k ∈ [n])

show that the bounds are tight.
We count M by means of the methodology, due to the French enumerative school,

that puts enumerated objects in bijection with words of a formal language. We say that
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a graph G is an I, J-graph, where I < J are two intervals in N, if G is simple, 21-free,⋃G = I ∪ J , each edge starts in I and ends in J , and G is maximal to these properties.
We define the six alphabets

A0 = {([n], ∅) : n ∈ N0} where [0] = ∅
A1 = {([n], {x}) : n ∈ N, x ∈ [n]}
A2 = {([n], X) : n ∈ N0, X ⊂ [n]}
A3 = {([n], i, j,G) : 1 ≤ i < j ≤ n, n ≥ 2,G is an [i], [j, n]-graph}
A4 = {([n], i) : 1 < i ≤ n, n ≥ 2}
A5 = {d} (d is a symbol whose meaning is explained later).

In fact, we will use a more general notation a = ([k, l], · · ·) for the letters of A0, . . . , A4:
a is understood to be identical with ([n], · · ·) where l − k + 1 = n and the structure · · ·
is moved to [n]. The length l(a) of a ∈ Ai is the length l − k + 1 = n of the underlying
interval and l(d) = −1. The length l(u) of a word u is the sum of lengths of all its
letters.

We prove that, for n ≥ 2, M is in bijection with the words u generated by the
language expression

(A2 − A1) + (A0A4 + (A2 − A0)A3)(A5A4 +A2A3)∗A2. (23)

(Here AB are words of the form ab for a ∈ A and b ∈ B, A − B is the set difference
(provided B ⊂ A), A + B is the set union (provided A ∩ B = ∅), and A∗ means
{∅}+A+ AA+AAA+ · · ·.) The bijection has the property that for H corresponding
to u we have v(H) = l(u) + 2. We describe how to transform H in u.

Let H ∈ M with
⋃H = [n], n ≥ 2. If n = 2, H = ({1}, {2}, {1, 2}) and we set

u = a1 = (∅, ∅) ∈ A0. Let n ≥ 3 and m ∈ [3, n] be the last vertex such that 1 and
m lie in a common edge. Clearly, m is defined and the edge X with 1 = minX and
m = maxX is big; otherwise we could add {1, 2,m} to the edges. We distinguish the
cases m = n and m < n. Let X = {x1 = 1, x2, . . . , xt = m}<, t ≥ 3.

Suppose m = n. If t = 3, H is the above hypergraph H1 and we let H correspond to
u = a1, a1 = ([2, n− 1], ∅) ∈ A0\{(∅, ∅)}. If t ≥ 4, X is unique and determines uniquely
H. We let H correspond to u = a1, a1 = ([2, n− 1], {x2, . . . , xt−1}) ∈ A2\(A0 ∪A1). We
obtain the first summand of equation (23).

Case m < n corresponds to the second summand. If t = 3, we take the X with the
maximum x2. If t ≥ 4, X is unique. There is a big edge Y = {y1, . . . , yt′}< such that
y1 ∈ [xt−1, xt−1] and y2 ≥ xt. The existence of Y follows by a similar argument as that
of X. If t′ ≥ 4, Y is unique. If t′ = 3, Y is unique up to y2 and we take the Y with the
maximum y2. If t = 3, the choice of X implies y1 = x2. We distinguish the cases t = 3
and t ≥ 4.

For t = 3 we start with u = a1a2 . . . where a1 = ([2, x2 − 1], ∅) ∈ A0 and a2 =
([x2, y2], x3) ∈ A4. If t ≥ 4, u = a1a2 . . . with a1 = ([2, xt−1−1], {x2, . . . , xt−2}) ∈ A2\A0

and a2 = ([xt−1, y2], y1, xt,G1). Here G1 is formed by the 2-edges joining [xt−1, y1] and
[xt, y2]. It is easy to see that G1 is an [xt−1, y1], [xt, y2]-graph. Hence, a2 ∈ A3. This
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gives the first factor of the second summand of (23). We distinguish the cases yt′ = n
and yt′ < n.

For yt′ = n we finish u = a1a2a3 by a3 = ([y2+1, n−1], {y3, . . . , yt′−1}) ∈ A2 (the third
factor). If yt′ < n, there is a big edge Z = {z1, . . . , zt′′}< such that z1 ∈ [yt′−1, yt′ − 1]
and z2 ≥ yt′ . Z is unique for t′′ ≥ 4 and for t′′ = 3 we take the Z with the largest middle
element. We distinguish the cases t′ = 3 and t′ ≥ 4.

For t′ = 3 the choice of Y implies z1 = y2. We continue u = a1a2a3a4 . . . by
a3 = d ∈ A5 and a4 = ([y2, z2], y3) ∈ A4. Notice that the underlying intervals of a2

and a4 overlap in y2. This decrease of order by 1 is marked by a3 = d. For t′ ≥ 4
we continue u = a1a2a3a4 . . . by a3 = ([y2 + 1, yt′−1 − 1], {y3, . . . , yt′−2}) ∈ A2 and
a4 = ([yt′−1, z2], z1, yt′ ,G2) ∈ A3, where G2 is the [yt′−1, z1], [yt′, z2]-graph formed by
the corresponding 2-edges. The word a3a4 belongs to the second factor of the second
summand in (23).

If zt′′ = n, we finish u by some a5 ∈ A2. Else we take the next big edge and continue
in the explained manner in the loop (A5A4 + A2A3)∗ until we eventually finish u by a
letter from A2. This way the u corresponding to H is obtained.

The big edges X, Y, . . . and the graphs G1,G2, . . . determine H completely, because
the other edges are forced uniquely by maximality. These are of three types. The
singletons {i}, i ∈ [n]. The 2-edges incident with the endvertices of X, Y, . . ., for example
{y1, i}, i ∈ [y2 + 1, y3] and {j, yt′}, j ∈ [yt′−2, yt′−1 − 1]. The 3-edges sharing endvertices
with those of X, Y, . . . that are 3-edges, for example {y1, i, y3}, i ∈ [xt, y2 − 1] if t′ = 3.

Therefore H can be uniquely reconstructed from u. For the sake of brevity of the
paper we omit the description of the inverse correspondence. The bijection matching M
with the words defined by (23) (and transforming v(H) to l(u) + 2) is established.

We associate with the alphabet Ai the GF Fi =
∑
a∈Ai x

l(a). The desired GF F is
given by F = 1+x+x2G, where G is the GF obtained from equation (23) by substituting
Fi for Ai. A

∗ translates as (1− FA)−1 and the other operations in the obvious manner.
We have F0 = (1− x)−1, F1 = x(1− x)−2, F2 = (1− 2x)−1, F3 = x2(1− x)−1(1− 2x)−1,
F4 = x2(1− x)−2, and F5 = x−1. Only F3 needs an explanation.

Each I, J-graph corresponds uniquely to |I| nonempty intervals J = J1∪J2∪· · ·∪J|I|
such that max Ji−1 = min Ji, min J1 = 1, and max J|I| = n. These intervals correspond
uniquely to the multisubset {max J1, . . . ,max J|I|−1} of J of cardinality |I| − 1. So we

have
(
|J |+|I|−2
|I|−1

)
I, J-graphs with given I and J . The number of the letters ([n], i, j,G) ∈

A3 with a given l = i + n − j + 1 is
(
l−2
0

)
+
(
l−2
1

)
+ · · · +

(
l−2
l−2

)
= 2l−2 and the total

number is 20 + 21 + · · ·+ 2n−2. This gives F3.
Substituting Fi for Ai, we get the series G and then equation (22). The radius of

convergence is the least positive root of the denominator. 2

Using the last theorem and the inequalities of Lemma 2.1, we obtain for p = 21 and
n > n0 relations c2 = 3.67871 . . ., c3 = 4, c4 = 8, c1 < 4 · 24 = 64, c5 < 64, and
c6 < 2 · 64 = 128.
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6 Concluding remarks

Bound (1) in general cannot be improved to O(n). For example, it is known that if the
sequence u ∈ [n]∗ is 2-sparse, does not contain 121212, and has the maximum length,
then

n2α(n) � |u| � n2α(n).

(We use here, as it is common in some texts, � as a synonym to the O(· · ·) notation.)
For more information see the book of Sharir and Agarwal [20].

Another extension of the problem of forbidden permutations was given by Alon and
Friedgut [1]. They extend the avoidance of permutations to the words in N∗, apply
(6) to prove Sn(p) < cn for unimodal p, and prove a general almost exponential bound
analogous to Theorem 2.5. Our proof of that theorem is inspired by their argument.
The bound they obtain is somewhat better compared to ours, due to a more complicated
induction step. Many enumerative results for avoidance in N∗ were found by Burstein
[3].

Bound (6) for the forbidden ”N” sequence was applied in Section 3 and in [1]. Third
application, to a problem in combinatorial geometry, is in Valtr [24].

We remarked in Section 1 that the conjecture C1 does not hold if the forbidden re-
ductionR is different fromHp with added singleton edges. But the extremal conjectures
then still may hold for some Rs. For example, one sees easily that the conjecture C4
holds if R = ({1}1, {1}2) or R = ({1, 2}, {1, 3}). Theorem 3.3 is a result of this type.

Some extremal problems closely related to ours were investigated before. Füredi [6]
proved that if G is a simple graph of order n that does not contain as a subgraph the
4-path ({1, 5}, {2, 4}, {3, 4}, {3, 5}) and has the maximum number of edges, then

n logn� e(G)� n log n.

See also Füredi and Hajnal [7].
Theorem 5.1 calls for a bijective explanation. It would be nice to have counterparts

of Theorems 4.4–4.7 for 21-free hypergraphs. These, however, seem considerably more
difficult to count than noncrossing hypergraphs. We hope to address these and related
questions in future investigations.
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