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Abstract

We study the limiting distribution of the height in a generalized trie in which external
nodes are capable to store up to b items (the so called b-tries). We assume that such a
tree is built from n random strings (items) generated by an unbiased memoryless source.
In this paper, we discuss the case when b and n are both large. We shall identify five
regions of the height distribution that should be compared to three regions obtained for
fixed b. We prove that for most n, the limiting distribution is concentrated at the single
point k1 = blog2(n/b)c + 1 as n, b → ∞. We observe that this is quite different than
the height distribution for fixed b, in which case the limiting distribution is of an extreme
value type concentrated around (1+1/b) log2 n. We derive our results by analytic methods,
namely generating functions and the saddle point method. We also present some numerical
verification of our results.

1 Introduction

We study here the most basic digital tree known as a trie (the name comes from retrieval).
The primary purpose of a trie is to store a set S of strings (words, keys), say S =
{X1, . . . ,Xn}. Each word X = x1x2x3 . . . is a finite or infinite string of symbols taken
from a finite alphabet. Throughout the paper, we deal only with the binary alphabet
{0, 1}, but all our results should be extendible to a general finite alphabet. A string will
be stored in a leaf (an external node) of the trie. The trie over S is built recursively as
follows: For |S| = 0, the trie is, of course, empty. For |S| = 1, trie(S) is a single node. If
|S| > 1, S is split into two subsets S0 and S1 so that a string is in Sj if its first symbol is
j ∈ {0, 1}. The tries trie(S0) and trie(S1) are constructed in the same way except that at
the k-th step, the splitting of sets is based on the k-th symbol of the underlying strings.
∗This work was supported by DOE Grant DE-FG02-96ER25168.
†The work of this author was supported by NSF Grants NCR-9415491 and CCR-9804760, Purdue Grant

GIFG, and contract 1419991431A from sponsors of CERIAS at Purdue.
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x1, x2, x3

x5, x6 x4 x8, x9, x10 x7

Figure 1: A b-trie with b = 3 built from the following ten strings: X1 = 11000 . . . ,
X2 = 11100 . . . , X3 = 11111 . . . , and X4 = 1000 . . ., X5 = 10111 . . ., X6 = 10101 . . .,
X7 = 00000 . . ., X8 = 00111 . . ., X9 = 00101 . . ., X4 = 00100 . . ..

There are many possible variations of the trie. One such variation is the b-trie in which
a leaf is allowed to hold as many as b strings (cf. [5, 9, 11, 17]). In Figure 1 we show
an example of a 3-trie constructed over n = 10 strings. The b-trie is particularly useful
in algorithms for extendible hashing in which the capacity of a page or other storage unit
is b. Also, in lossy compression based on an extension of Lempel-Ziv lossless schemes (cf.
[10, 18]), b-tries (or more precisely, b-suffix trees [17]) are very useful. In these applications,
the parameter b is quite large, and may depend on n. There are other applications of b-tries
in computer science, communications and biology. Among these are partial match retrieval
of multidimensional data, searching and sorting, pattern matching, conflict resolution algo-
rithms for broadcast communications, data compression, coding, security, genes searching,
DNA sequencing, and genome maps.

In this paper, we consider b-tries with a large parameter b, that may depend on n. Such
a tree is built over n randomly generated strings of binary symbols. We assume that every
symbol is equally likely, thus the strings are emitted by an unbiased memoryless source. Our
interest lies in establishing the asymptotic distribution of the height, which is the longest
path in such a b-trie. We also compare our results to those for b-tries with fixed b (cf.
[4, 7, 6, 14]), PATRICIA tries (cf. [7, 9, 11, 13]) and digital search trees (cf. [8, 9, 11]).

We now briefly summarize our main results. We obtain asymptotic expansions of the
distribution Pr{Hn ≤ k} of the height Hn for five ranges of n, k, and b (cf. Theorem 2).
This should be compared to three regions of n and k for fixed b (cf. Theorem 1). We shall
prove that in the region where most of the probability mass is concentrated, the height
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distribution can be approximated by (for fixed large k and n, b→∞)

Pr{Hn ≤ k} ∼ exp

(
− 2k√

2π
e−a

2/2

a

)

where a =
√
b(1 − n2−k) → ∞ (cf. Theorem 2 and the Appendix). This resembles an

exponential of a Gaussian distribution. However, a closer look reveals that the asymptotic
distribution of the height is concentrated (for fixed large n and k, b → ∞) on the point
k1 = blog2(n/b)c + 1, that is, Pr{Hn = k1} = 1 − o(1). This should be contrasted with
the height distribution of b-tries with fixed b, in which cases the limiting distribution is of
extreme value type, and is concentrated around (1+1/b) log2 n. We observe that the height
distribution of b-tries with large b resembles the height distribution for a PATRICIA trie
(cf. [7, 13, 17]). In fact, in [13, 17] the probabilistic behavior of the PATRICIA height was
obtained through the height of b-tries after taking the limit with b→∞.

With respect to previous results, Flajolet [4], Devroye [2], Jacquet and Régnier [6], and
Pittel [14] established the asymptotic distribution for b-tries with fixed b using probabilistic
and analytic tools (cf. also [7]). To the best of our knowledge, there are no reported results
in literature for large b.

The paper is organized as follows. In the next section we present and discuss our main
results for b-tries for large b (cf. Theorem 2). The proof is delayed until Section 3. It is
based on an asymptotic evaluation of a certain integral.

2 Summary of Results

We let Hn be the height of a b-trie of size n. We denote its probability distribution by

hkn = Pr{Hn ≤ k}. (2.1)

This function satisfies the non-linear recurrence

hkn =
n∑
i=0

(
n

i

)
2−nhk−1

i hk−1
n−i , k ≥ 1 (2.2)

with the initial condition

h0
n = 1, n = 0, 1, . . . , b; (2.3)
h0
n = 0, n > b. (2.4)

By using exponential generating functions, we can easily solve (2.2) and (2.3)-(2.4).
Indeed, let us define Hk(z) =

∑
n≥0 h

k
n
zn

n! . Then, (2.2) implies that

Hk(z) =
(
H0(z2−k)

)2k

with H0(z) = 1+z+· · ·+zb/b!. By Cauchy’s formula, we obtain the following representation
of hkn as a complex contour integral:

hkn =
n!

2πi

∮
z−n−1

[
1 + z2−k +

z24−k

2!
+ · · ·+ zb2−bk

b!

]2k

dz. (2.5)
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Here the loop integral is around any closed loop about the origin.
To gain more insight into the structure of this probability distribution, it is useful to

evaluate (2.5) in the asymptotic limit n → ∞. In [4] and [7] asymptotic formulas were
presented that apply for n large with b fixed, for various ranges of k. For purposes of
comparison, we repeat these results below.

Theorem 1 The distribution of the height of b-tries has the following asymptotic expan-
sions for fixed b:

(i) Right-Tail Region: k →∞, n = O(1):

Pr{Hn ≤ k} = h̄kn ∼ 1− n!
(b+ 1)!(n− b− 1)!

2−kb.

(ii) Central Regime: k, n→∞ with ξ = n2−k, 0 < ξ < b:

h̄kn ∼ A(ξ; b)enφ(ξ;b),

where

φ(ξ; b) = −1− log ω0 +
1
ξ

(
b log(ω0ξ)− log b!− log

(
1− 1

ω0

))
,

A(ξ; b) =
1√

1 + (ω0 − 1)(ξ − b)
.

In the above, ω0 = ω0(ξ; b) is the solution to

1− 1
ω0

=
(ω0ξ)b

b!
(

1 + ω0ξ + ω2
0ξ

2

2! + · · ·+ ωb0ξ
b

b!

) .
(iii) Left-Tail Region: k, n→∞ with j = b2k − n

h̄kn ∼
√

2πn
nj

j!
bn exp

(
−(n+ j)

(
1 + b−1 log b!

))
where j = O(1).

We also observed that the probability mass is concentrated in the central region when
ξ → 0. In particular,

Pr{Hn ≤ k} ∼ A(ξ)enφ(ξ) ∼ exp

(
− nξb

(b+ 1)!

)
, ξ → 0

= exp

(
−n

1+b2−kb

(b+ 1)!

)
. (2.6)

In fact, most of the probability mass is concentrated around k = (1 + 1/b) log2 n+ x where
x is a fixed real number. More precisely:

Pr{Hn ≤ (1 + 1/b) log2 n+ x} = Pr{Hn ≤ b(1 + 1/b) log2 n+ xc}

∼ exp
(
− 1

(1 + b)!
2−bx+b〈(1+b)/b·log2 n+x〉

)
, (2.7)
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where 〈x〉 is the fractional part of x, that is, 〈x〉 = x − bxc. Due to the term 〈log2 n〉 the
limit of (2.7) does not exit as n→∞.

We next consider the limit b → ∞. We now find that there are five cases of (n, k) to
consider, and we summarize our final results below. The necessity of treating the five cases
in Theorem 2 is better understood by viewing the problem as first fixing k and b, and then
varying n (cf. Section 4).

Theorem 2 For b→∞ the distribution of the height of b-tries has the following asymptotic
expansions:

(a) b, k →∞, (n− b)2−k → 0, b ≥ δn (δ > 0)

1− hkn =

(
n

b+ 1

)
2−kb

[
1 +O

(
n− b− 1

2k

)]
.

(b) b, n, k →∞, (n− b)2−k →∞, nb−12−k ≤ δ1 < 1

1− hkn =

(
n

b

)
(1− 2−k)n−b

2k(b−1)

[
b2k

n− b − 1

]−1

[1 +O(b(n− b)−24k) +O(2−k)]

(c) b, n, k →∞, 2k = O(
√
b), a ≡

√
b(1− n2−k/b) fixed

hkn =
K0√

1− a(a+ ζ0)
exp(2kΨ0)

[
1 +O

(
1√
b

)]
where

K0 = exp

[
2k

6
√
b
(a+ ζ0)(a2 − aζ0 + 4)

]
,

Ψ0 =
1
2

(a+ ζ0)2 + logQ(ζ0)

Q(ζ0) =
1√
2π

∫ ∞
ζ0

e−x
2/2dx,

and ζ0 = ζ0(a) is the solution to the transcendental equation

a+ ζ0 =
e−ζ

2
0/2

√
2πQ(ζ0)

.

(d) b, n, k →∞ with b− n2−k = γ fixed

hkn =

√
b

γ(1 + γ)

(
1√
2πb

)2k

e2kϕ(γ)[1 +O(b−1)]

ϕ(γ) = γ log
(

1 +
1
γ

)
+ log(1 + γ).

(e) b, n, k →∞ with b2k − n = j fixed,

hkn =
√

2πb2k
(

1√
2πb

)2k 2kj

j!
[1 +O(2−kj2)]

for j ≥ 0.
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We observe that for cases (c), (d) and (e), hkn is exponentially small, while for cases (a)
and (b), 1− hkn is exponentially small. From the definition of ζ0 in part (c), we can easily
show that

ζ0(a) = −a+
1√
2π
e−a

2/2 +O(e−a
2
), a→ +∞ (2.8)

ζ0(a) =
1
a
− 2a+O(a3), a→ 0+. (2.9)

We also note that from the definition of a b-trie we have hkn = 0 for n > b2k and hkn = 1 for
0 ≤ n ≤ b, k ≥ 0.

The asymptotic formula for hkn in the matching region between (b) and (c) may be
obtained by evaluating (c) in the limit a→∞. Using (2.8) we are led to (see the Appendix
for the derivation)

hkn ∼ exp

(
− 2k√

2π
e−a

2/2

a

)
. (2.10)

This result applies to the limit where b, n, k → ∞ with a =
√
b(1 − n2−k/b) → ∞ but

n2−k/b → 1−. Observe that (2.10) asymptotically matches with the result in Theorem
2(b), if a is sufficiently large so that 2ke−a

2/2a−1 → 0. We note that for fixed large n the
condition a = O(1), with 0 < a < ∞, as b → ∞ may not be satisfied for any k. However,
for fixed large b and k, we can clearly find n so that a =

√
b(1 − n2−k/b) = O(1) for some

range of n (see also numerical studies in Section 4). The expansion (2.10) applies when n, b
and k are such that hkn is neither close to 0 nor to 1.

The result (2.10) has roughly the form of an exponential of a Gaussian, and it should
be contrasted with the double exponential in (2.6), which applies for b fixed. The large b
result is somewhat similar to the corresponding one for PATRICIA trees analyzed by us in
[7] and digital search trees discussed in [8].

Next, we apply Theorem 2 for a fixed (large) b and let n and k vary. We first define

k0 = dlog2(n/b)e,

and note that hkn = 0 for k < k0. We furthermore set

k = blog2(n/b)c+ ` = log2(n/b) + `− β

where β = 〈log2(n/b)〉 (as before 〈·〉 denotes the fractional part). If n/b is a power of 2 then
β = 0 and for ` = 0 part (e) of Theorem 2 yields (with j = 0)

hk0
n ∼

√
2k0

(
1√
2πb

)2k0−1

, 2k0 = n/b

which is asymptotically small. On the other hand if β = 0 and ` = 1 then

a =
√
b(1− n2−k/b) =

√
b(1− 2β−1) =

1
2

√
b

which is large, so that hk0+1
n ∼ 1. This shows that when n/b is a power of 2, all the mass

accumulates at k0 + 1 = log2(n/b) + 1.
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When n/b is not a power of 2 (with ` = 1, 2, . . .) and we consider a fixed β (0 < β < 1),
then we can easily show that j, γ and a are all asymptotically large, so that parts (c)-(e)
of Theorem 2 do not apply, and we must use part (b) (or the intermediate result in (2.10))
to compute hkn. We thus have hk0−1

n = 0 and hk0
n ∼ 1 so that the mass accumulates at

k = k0 = blog2(n/b)c+ 1. In passing we should point out that if we consider a sequence of
n, b such that β → 1−, then the conditions where parts (c) and (d) of Theorem 2 are valid
may be satisfied.

We summarize this analysis in the following corollary.

Corollary 1 For any fixed 0 ≤ β < 1 and n, b → ∞, the asymptotic distribution of the
b-trie height is concentrated on the one point k1 = blog2(n/b)c + 1, that is,

Pr{Hn = k1} = 1− o(1)

as n→∞. If β → 1− in such a way that 2ke−a
2/2a−1 is bounded, then the height distribution

concentrates on two consecutive points.

3 Derivation of Results

We establish the five parts of Theorem 2. Since the analysis involves a routine use of the
saddle point method (cf. [1, 12]), we only give the main points of the calculations.

The distribution hkn = Pr{Hn ≤ k} is given by the Cauchy integral (2.5). Observe that

1 + z2−k + · · ·+ zb2−kb

b!
= ez2

−k
∫ ∞
z2−k

e−w
wb

b!
dw = ez2

−k
[
1−

∫ z2−k

0
e−w

wb

b!
dw

]
. (3.1)

It will thus prove useful to have the asymptotic behavior of the integral(s) in (3.1), and this
we summarize below.

Lemma 1 We let

I = I(A, b) =
1
b!

∫ A

0
eb logw−wdw =

e−bbb+1

b!

∫ A/b

0
eb(log u−u+1)du.

Let α = b/A. Then, the asymptotic expansions of I are as follows:
(i) b,A→∞, α = b/A > 1

I = e−A
Ab

b!

[
1

b/A− 1
− b

A2

1
(b/A− 1)3

+O(A−2)
]
.

(ii) b,A→∞, b/A < 1

I = 1− e−AA
b

b!

[
1

1− b/A −
b

A2

1
(1− b/A)3

+O(A−2)
]
.

(iii) b,A→∞, A− b =
√
bB, B = O(1)

I =
1√
2π

(∫ B

−∞
e−x

2/2dx− 1
3
√
b
(B2 + 2)e−B

2/2

+
1
b

(
−B

5

18
− B3

36
− B

12

)
e−B

2/2 +O(b−3/2)

)
.
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Proof. To establish Lemma 1 we note that I is a Laplace-type integral [1, 12]. Setting
f(u) = log u − u + 1 we see that f is maximal at u = 1. For A/b < 1 we have f ′(u) > 0
for 0 < u ≤ A/b and thus the major contribution to the integral comes from the upper
endpoint (more precisely, from u = A/b − O(b−1)). Then, the standard Laplace method
yields part (i) of the Lemma 1. If A/b > 1 we write

∫ A/b
0 (· · ·) =

∫∞
0 (· · ·)−

∫∞
A/b(· · ·), evaluate

the first integral exactly and use Laplace’s method on the second integral. Now f ′(u) < 0
for u ≥ A/b and the major contribution to the second integral is from the lower endpoint.
Obtaining the leading two terms leads to (ii) in the Lemma 1.

To derive part (iii), we scale A− b =
√
bB to see that the main contribution will come

from u− 1 = O(b−1/2). We thus set u = 1 + x/
√
b and obtain

I =
e−bbb+1

b!

∫ B

−
√
b
exp

(
b

[
log

(
1 +

x√
b

)
− x√

b

])
dx√
b

(3.2)

=
bb
√
be−b

b!

∫ B

−∞
e−x

2/2

[
1 +

x3

3
√
b

+
1
b

(
−x

4

4
+
x6

18

)
+O(b−3/2)

]
dx.

Evaluating explicitly the integrals in (3.2) and using Stirling’s formula in the form b! =√
2πbbbe−b(1 + (12b)−1 +O(b−2)), we obtain part (iii) of the Lemma.

We return to (2.5) and first consider the limit b→∞ with (n− b− 1)2−k → 0. Now we
have

2k log

(
1−

∫ z2−k

0
e−w

wb

b!
dw

)
∼ − zb+1

(b+ 1)!
2−kb

which when used in (2.5) yields

1− hkn =
n!

2πi

∮
ez

zn+1

(
1− exp

[
2k log

(
1−

∫ z2−k

0
e−w

wb

b!
dw

)])
dz

=
n!

2πi

∮
ezzb−n

2−kb

(b+ 1)!
(1 +O(z2−k))dz

=
n!

(n− b− 1)!
2−kb

(b+ 1)!
(1 +O((n− b− 1)2−k)).

and we obtain part (a) of Theorem 2.
Now consider the limit where (n − b)2−k → ∞ and nb−12−k ≤ δ1 < 1. Using Lemma

1(i) we obtain

1− hkn =
n!

2πi

∫
|z|=(n−b)/(1−2−k)

ez

zn+1
2ke−z2

−k zb

2kbb!
1

b2k/z − 1
[1 +O(bz−24k)]dz. (3.3)

The above has a saddle where
d

dz
[z + (b− n) log z] = 0⇒ z = n− b

and then the standard saddle point approximation to (3.3) yields

1− hkn ∼
n!

(n− b)!b!
(1− 2−k)n−b

2k(b−1)

[
b2k

n− b − 1

]−1

. (3.4)
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We have thus obtained Theorem 2 part (b). The error term therein follows from (3.3).
We proceed to analyze the left tail of the distribution. First, we consider the limit

b, n, k →∞ with b2k−n = j fixed, and j ≥ 0. We use part (ii) of Lemma 1 to approximate
(3.1). Thus,

z + 2k log

(∫ ∞
z2−k

e−w
wb

b!
dw

)
= 2kb log(z2−k)− 2k log(b!) (3.5)

− 2k log
(

1− b

z2−k

)
+O(b8kz−2).

We furthermore scale z = 4kbt and then (2.5) with (3.5) becomes

hkn = n!e−2k log(b!)e2kb log(2−k) 1
2πi

∮
zj−1 exp

(
−2k log

(
1− b

z2−k

))
[1 +O(b8kz−2)]dz

= n!(4kb)je−2k log(b!)e2kb log(2−k) 1
2πi

∮
tj−1e1/t[1 +O(2−kb−1t−2 + 2−kt−2)]dt

=
n!
j!

(4kb)je−2k log(b!)e2kb log(2−k)[1 +O(j22−k)]. (3.6)

Using Stirling’s formula to approximate n! and b! and replacing n by b2k − j, we see
that (3.6) is asymptotically equivalent to Theorem 2(e).

Next we take b, n, k large with b− n2−k = γ fixed. We may still use the approximation
(3.5). We now set z = 2kbτ and obtain from (2.5) and (3.5)

hkn = n!
(

1
2kb

)n−2kb

e−2k log(b!)
(

1
2k

)2kb

J (3.7)

J =
1

2πi

∮
e(2kb−n) log τ−2k log(1−1/τ) dτ

τ
[1 +O(b−1)].

The integral J is easily evaluated by the saddle point method. The saddle point equation
is

d

dτ
[(2kb− n) log τ − 2k log(1− 1/τ)] = 0

so there is a saddle at τ = τ0 ≡ 1 + 1/(b − n2−k) = 1 + 1/γ. Then the standard leading
order estimate for J is

J ∼ 1√
2π

exp
[
(2kb− n) log

(
1 +

1
γ

)
+ 2k log(1 + γ)

]
1√

(2kb− n)(1 + b− n2−k)
. (3.8)

Using (3.8) in (3.7) along with Stirling’s formula, and writing the result in terms of b, k and
γ, we obtain Theorem 2(d).

Finally we consider b, n, k large with a =
√
b(1 − n2−k/b) fixed. Now we must use part

(iii) of Lemma 1 to approximate the integrand in (2.5). Setting B = (z2−k − b)/
√
b and

using Lemma 1(iii) we obtain
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log(1− I) = log

[
1√
2π

∫ ∞
B

e−x
2/2dx− 1√

2π
B2 + 2

3
√
b
e−B

2/2 +O(b−1)

]
(3.9)

= log
(

1√
2π

∫ ∞
B

e−x
2/2dx

)
+
B2 + 2

3
√
b

e−B
2/2∫∞

B e−x2/2dx
+O(b−1).

Setting ζ = (z2−k − b)/
√
b we find that

n!ezz−n = exp
[
2k(b+

√
bζ)− n log(2kb)− n log

(
1 +

ζ√
b

)]
n! (3.10)

=
√

2πn exp

[
2k

(a+ ζ)2

2
+

2k√
b

(
a3

6
− aζ

2
− ζ3

3

)
+O

(
2k

b

)]
.

Here we have again used Stirling’s formula and recalled that n = 2kb(1 − a/
√
b). Using

(3.9) and (3.10), (2.5) becomes

hkn =
√

2πn
2πi

1√
b

∮
K(ζ; b)e2kΨ(ζ)dζ (3.11)

where
Ψ(ζ) =

1
2

(a+ ζ)2 + log
(

1√
2π

∫ ∞
ζ

e−x
2/2dx

)
and

K(ζ; b) = exp

(
2k√
b

(
a3

6
− aζ2

2
− ζ3

3
+

(ζ2 + 2)e−ζ
2/2

3
∫∞
ζ e−x2/2dx

))
×[1 +O(b−1/2, 2kb−1)].

For k → ∞ in such a way that a is fixed and 2k/b → 0, we evaluate (3.11) by the saddle
point method. The equation locating the saddle points is Ψ′(ζ) = 0, i.e.,

a+ ζ =
e−ζ

2/2∫∞
ζ e−x2/2dx

. (3.12)

This defines ζ = ζ0(a), which satisfies ζ0 → −∞ as a→ +∞ and ζ0 → +∞ as a→ 0+. We
note that n2−k/b ∼ 1 and, in view of (3.12),

Ψ′′(ζ0) = 1 +
ζ0e
−ζ2

0/2∫∞
ζ0
e−x2/2dx

− e−ζ
2
0(∫∞

ζ0
e−x2/2dx

)2

= 1− a2 − aζ0.

Then the standard Laplace estimate of (3.11) leads to part (c) of Theorem 2.
We comment that a more uniform result than that in (c) can be given. We have

hkn ∼
n!√
2π

[
n

z2
∗
− 2−k

1− I∗

(
I ′′∗ +

(I ′∗)2

1− I∗

)]−1/2
ez∗

zn+1
∗

(1− I∗)2k (3.13)
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where z∗ = z∗(n, b, k) is the solution to

1− n

z
− I ′(z2−k; b)

1− I(z2−k; b)
= 0,

and I is defined in Lemma 1. Also, I ′∗ = I ′(z∗2−k; b) and I ′′∗ = I ′′(z∗2−k; b). The above is
more general than Theorem 2(c) in that the condition 2k = O(

√
b) is not required. This

can be obtained by writing

hkn =
n!

2πi

∮ 1
z

exp[z − n log z + 2k log(1− I(z2−k; b))]dz

and using the saddle point method, without using Lemma 1 to approximate I. The saddle
point equation is

d

dz
[z − n log z + 2k log(1− I)] = 1− n

z
− I ′

1− I = 0

and we ultimately obtain (3.13).

4 Numerical Studies

We determine the numerical accuracy of the results in Theorem 2, and also demonstrate
the necessity of treating the five different scales. To do so, it is best to fix b and k, and
vary n. We consider the range b+ 1 ≤ n ≤ b2k, since otherwise hkn = 1 or hkn = 0. We note
that as we increase n, we gradually move from case (a) to case (e) of Theorem 2. We also
comment that for a fixed large b and n, the conditions under which (c)–(e) apply may not
be satisfied for any k. However, for a fixed large b and k, we can always find a range of n
such that each of the parts of Theorem 2 apply.

In Table 1 we consider b = 16 and k = 2. We thus have 2k =
√
b so that the condition

2k = O(
√
b), which appears in part (c), is (numerically) satisfied. Table 1 gives the exact

values of 1− hkn and the approximations from Theorem 2, parts (a) and (b). The part (a)
approximation is denoted by 1 − hkn (a), etc. We see that when n = 17, (a) is a better
approximation than (b), but (b) is superior when n ≥ 18.

In Table 2 we retain b = 16 and k = 2, but now take 46 ≤ n ≤ 64. We tabulate the
exact hkn along with the asymptotic results in parts (c)–(e) of Theorem 2. We also give the
corresponding values of a =

√
b(1 − n2−k/b), γ = b − n2−k and j = b2k − n, since these

results assume that a, γ and j are O(1), respectively. When n = 64, approximation (e)
is accurate to within 2%. When n = 63, (e) is more accurate than (d), but (d) becomes
superior for n ≤ 62. When n is further decreased to n = 54, (c) becomes more accurate
than (d). We also recall that when hkn is not close to either 0 or 1, then part (c) applies.

In Tables 3 and 4 we increase b and k to b = 64 and k = 3 (thus retaining 2k =
√
b). In

Table 3 we consider 1− hkn for cases (a) and (b) and in Table 4 we give hkn for cases (c)–(e)
(again tabulating the values of a, γ and j). When n = 65 = b + 1, (a) is superior to (b),
but (b) is the better approximation for n ≥ 66. Table 4 considers 400 ≤ n ≤ 512 = b2k and
demonstrates the transition between cases (c) and (d) and then (d) and (e). In general,
the results in Tables 3 and 4 are more accurate than those in Tables 1 and 2, as one would
expect, since the asymptotics apply for b→∞.
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Table 1: b = 16, k = 2

n 1− hkn (exact) 1− hkn (a) 1− hkn (b)
17 .233 (10−9) .233 (10−9) .188 (10−9)
18 .320 (10−8) .419 (10−8) .259 (10−8)
19 .232 (10−7) .398 (10−7) .187 (10−7)
20 .118 (10−6) .265 (10−6) .951 (10−7)
21 .475 (10−6) .139 (10−5) .381 (10−6)
22 .160 (10−5) .613 (10−5) .128 (10−5)
23 .469 (10−5) .374 (10−5)
24 .123 (10−4) .980 (10−5)
26 .652 (10−4) .516 (10−4)
28 .263 (10−3) .207 (10−3)
30 .863 (10−3) .676 (10−3)
32 .240 (10−2) .187 (10−2)
34 .585 (10−2) .453 (10−2)
36 .127 (10−1) .139 (10−2)
38 .253 (10−1) .194 (10−1)
40 .462 (10−1) .352 (10−1)
42 .790 (10−1) .599 (10−1)
44 .127 .958 (10−1)
46 .193 .146
48 .278 .211
50 .383 .294

Table 2: b = 16, k = 2

n hkn (exact) (a) hkn (c) (γ) hkn (d) (j) hkn (e)
46 .807 (1.125) .960
48 .722 (1.000) .873
50 .617 (.875) .763
52 .497 (.750) .635
54 .370 (.563) .497 (2.50) .581
56 .247 (.500) .359 (2.00) .335
58 .142 (.375) .238 (1.50) .171
60 .643 (10−1) (1.00) .716 (10−1)
61 .378 (10−1) (.75) .412 (10−1) (3) .211 (10−1)
62 .193 (10−1) (.50) .208 (10−1) (2) .159 (10−1)
63 .778 (10−2) (.25) .864 (10−2) (1) .794 (10−2)
64 .195 (10−2) (0) .198 (10−2)
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Table 3: b = 64, k = 3

n 1− hkn (exact) 1− hkn (a) 1− hkn (b)
65 .159 (10−57) .159 (10−57) .142 (10−57)
66 .922 (10−56) .105 (10−55) .821 (10−56)
67 .271 (10−54) .352 (10−54) .241 (10−54)
68 .538 (10−53) .798 (10−53) .479 (10−53)
69 .814 (10−52) .138 (10−51) .724 (10−52)
70 .100 (10−50) .193 (10−50) .889 (10−51)
100 .176 (10−32) .156 (10−32)
150 .564 (10−19) .492 (10−19)
200 .118 (10−11) .102 (10−11)
250 .468 (10−7) .395 (10−7)
300 .522 (10−4) .431 (10−4)
350 .583 (10−2) .468 (10−2)
400 .130 .103

Table 4: b = 64, k = 3

n hkn (exact) (a) hkn (c) (γ) hkn (d) (j) hkn (f)
400 .870 (1.75) .924
420 .690 (1.44) .743
440 .416 (1.13) .454
460 .145 (.81) .164
480 .166 (10−1) (.48) .204 (10−1) (4) .337 (10−1)
500 .980 (10−4) (.17) .202 (10−3) (1.50) .111 (10−3)
508 .702 (10−6) (.500) .733 (10−6) (5) .370 (10−6)
509 .256 (10−6) (.375) .268 (10−6) (4) .185 (10−6)
510 .772 (10−7) (.250) .816 (10−7) (2) .694 (10−7)
511 .172 (10−7) (.125) .188 (10−7) (1) .174 (10−7)
512 .215 (10−8) (0) .217 (10−8)
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These data also suggest that in some cases it may be desirable to calculate some of
the higher order terms in the asymptotic series. For case (c) these are likely to be of
order O(b−1/2) relative to the leading term, for 2k = O(

√
b). The overall accuracy of the

asymptotic results is also consistent with O(b−1/2) error terms. Finally, we comment that
by calculating higher order terms in the expansions in Lemma 1, it may be possible to relax
the condition 2k = O(

√
b), that appears in some part (c) of Theorem 2 (see also (3.13)).

ACKNOWLEDGMENT: We thank the referee for useful suggestions.

Appendix

We discuss the asymptotic matching region between cases (b) and (c) of Theorem 2. In par-
ticular, we establish (2.10) in the matching region directly from the integral representation
(2.5).

We use an approximation to I that applies for A− b = o(b) but with (A− b)/
√
b = B →

−∞. In this range we have, from Lemma 1,

1− I ∼ 1− e−B
2/2

√
2π

(
1
B
− B2

3
√
b

+ · · ·
)

and hence

hkn ∼ n!
2πi

∮
ez

zn+1

[
1 +

e−B
2/2

B
√

2π

(
1− B3

3
√
b

+ · · ·
)]2k

dz

∼ n!
2πi

∮
e2kbe2k

√
bB
√
b2−kn

(b+
√
bB)n+1

exp

[
e−B

2/2

B

2k√
2π

(
1− B3

3
√
b

)]
dB. (A.1)

Next we use

exp(2k
√
bB)

(
1 +

B√
b

)−n
∼ exp

[(
2k
√
b− n√

b

)
B +

n

2b
B2
]

= exp

[
2k
(
aB +

n

2kb
B2

2

)]

in (A.1) and note that in the matching region n/(2kb) ∼ 1. We recall that a =
√
b(1 −

n2−k/b).
The integrand in (A.1) has a saddle point at B = −a and a standard application of the

steepest descent method yields

hkn ∼
n!

bn
√
b
e2kb 1√

2π
2−kn2−k/2e−2ka2/2 exp

[
−e
−a2/2

a
√

2π
2k
]
. (A.2)

But in this limit we have

n!
bn
e2kb2−kn ∼

(
n

b2k

)n√
2πne2kb−n
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=
√

2πn
(

1− a√
b

)n
e2k
√
ba

∼
√

2πn exp
[(

2k
√
b− n√

b

)
a− n

2b
a2
]

∼
√

2πb2k/2 exp

(
2k
a2

2

)
.

Using the above in (A.2) establishes (2.10) and shows that there are no “gaps” in the
asymptotics between cases (b) and (c).
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