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Abstract

Let d(n) count the lattice paths from (0, 0) to (n, n) using the steps (0,1),
(1,0), and (1,1). Let e(n) count the lattice paths from (0, 0) to (n, n) with
permitted steps from the step set N × N − {(0, 0)}, where N denotes the non-
negative integers. We give a bijective proof of the identity e(n) = 2n−1d(n)
for n ≥ 1. In giving perspective for our proof, we consider bijections between
sets of lattice paths defined on various sets of permitted steps which yield path
counts related to the Narayana polynomials.
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1 Introduction

In the plane Z × Z let D(n) denote the set of all lattice paths from (0, 0) to (n, n)

using steps from the step set {(0, 1), (1, 0), (1, 1)}. The path counts (|D(n)|)n≥0 =

(1, 3, 13, 63, 321, 1683, . . .) are the well-known central Delannoy numbers. Let E(n)

denote the set of all lattice paths from (0, 0) to (n, n) with permitted steps from the

step set N × N − {(0, 0)}, where N denotes the nonnegative integers. Figure 1a (1f,

resp.) illustrates a path in E(8) (D(8), resp.) if the first step is ignored.

We will give a bijective proof for the identity

|E(n)| = 2n−1|D(n)|

for n ≥ 1, as requested in Stanley’s [4] Exercise 6.16. (A proof using generating

functions appears in [4].) To give perspective for our proof, we will consider bijections
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between various sets of lattice paths which have path counts related to Narayana

polynomials. The known results of the first two sections serve as background for the

results of the last two sections.

This paper will consider six step sets which are labeled arbitrarily by Si for i =

1 . . . 6. Table 1 contains a list of these step sets and an index to the path sets

considered. Given a specific step set Si, let Ai(n) denote the set of all lattice paths

running from (0,−1) to (n, n) that use the steps in Si and that remain strictly above

the line y = −1 except initially. Let Li(n) denote that subset of Ai(n) whose member

paths remain strictly above the line y = x− 1 except initially.

We complete this section by introducing the Narayana polynomials in terms of

lattice paths. For the step set S1 = P× P, with P denoting the positive integers, let

A1(n, k) (L1(n, k), resp.) denote the set of paths in A1(n) (L1(n), resp.) having k

steps. For example, A1(2, 1) contains just one path formed by the single step (2, 3).

Further, A1(2, 2) = {(1, 1)(1, 2), (1, 2)(1, 1)}, L1(2, 1) = {(2, 3)}, and L1(2, 2) =

{(1, 2)(1, 1)}.

Proposition 1 For 0 < k ≤ n,

|A1(n, k)| =
(
n− 1

k − 1

)(
n

k − 1

)
(1)

|L1(n, k)| = 1

k

(
n− 1

k − 1

)(
n

k − 1

)
=

1

n

(
n

k − 1

)(
n

k

)
. (2)

Proof. The right side of (1) simply counts the ways to assign the coordinates of

the end points of the steps constituting a path in A1(n, k). E.g., consider the path

(2, 1)(1, 1)(1, 3) ∈ L1(4, 3), expressed as a sequence of steps; here the endpoints of

the steps have coordinates (2, 0), (3, 1), and (4, 4), so that {2, 3} ⊂ {1, 2, 3} and

{0, 1} ⊂ {0, 1, 2, 3}.
Since exactly one of the k cyclic permutations of any path in A1(n, k) lies in

L1(n, k), the middle formula of (2) follows from (1). See [5] for details of this use of

the cycle lemma. �

With V denoting the unit vertical step (0, 1) and H denoting the unit horizontal

step (1, 0), let S2 be the common step set {V,H}. Here, for example, L2(2) =

{V V V HH, V V HVH, }. Observe that each step (u, v) ∈ S1 determines a vertical

step (0, v) followed by a horizontal step (u, 0), and conversely. Hence there is an

immediate matching between A1(n, k) and A2(n, k), where A2(n, k) is that subset of

A2(n) in which each path has k peaks (i.e., consecutive V H pairs or right turns).

Thus |A1(n)| = |A2(n)|. Likewise, there is an immediate matching between L1(n, k)
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section step set path sets

1 S1 = P× P A1(n), A1(n, k), L1(n), L1(n, k)

S2 = { (0, 1), (1, 0)} A2(n), A2(n, k), L2(n), L2(n, k)

2 S3 = {(0, 1), (1, 0), (1, 1)} L2(n), Lc2(n; z), Lcc2 (n; z), L3(n)

3 S4 = (P× {0}) ∪ ({0} × P) L4(n), L0
4(n), L∗2(n)

4 S5 = N× N− {(0, 0)} A5(n), A0
5(n), L5(n), L0

5(n), A0
3(n)

S6 = ({0} × P) ∪ {(1, 0)} L6(n), A`2(n), Acc2 (n), A6(n), A0
6(n)

Table 1: This table gives the definitions for six step sets together with the symbols

for various path sets, each of which is introduced in the corresponding section. Here

N (P, resp.) denotes the set of nonnegative (positive, resp.) integers.

and L2(n, k) where L2(n, k) is that subset of L2(n) in which each path has k peaks;

thus |L1(n)| = |L2(n)|.
The count, |L2(n, k)| = 1

n

(
n
k−1

)(
n
k

)
, is known as a Narayana number, and

Nn(z) =
n∑
k=1

1

n

(
n

k − 1

)(
n

k

)
zk

is known as the nth-Narayana polynomial. Studies of these polynomials are given

by Bonin, Shapiro, and Simion [1] and the author [6]. The sequence (Nn(1))n≥0 =

(1, 1, 2, 5, 14, . . .) is well known as the Catalan numbers, while the sequence (Nn(2))n≥0

= (1, 2, 6, 22, 90, . . .) is known as the large Schröder numbers.

2 Peaks, double ascents, and large Schröder paths

For positive integer z, replicate each path in L2(n) by independently coloring its

peaks with colors from a set of z colors where we require blue (b) and red (r) to be

present whenever z ≥ 2. Let Lc2(n; z) denote the set of all such paths with colored

peaks. For example, the six paths of Lc2(2; 2) can be listed as V V V bHH, V V V rHH,

V V bHV bH, V V bHV rH, V V rHV bH, and V V rHV rH. ¿From the previous section

we have that the restricted paths with colored peaks are counted in terms of the

Narayana polynomials as follows.

Proposition 2

|Lc2(n; z)| = Nn(z).

On any path the intermediate vertex of a consecutive V V pair is called a double

ascent. Let Lcc2 (n; z) denote the set of paths replicated from L2(n) by independently
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coloring each double ascent from the same set of z colors that were available for

the peaks. For example, the six paths of Lcc2 (2; 2) can be listed as V bV bV HH,

V bV rV HH, V rV bV HH, V rV rV HH, V bV HVH, and V rV HVH.

We define can a bijection

f : Lcc2 (n; z) −→ Lc2(n; z) (3)

as follows: Let R ∈ Lcc2 (n; z) be determined by the coordinates of its peaks, say,

(x1, y1), . . . , (xk, yk). (The coordinates of a peak are the coordinates of the vertex

between the V and H steps.) Then (x′1, y
′
1), . . . , (x′h, y

′
h), . . . , (x

′
n+1−k, y

′
n+1−k) will be

the coordinates of the peaks of the path f(R) where

{x′1, . . . , x′h, . . . , x′n+1−k} = {0, . . . , n} − {y1, . . . , yk}
{y′1, . . . , y′h, . . . , y′n+1−k} = {0, . . . , n} − {x1, . . . , xk}

with x′1 < x′h < x′n+1−k and y′1 < y′h < y′n+1−k so that the peak at (x′h, y
′
h) has the

same color as the intermediate vertex of the double ascent on R with ordinate x′h.

Hence Proposition 2 implies the following:

Proposition 3

|Lcc2 (n; z)| = Nn(z).

As an example of the map f , let R = V bV rV HV bV HVHHV rV HHHVH ∈
Lcc2 (8; 2) with peak set {(0, 2), (1, 4), (2, 5), (4, 7), (7, 8)}. The image path is f(R) =

V V V V bHV V rHHV bHHHV V rHH ∈ Lc2(8; 2) where now the colors b and r label

peaks. We illustrate the bijection f for these paths in Figures 1d and 1e. (We use

“A = {1, 5}” in Section 4. )

For the step set, S3 = {V,H,D}, where D = (1, 1), the paths of L3(n) are known

as large Schröder paths since |L3(n)| = Nn(2), which is a Schröder number. (Usually

in the literature the initial vertical step from (0,−1) to (0, 0) is omitted.) This last

equation follows from the bijection

g : Lc2(n; 2) −→ L3(n)

where, for P ∈ Lc2(n; 2), the path f(P ) is simply obtained by replacing each blue

peak, i.e., blue VH pair, with the step D and by removing the color from each red

peak. Figures 1e and 1f give an example of the map g with “A = {1,5}” ignored.
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(a)

(8,8)

P

(b)

A = {1,5}

P departed the

y-axis diagonally

P’

(c)

A = {1,5}

Q

(d)

b
r

b

r

R

A = {1,5}

(e)

b

r
b

r

f(R)

A = {1,5}

(f)

(8,8)

g(f(R))

A = {1,5}

Figure 2.1: Related paths
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3 Arbitrary vertical and horizontal steps

Here we consider paths with vertical and horizontal steps of varying lengths, which

can be viewed as “positive rook” moves. Take S4 = (P × {0}) ∪ ({0} × P). For

example, L4(1) = {(0, 1)(0, 1)(1, 0), (0, 2)(1, 0)}.

Proposition 4

|L4(n)| = Nn(4)/2.

We remark that, if L0
4(n) denotes the set of those paths in L4(n) that begin

with unit vertical step, then clearly, for n > 0, |L0
4(n)| = |L4(n)|/2. We find

that (|L0
4(n)|)n≥0 = (1, 1, 5, 29, 185, 1257, 8925, . . .). Deutsch’s [2] interest in count-

ing L0
4(n) motivated this section.

Proof. Replicate each path in L2(n) by independently labeling the intermediate

vertices of its noninitial double ascents with one of the markings ‘pp’, ‘pa’, ‘ap’, or

‘aa’ and labeling the initial double ascent with either ‘p’ or ‘a’. (The purpose for

these markings will be clear below.) With L∗2(n) denoting the set of all paths with

such labels, we see that |L∗2(n)| = Nn(4)/2.

Hence to obtain the proposition, we require a bijection L4(n) −→ L∗2(n). We note

that each path P ∈ L4(n) determines a path Q ∈ L2(n) which traces the same points

in the plane. On the path Q we label the intermediate vertex of each double ascent and

each double descent (i.e., HH) by a ‘p’ or an ‘a’ according to the presence or absence

of an end point of a step at the same lattice point on the path P . Note also that,

on Q, with the exception of the necessary initial double ascent, each double ascent

can be matched with the first subsequent double descent for which the intermediate

vertices lie on the same line of slope 1. Next let the path Q′ be obtained from Q by

relabeling each noninitial double ascent of Q by one of four pairs, pp, pa, ap, or aa,

where each pair of letters designates the presence of respective singleton labels on a

double ascent and its matching double descent. ForQ′ we also remove the labels from

the double descents while keeping the label for the initial double ascent. �
As an example of L4(4) −→ L∗2(4), take P = (0, 1)(0, 2)(1, 0)(0, 1)(0, 2)(3, 0)(1, 0) ∈

L4(4). Then initially Q = V pV aV HV pV aV HaHaHpH which gets relabeled as the

path Q′ = V pV apV HV paV aaV HHHH ∈ L∗2(4).

4 Arbitrary steps

For S5 = N×N−{(0, 0)} where N denotes the non-negative integers, let A0
5(n) (L0

5(n),

resp.) denote the set of paths in A5(n) (L5(n), resp.) that begin with a unit vertical

step. Let A0
3(n) denote the subset of those paths in A3(n) that begin with a unit

vertical step, where S3 = {V,H,D} as before.
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Proposition 5 For n ≥ 1,

|L0
5(n)| = 2n−1|L3(n)| = 2n−1Nn(2) (4)

|A0
5(n)| = 2n−1|A0

3(n)|. (5)

We remark that without the initial vertical unit step, A0
5(n) is essentially E(n)

and A0
3(n) is essentially D(n) of Section 1. The bijective proof of (5) answers Exercise

6.16 in [4]. For reference we note that (|L0
5(n)|)n≥0 = (1, 2, 12, 88, 720, 6304, . . .) and

that (|E(n)|)n≥0 = (1, 3, 26, 252, 2568, 26928 . . .).

Proof of (4). We will obtain (4) by establishing a bijection

L0
5(n) −→ L3(n)× 2[n−1]

where 2[n−1] denotes the collection of subsets of {1, 2, . . . , n − 1}. The intermediate

bijections composing this bijection are illustrated in Figure 1. Written details for the

figure follows this proof.

We first define a bijection

h : L0
5(n) −→ L6(n)× 2[n−1] (6)

where S6 = ({0} × P) ∪ {H}. Let P ∈ L0
5(n) and let A be the set of abscissae of

the initial points of the horizontal steps of P excepting any step that departs from

the y-axis; certainly, A ⊆ {1, . . . , n − 1}. Let P ′ be the path obtained from P by

replacing each diagonal step (u, v) by the consecutive pair (0, v)(u, 0) and by leaving

the vertical and horizontal steps of P unaltered. Let Q be obtained from P ′ by two

operations: (1) Replace each horizontal step, say (u, 0), by a string of u H steps. (2)

Whenever P departs the y-axis with a non-horizontal step, join the first two steps of

P ′ to create a new initial vertical step. Equivalently, Q will begin with a unit vertical

step (ending at (0, 0)) if, and only if, P leaves the y-axis by a horizontal step. See

Figures 1a, 1b, and 1c. Define h(P ) to be the pair, h(P ) = (Q,A) ∈ L6(n)× 2[n−1].

Recalling the notation of Section 2, we define a bijection

K : L6(n) −→ Lcc2 (n; 2) (7)

where Q ∈ L5(n) is matched with a path R ∈ Lcc2 (n; 2) so that the two paths trace

the same points in the plane and each intermediate vertex of a double ascent on Q

becomes a red double ascent of R and each lattice point that is interior to a vertical

step of Q becomes a blue double ascent of R. With id denoting the identity map,

(g × id) ◦ (f × id) ◦ (K × id) ◦ h : L0
5(n) −→ L3(n)× 2[n−1]

is the desired bijection yielding (4). �

Below we spell out the example appearing in Figure 1 for this composite bijection:
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- P = (0, 1)(0, 1)(1, 1)(0, 2)(1, 0)(2, 1)(0, 1)(1, 1)(2, 0)(1, 1) ∈ L0
5(8)

- P ′ = (0, 1)(0, 1)(0, 1)(1, 0)(0, 2)(1, 0)(0, 1)(2, 0)(0, 1)(0, 1)(1, 0)(2, 0)(0, 1)(1, 0)

with A = {1, 5} ⊂ {1, . . . , 7} and the knowledge that P departed the y-axis by

the non-horizontal step (1, 1)

- Q = (0, 2)(0, 1)H(0, 2)H(0, 1)HH(0, 1)(0, 1)HHH(0, 1)H ∈ L6(8)

with A = {1, 5}

- R = V bV rV HV bV HVHHV rV HHHVH ∈ Lcc2 (8; 2) with A = {1, 5}

- f(R) = V V V V bHV V rHHV bHHHV V rHH ∈ Lc2(8; 2) with A = {1, 5}

- g(f(R)) = V V V DV V rHHDHHV V rHH ∈ L3(8) with A = {1, 5}

Proof of (5). We modify the bijections proving (4) to prove (5). A left turn is the

intermediate point of a consecutive HV pair. Let A`2(n) (Acc2 (n), resp.) denote the

set of replicated paths formed from A2(n) so each left turn (double ascent, resp.) is

independently colored blue or red. We have a bijection

F : Acc2 (n) −→ A`2(n)

defined as follows: Let R ∈ Acc2 (n) be determined by the set (perhaps empty) of the co-

ordinates of its left turns, namely {(x1, y1), . . . , (xk, yk)}. Then (x′1, y
′
1), . . . , (x

′
h, y
′
h),

. . . , (x′n−k, y
′
n−k) are the left turns of the path F (R) ∈ Acc2 (n) where

{x′1, . . . , x′n−k} = {1, . . . , n} − {x1, . . . , xk}
{y′1, . . . , y′n−k} = {0, . . . , n− 1} − {y1, . . . , yk}

with x′1 < x′h < x′n−k and y′1 < y′h < y′n−k and the left turn at (x′h, y
′
h) has the color

blue if, and only if, y′h is the ordinate of the intermediate vertex of a blue double

ascent on R.

(We note the reason that the map of (3) is defined with respect to peaks (right

turns) while the map F is defined with respect to left turns. On any path of L2(n)

the number of V H’s plus the number of V V ’s is n, while the number of HV ’s plus

the number of V V depends on the path. On the other hand, on any path of A2(n)

the number of HV ’s plus the number of V V ’s is n, while the number of V H’s plus

the number of V V ’s depends on the path.)

We have a bijection

G : A`2(n) −→ A0
3(n)
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where, for P ∈ A`2(n), G(P ) is obtained by replacing each blue HV pair by D step

and by removing the color from any red turns. Finally, with the maps

h : A0
5(n) −→ A6(n)× 2[n−1] and K : A6(n) −→ Acc2 (n)

defined in the same ways as the maps are defined in (6) and (7), we have

(G× id) ◦ (F × id) ◦ (K × id) ◦ h : A0
5(n) −→ A0

3(n)× 2[n−1]

is a bijection yielding (5). �

We remark that Shapiro gave a problem [3, vol. 89, Problem 6391] asking for a

formula for (|A0
6(n)|)n≥0 = (1, 2, 9, 44, 225, 1182, 6321, . . .), where A0

6(n) is the set of

all paths from (0, 0) to (n, n) that use step set S6. An interesting solution appears in

[3, vol. 90].
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from combinatorial statistics on lattice paths, J. Stat. Plann. and Infer. 34 (1993)

35–55.

[2] E. Deutsch, personal communication, 1999

[3] L.W. Shapiro, Amer. Math. Monthly, 89 (1982) p. 339, and 90 (1983) p. 714-715.

[4] R.P. Stanley, Enumerative Combinatorics, Vol II, Cambridge University, Cam-

bridge, UK, Press, 1999.

[5] R.A. Sulanke, A symmetric variation of distribution of Kreweras and Poupard, J.

Stat. Plann. and Infer., 34 (1993) 291–303

[6] R.A. Sulanke, The Narayana distribution, to appear in J. Stat. Plann. and Infer.


