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Abstract

Consider a connected r-regular n-vertex graph G with random independent edge
lengths, each uniformly distributed on [0, 1]. Let mst(G) be the expected length of a
minimum spanning tree. We show in this paper that if G is sufficiently highly edge
connected then the expected length of a minimum spanning tree is ∼ n

r ζ(3). If we
omit the edge connectivity condition, then it is at most ∼ n

r (ζ(3) + 1).

1 Introduction

Given a connected simple graph G = (V,E) with edge lengths x = (xe : e ∈ E), let
mst(G,x) denote the minimum length of a spanning tree. When X = (Xe : e ∈ E) is a
family of independent random variables, each uniformly distributed on the interval [0, 1],
denote the expected value E(mst(G,X)) by mst(G). Consider the complete graph Kn. It
is known (see [2]) that, as n → ∞, mst(Kn) → ζ(3) . Here ζ(3) =

∑∞
j=1 j

−3 ∼ 1.202.
Beveridge, Frieze and McDiarmid [1] proved two theorems that together generalise the
previous results of [2], [3], [5].
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Theorem 1 For any n-vertex connected graph G,

mst(G) ≥ n

∆
(ζ(3)− ε1)

where ∆ = ∆(G) denotes the maximum degree in G and ε1 = ε1(∆)→ 0 as ∆→∞.

For an upper bound we need expansion properties of G.

Theorem 2 Let α = α(r) = O(r−1/3) and let ρ = ρ(r) and ω = ω(r) tend to infinity
with r. Suppose that the graph G = (V,E) is connected and satisfies

r ≤ δ ≤ ∆ ≤ (1 + α)r, (1)

where δ = δ(G) denotes the minimum degree in G. Suppose also that

|(S : S̄)|/|S| ≥ ωr2/3 log r for all S ⊆ V with r/2 < |S| ≤ min{ρr, |V |/2}, (2)

where (S : S̄) = {(x, y) ∈ E : x ∈ S, y ∈ S̄ = E \ S}. Then∣∣∣mst(G)− n

r
ζ(3)

∣∣∣ ≤ ε2
n

r

where the ε2 = ε2(r)→ 0 as r →∞.

For regular graphs we of course take α = 0.
The expansion condition in the above theorem is probably not the “right one” for

obtaining mst(G) ∼ n
r
ζ(3). We conjecture that high edge connectivity is sufficient: Let

λ = λ(G) denote the edge connectivity of G.

Conjecture 1
Suppose that (1) holds. Then, ∣∣∣mst(G)− n

r
ζ(3)

∣∣∣ ≤ ε3
n

r

where ε3 = ε3(λ)→ 0 as λ→∞.

Note that λ→∞ implies r→∞.
Along these lines, we prove the following theorem.

Theorem 3 Assume α = α(r) = O(r−1/3) and (1) is satisfied. Suppose that r ≥ λ(G) ≥
ωr2/3 log n where ω = ω(r) tends to infinity with r. Then∣∣∣mst(G)− n

r
ζ(3)

∣∣∣ ≤ ε4
n

r

where the ε4 = ε4(r)→ 0 as r →∞.
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Remark: It is worth pointing out that it is not enough to have r →∞ in order to have the
result of Theorem 2, that is, we need some extra condition such as high edge connectivity.
For consider the graph Γ(n, r) obtained from n/r r-cliques C1, C2, . . . , Cn/r by deleting an
edge (xi, yi) from Ci, 1 ≤ i ≤ n/r then joining the cliques into a cycle of cliques by adding
edges (yi, xi+1) for 1 ≤ i ≤ n/r. It is not hard to see that

mst(Γ(n, r)) ∼ n

r

(
ζ(3) +

1

2

)
if r →∞ with r = o(n). We repeat the conjecture from [1] that this is the worst-case, i.e.

Conjecture 2 Assuming only the conditions of Theorem 1,

mst(G) ≤ n

δ

(
ζ(3) +

1

2
+ ε5

)
where ε5 = ε5(δ)→ 0 as δ →∞.

We prove instead

Theorem 4 If G is a connected graph then

mst(G) ≤ n

δ
(ζ(3) + 1 + ε6)

where the ε6 = ε6(δ)→ 0 as δ →∞.

We finally note that high connectivity is not necessary to obtain the result of Theorem 2.
Since if r = o(n) then one can tolerate a few small cuts. For example, let G be a graph
which satisfies the conditions of Theorem 2 and suppose r = o(n). Then taking 2 disjoint
copies of G and adding a single edge joining them we obtain a graph G′ for which mst(G′) ∼
1
2

+ n′

r
ζ(3) ∼ n′

r
ζ(3) where n′ = 2n is the number of vertices of G′.

2 Proof of Theorem 3

Given a connected graph G = (V,E) with |V | = n and 0 ≤ p ≤ 1, let Gp be the random
subgraph of G with the same vertex set which contains those edges e with Xe ≤ p. Let
κ(G) denote the number of components of G. We shall first give a rather precise description
of mst(G).

Lemma 1 [1]
For any connected graph G,

mst(G) =

∫ 1

p=0

E(κ(Gp))dp− 1. (3)
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2

We substitute p = x/r in (3) to obtain

mst(G) =
1

r

∫ r

x=0

E(κ(Gx/r))dx− 1.

Now let Ck,x denote the total number of components in Gx/r with k vertices. Thus

mst(G) =
1

r

∫ r

x=0

n∑
k=1

E(Ck,x)dx− 1. (4)

Proof of Theorem 3
In order to use (4) we need to consider three separate ranges for x and k, two of which

are satisfactorily dealt with in [1]. Let A = (r/ω)1/3, B = b(Ar)1/4c so that each of Bα,
AB2/r and A/B → 0 as r→∞. These latter conditions are needed for the analysis of the
first two ranges.
Range 1: 0 ≤ x ≤ A and 1 ≤ k ≤ B – see [1].

1

r

∫ A

x=0

B∑
k=1

E(Ck,x)dx ≤ (1 + o(1))
n

r
ζ(3).

Range 2: 0 ≤ x ≤ A and k > B – see [1].

1

r

∫ A

x=0

n∑
k=B

E(Ck,x)dx = o(n/r).

Range 3: x ≥ A.
We use a result of Karger [4]. A cut (S : S̄) = {(u, v) ∈ E : u ∈ S, v /∈ S} of G is

γ-minimal if |(S : S̄)| ≤ γλ. Karger proved that the number of γ-minimal cuts is O(n2γ).
We can associate each component of Gp with a cut of G. Thus

n∑
k=1

E(Ck,x) ≤ O

( ∞∑
s=λ

n2s/λ
(

1− x

r

)s)
= O

( ∞∑
s=λ

(n2r/λe−x)s/r

)

= O

(∫ ∞
s=λ

(n2r/λe−x)s/rds

)
= O

(
rn2e−xλ/r

x− 2r
λ

log n

)
,

and using Aλ ≥ ω2/3r log n we obtain

1

r

∫ r

x=A

n∑
k=1

E(Ck,x)dx = O

(∫ r

x=A

n2e−xλ/r

x− 2r
λ

log n
dx

)
= O

(
A−1

∫ r

x=A

n2e−xλ/rdx

)
= O

(
rn2

Aλ
e−Aλ/r

)
= o(n/r).

We complete the proof by applying Lemma 1. 2
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3 Proof of Theorem 4

We keep the definitions of A,B and Ranges 1,2, but we split Range 3 and let δ = r.
Range 3a: x ≥ A and k ≤ (1− ε)r, 0 < ε < 1, arbitrary – see [1] (here ε = 1/2 but the
argument works for arbitrary ε).

1

r

∫ r

x=A

(1−ε)r∑
k=1

E(Ck,x)dx = o(n/r).

Range 3b: x ≥ A and k > (1− ε)r.
Clearly

n∑
k=(1−ε)r

Ck,x ≤
n

(1− ε)r

and hence
1

r

∫ r

x=A

n∑
k=(1−ε)r

E(Ck,x)dx ≤
n

(1− ε)r .

We again complete the proof by applying Lemma 1. 2

References

[1] A. Beveridge, A. M. Frieze and C. J. H. McDiarmid, Minimum length spanning trees
in regular graphs, Combinatorica 18 (1998) 311-333.

[2] A. M. Frieze, On the value of a random minimum spanning tree problem, Discrete
Applied Mathematics 10 (1985) 47 - 56.

[3] A. M. Frieze and C. J. H. McDiarmid, On random minimum length spanning trees,
Combinatorica 9 (1989) 363 - 374.

[4] D. R. Karger, A Randomized Fully Polynomial Time Approximation Scheme for the All
Terminal Network Reliability Problem, Proceedings of the twenty-seventh annual ACM
Symposium on Theory of Computing (1995) 11-17.

[5] M. Penrose, Random minimum spanning tree and percolation on the n-cube, Random
Structures and Algorithms 12 (1998) 63 - 82.


