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Abstract

Let b(n, k) denote the number of permutations of {1,...,n} with precisely k
inversions. We represent b(n, k) as a real trigonometric integral and then use the
method of Laplace to give a complete asymptotic expansion of the integral. Among
the consequences, we have a complete asymptotic expansion for b(n,k)/n! for a
range of k including the maximum of the b(n, k)/n!.

AMS Subject Classification: 05A16, 05A15, 05A10

A permutation 0 = (¢(1),...,0(n)) of [n] = {1,...,n} has an inversion at (i, j),
where 1 < i < j < n, if and only if (i) > o(j). Let b(n,k) denote the number of
permutations of [n] with precisely & inversions. Then b(n,k) = b(n, (3) — k) for all
integers k, while, b(n,k) # 0 if and only if 0 < k < (3) Bender [2; p. 110] showed
that the b(n, k) are log concave in k. Hence, the maximum B(n) of the b(n, k) occurs at
k=1(5)/2], as well as [(3)/2] for odd (3). See [3; pps. 236-240] for further results.

Random permutations show (see [3; pps. 282-283], for example) that the b(n, k)
satisfy a central limit theorem with p, = (3)/2 and 02 = n(n — 1)(2n + 5)/72 (see [2;
Theorem 1]). Bender [2; p. 109] remarks that “the theorems of Section 4 do not apply”
to the b(n, k). He then shows [2; p. 110] that the b(n, k) are log concave in k “so that
Lemma 2 applies.” This will give a (first term) asymptotic formula for b(n, k)/n! when
k = |pn + x0, | where x is a fixed real number.

In this paper, we represent b(n, k) as a real trigonometric integral. We then use the
method of Laplace to give a complete asymptotic expansion of this integral in terms of the
Bernoulli numbers and Hermite polynomials. Hence, we have the complete asymptotic
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expansion
b n,k - 2m—2 -
(n' ) 6(27T) 1/2 3/2 x /2{1+ Z qS2q( )H2q(2 1/21,)}
! p
1n2m2+1 n
+ O ~ i | asn— oo, (1)

when 2k = (}) & 2n*?/3 where 2* = 2%(n) < Inn and m is a fixed integer at least 2.
Here, Hy, are the Hermite polynomials defined before Theorem 1 and the Sy, are defined
in Theorem 3. In particular, we have a complete asymptotic expansion for B(n)/n! when
(g) is even. See Corollaries 2, 4 for other asymptotic expansions.

In what follows, k, ¢ and n are integers with 0 < k < (g) and 2 < ¢ < n. We denote
the nonnegative integers by N. All asymptotic formulas are for n — oo.

Muir [5] (see also [3; p. 239]) showed that b(n, k) is the coefficient of 2* in [],_,(1 +
z+4 -+ 271, Then,

_Lf H?:2(1+z+...+zé—1)dz

Zk+1

mf (=) -

where C'is the unit circle. Hence,

b(n, k) = 2771' /Oﬂﬂéf[ (;ls?fi) cos (((g) — Qk) t) dt, (2)

upon parameterizing C' (z = e®;t € [0,27]) and using the symmetry of the integrand.
For an integer n > 2 and real numbers a, b and z, let

b i 0 in3/2
I(n,x,a,b) = / H (;lsrilnt) cos (I 7; ) dt
@ =2

I(n,z):=1 (n,x,O, g)

(where all discontinuities of the integrand have been removed). Then (2) gives

and

b(n, k) = ;I(n,x), (3)

n!

for all integers k,n where 0 < k < (3), n > 2 and 2k = () + an®?/3.
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For a nonnegative integer ¢ and real number x, let
F,(x):= / exp(—u?/2)u? cos(ux) du
0

denote the Fourier cosine transform of exp(—u?/2)u. Then Fy(x) =
(—1)9x/22-9-1/2¢ =2*/2 [, (271/2z). Here H,(x) are the Hermite polynomials given by
H,(z) = S (—1)kn!(22)"2 /k(n — 2k)!  (see [4; pps. 60-64]).

We use the following Taylor series approximations which are valid for all real
numbers .

¢ t*
sint =t — 5 +a(t); |a(t)] < 9 for all real t and a(t) > 0 for t € [0,7];  (4)
t2
cost—1—§+b() 0 <b(t) <t forte|0,7]; (5)

and for an integer m > 1,

tm—l
el =1ttt ——— ) |em(t)] <el ™. (6)

(m —1)!

Of course, our error terms a, b and ¢, are all infinitely-differentiable functions over the
reals. We also require the following inequality (integration by parts). For a real number
x>0,

/ e Pl dt < le”“"Q/Q. (7)
. x

We now give our first result.

Theorem 1. For x* = 2?(n) < Inn, we have the asymptotic expansion

1/2 5 1
I(n,z) = ( ) “3/20=0*/2) | (971 — 12942 + 102
(n,z) =3 5 n—“e 100”(930 92* + 102)

.
980000n?

— 45794802” + 2259370)} +0 (

39692° — 1412822° + 1340865z*

Int'?

as n — 0.
n9/2 )

Proof. We use the method of Laplace. For 0 < a < 1 and an integer ¢ > 2, let
My(a) := max{|sinft/sint| : t € [a,7/2]} and b:= cosa € (0,1). For all integers ¢ > 2,
My(a) < b1 +b2+- - +b+1 < min{/, (1—b)"'} by induction on £, while a?/3 < 1—b.

Here,
z 1—b)_” 3e \"
11 < (=
n! a’n

{=2

sin /t
fsint




THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #R50 4

and, hence, for all n > 9 and all real numbers z,

1(n, 2,300, 7/2)| < 2 (%) ®)

For all integers ¢ and all real numbers ¢ with sint # 0, (4) gives sinft/¢sint =
1 — (62 = 1)t/6 + d(¢, t) where |d(¢,t)] < £°t*/12 for t € (0,1] and £ > 2. Hence,

sin (¢ 0?2 0?2
< < — > 2.
Esint_l oL = ( ) for (t € [0,1] and ¢ > 2 9)

0
< 24

(Naturally, we define sin ¢¢/¢sint = 1 when ¢ = 0 to remove that discontinuity.) For all
n > 144 and all real numbers x, (9) gives

o5 |n0-5
o [ T s ().
n,z,n %" 3n"" ex
e = Juor AL T ™ =P 608 )
n—0.7 [n%7]
Et —n01

I -1 =07y < / Sl 11

[I(n,x,n™ " n~ ") H Tamg s ep | == ) (11)
and

n,xT,n nn,n exp [ ——— |.

o ’ T Jus2imn g Usint T P 72

Recall that cot ¢t = t71 4 Y77 | (—4)% Boyt?*~1 /(2k)!, for real ¢ with 0 < |¢| < 7. Here
B,, are the Bernoulli numbers defined by z/(e* — 1) = > > B,z"/n! for complex z
with |z| < 27 (see [3; pps. 48, 88]). Then, 4{In(sinft/¢sint)} = Ccotlt — cott =
> one (—4)F Boy (02F — 1)t21 /(2k)! for 0 < |¢t] < 7, hence,

. (Sﬂ?“) = 5 () By (¢ — 1)% for [¢t] < 7. (13)

fsint pt

For a nonnegative integer m, [¢t| <1 and ¢ > 1 (see [1; p. 805]),

> t2k
—4 kB 2k N | < 2m+-2 2m+2' 14

For n > 2 and 0j(n) := >_,_,(¢* — 1) (see [3; p. 155]), (13), (14; m = 3) and (6; m = 1)
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give

I(n,z,0,n"*%1Inn)

n—3/21nn n 2 4 6 3/2
0~ —1 -1 -1 rtn
— _ t2 t4 t6 O 8t8 dt
/0 eXp{ é < 6 "t om0l Tag  TOW) Jpeos| 3

2
n=3/2Inn 2 4 6 3/2
B / - {_Qz(n)t AT O(ngtg)}cos <$tn )dt
0

6 180 2835 3
n=%/2Inn 2 4 6 3/2 9
O(n)t*  O4(n)t*  Og(n)t wtn®/ In’n
= - - - dt+0 ([~
/0 P { 6 180 2835 [\ 73 O\ o
3 Inn/3 2
= W/ exp <—%) exp { Ry(n)u” + Ry(n)u* + Rg(n)u’} cos(uz) du
0
In’ n
+0 <—n9/2) ; (15)

upon setting u = n%2t/3, where Ry(n) = —3/4n +5/4n%, Ry(n) = —9/100n — 9/40n> —
3/20n% +93/200n° and Re(n) = —9/245n% — 9/70n% — 9/70n* + 3/70n° + 123/490n%. Tt
is readily seen that the error term in (15) is at most en™"2In’n for all n > 2 and all
real numbers z. For 0 <wu <lInn/3, (6; m = 3) gives

exp { Ra(n)u” + Ry(n)u’ + Re(n)u’}

= 1+ So(n)u? + Sy(n)u* + Sg(n)u® + Ss(n)u® + O <1n18 ”) , (16)

n3

where Sy(n) = —3/4n + 5/4n?, Sy(n) = —9/100n + 9/160n?, Ss(n) = 603/19600n? and
Sg(n) = 81/20000n?. Hence, (15) and (16) give

I(n,z,0,n"%%1nn)

3 Inn/3 u?
T 32 0 eXp <_§) {1 + Sy (n)u® + Sy(n)u* + Sg(n)u’ + Sg(n)u®

In'®n ln In"n

3 Inn/3 2
= 3R / exp <—%> {1+ Sy(n)u” + Sy(n)u* 4 Sg(n)u’ + Ss(n)u®} cos(uz) du
0

In''n
L0 <_n9 /2 )
3

o0 2
= n / exp (—%) {1 + So(n)u? + Sy(n)u* + Sg(n)u’ + Sg(n }cos uz) du
0

o u? In'?
([ o () ) +o (57)
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_ 3 /OOO exp (—%2) {1+ Sy(n)u® + Sy(n)u* + Sg(n)u’® + Ss(n)u®} cos(uzx) du

=~
n'n

where the last equation follows from (7). The error term in the first equation holds
uniformly for all real numbers x by the comments after (15) and, since | cos(ux)| < 1,
the error term in the second equation holds uniformly for all real numbers = by (16) as
does the error term in the third equation involving the integral. Then (8), (10-12) and
(17) give

I(n,z) = %{Fo(x) + Sy(n)Fy() + Sa(n) Fa(x) + Ss(n) Fs(z) + Ss(n) Fa(z)}

In"n
e (n—/) (18)
where our error term holds uniformly for all real numbers x. Hence, after simplifying
(18) we obtain

T 1/2 _ —z2 1
In,z) =3 (5)  n % /2{1 ~ Jo0 (02" = 12027+ 102)

— ® —1412822° + 134 !
+ 58000072 (3969 821° 4 13408652

1 19
45794802 + 2259370)} +o (ﬂ) , (19)

n9/2

where our error term holds uniformly for all real numbers x. Our result follows since,
apart from the error term, the smallest term in (19) has order of magnitude at least n~*
for 2 = z%(n) <Ilnn. A

We note several consequences of Theorem 1.

Corollary 2. For x*> = 2*(n) < Inn, we have the asymptotic expansion

b(n, k
% :6(27r)1/2n3/2612/2{1 — o= (92" — 1202 4 102)
1
+ S%000002 (39692° — 1412822° + 13408652
n
1 19
— 45794802 + 2259370)} +0 <n9—/2”) as n — 0o,
n

when 2k = (;‘) + xn3/2/3. We also have the asymptotic expansion

b(n, k) 51, 225097 1
n! 50n  98000n2 n7/2

= 6(2m) " Y2n 32 (1 — ) as m — oo,

provided 2k = () + o(n'/? In~*%n). In particular, B(n)/n! has the same asymptotic
ETPAnSLON.
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Proof. The asymptotic expansion for b(n, k)/n! when 2k = (}) & 2n®?/3 where 2* =
22(n) < Inn follows immediately from (3) and Theorem 1. For all n > e!% and all real
numbers z, (8) and (10-12) give

/2 m [ sin lt xtn3/?
H - 1 — cos dt
—3/2 lsint 3
n Inn ,_o

For an integer ¢ > 2 and all ¢t € [0,7/2/], sinft/¢sint € [0,1] by induction on £.
Then, for all n > 2 and all x € [0,In""n], (5) gives

n=32lnn N : 3/2
sin 0t xtn
0< | | 1— dt

—3/2
/n Inn x2t2n3 IQ 1I13 n
0

1 2
< 10exp <— n72") . (20)

<

dt

18 = 5andl? (21)

Hence, for all n > e and all z € [0,In"" n], (20) and (21) give

221n’n

[1(n,0) — I(n,z)| < PRl + 10exp <_1n72n) . (22)

Assume () is even (odd (}) is similar) and n > e ™!, Let ¢ := [(})/2 + n*?/61nn]

so that 20 = (}) + 2n®?/3 with z € [0,In"" n]. For () < 2k < 2, log concavity of the

b(n, k) implies
b (n, (;L)> > b(n, k) > b(n,?),

so that (3) and (22) give

2 b(n,k) _ 2 22ln*n 20 In*n
21 > > ZI(n,0) — 0 — = - .
7T (n,0) 2 s (n,0) s P 72

Hence, Theorem 1 gives

b(n, k) 19 51 225937 1

) — 6(2 /2,,—3/2 1 — R

nl (2m) " n 50 08000n2 ) T O\ )
for 2k = (Z) + o(nl/2 In—3/2 n) [ |

Remark. We can replace the o(n~"/?) error term in the asymptotic expansion of
B(n)/n! with O(n=%21n" n).

The following extension of Theorem 1 (the case m = 3) giving a complete asymptotic
expansion of I(n,x) can be immediately read out of its proof.
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Theorem 3. Fiz an integer m > 2. For x* = z%(n) < Inn, we have the asymptotic
eTPansion

N\ 1/2 2m—2
In,a) =3 (5) " n e {1+ Z )53 (n ng(zl/%)}

[2me+1
—i—O(u as n — 0o.

nmt3/2

(The Say(n) are defined in the proof.)
Proof. For2</<nandte|0,n'], (13) and (14) give

n <SH‘1 gt) _ Z C2k(£2k i 1)t2k + O(n2m+2t2m+2)’ (23)

fsint
k=1

where ¢y, := (—4)*Bay,/(2k)(2k)! < 0, while,
d 1 & /2%k+1
0<4 =) (P -1)=—""-> B, 1)+
<o) =D 1= 5 S (D e

Hence, (23) and (6; m = 1) give

I(n,z,0,n~%%1Inn)

3 Inn/3 m 1n2m+3 n
— n3/2 / exp {Z 9kC2k02k } COS(U.’L') du + O <T3/2)
1

3 Inn/3 u2
= W/ exp (—?) exp {RQ(n)UQ NS R2m(n)u2m} cos(uz) du
0

1n2m+3 n
+ 0 (W) : (24)
where Ry(n) = —3/4n +5/4n? and, for 2 < k < m,

2k

36 ¥ By %+1\ i (=36)*Bay
pp— 1 +1—-5 3k‘+1‘
Rae(n) 2F) 2k + 1) Z < ) (n+1) 2R ek "

The error term in (24) holds uniformly for all real numbers z. For 2 <k <m <n —1,
crude estimates (see [1; p. 805]) give

| Ror(n)| < 60(2k + 1) n =" (25)
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k+1

(in fact, Rok(n) involves n~"*! and smaller integer powers of n). For all n > m + 1 and

all 0 <wu <lInn/3, (25) gives

1 2m
|Ry(n)u? + - - - + Rom(n)u®™| < m(2m + 1) ( “n ”) . (26)
Hence, (6) and (26) give
, 2m—2 P 2™ n
exp {Rg(n) -+ Ropm(n m} =1+ Z Saq(n)u? 4+ O o ; (27)

where Sy,(n) is that part of

m—1 €2 €2
Z Ry (n)--- Rgw(n)
egl - egn!
r=1 (621---152m)€Nm 2 2m
e2+team=r
2ea+---+2meam=2q
involving only n~ ' ....n ™% upon expansion. Here R3(n)---R5>"(n) involves

p~(ezttm=lezn) — p=(a=r+e2) and smaller integer powers of n while ¢ — r + ey > m if
q > 2m — 1. Then, (24) and (27) give

I(n,z,0,n~%%1Inn)

3 Inn/3 u2 2m—2 , 1n2m2+1 n
— W /0 exXp (—?) {1 + Z qu(n)u . COS(U.Z') du + O W
[e'e} 2m—2 2m2+1
3 In n
= W/o exp ( ) {1 + Z Soq(n ‘1} cos(uz) du + O (W) . (28)

where our error term holds uniformly for all real numbers x. Hence, after simplifying,
(8), (10-12) and (28) give

2m—2

1/2
I(n,z) :3(%) =32 =2’ {1+ Z )9Sy, (n ng(zl/%)}
In2m*+1
where our error term holds uniformly for all real numbers z. Our result follows since,

apart from the error term, the smallest term in (29) has order of magnitude at least
n~™ 1 for 22 = 2%(n) <Inn. A

As a consequence of Theorem 3, we have a complete asymptotic expansion for
b(n,k)/n! when 2k = (3) &+ 2n®?/3 where 2* = 2?(n) < Inn, as well as for B(n)/n!
when (g) is even.
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Corollary 4. Fiz an integer m > 2. For z*> = x?(n) < Inn, we have the asymptotic
eTPansion

2m—2
b(n’ k) = 6(27r)*1/2n {1 + Z qSQq ng(Ql/Q.Z')}

n!
p2mi+l
%—O(u as n — 00,

nmt3/2

when 2k = (Z) + an®? /3. In particular, we have the asymptotic expansion

B 2m—2 2:)1 1 2m2+1
(n) _ 6(27T)_1/2n_3/2 {1 + Z 2—q( qq') qu(n)} +0 (%) as n — 00,

q=1

when (Z) 15 even. N

In the following table we compare the exact value of B(n)/n! (found by expanding
the generating function for the b(n, k)) with the approximations (given by Corollary 4
for m = 2, 3) for n = 40 and 80.

B(40) /40! B(80)/80!
Exact Value 0.009233258744992---  0.003303747524408 - - -
Approximation (m = 2) 0.009220472410157 - - - 0.003302581000634 - - -
Relative Error 0.138481% 0.035309%
Error as a function of n 40—3.05435- - go—3-11761---
Approximation (m = 3) 0.009234106075478 - - - 0.003303786057784 - - -
Relative Error 0.009176% 0.001166%
Error as a function of n 40—3-79008 - -- 80—3-89585- -

Acknowledgement. 1 wish to thank the referee for numerous comments and
suggestions which have led to a substantially improved paper.
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