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Universitat Politècnica de Catalunya

Jordi Girona 1-3, Mòdul C3, Campus Nord
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Abstract

A graph Γ with diameter d is strongly distance-regular if Γ is distance-
regular and its distance-d graph Γd is strongly regular. The known examples are
all the connected strongly regular graphs (i.e. d = 2), all the antipodal distance-
regular graphs, and some distance-regular graphs with diameter d = 3. The
main result in this paper is a characterization of these graphs (among regular
graphs with d distinct eigenvalues), in terms of the eigenvalues, the sum of the
multiplicities corresponding to the eigenvalues with (non-zero) even subindex,
and the harmonic mean of the degrees of the distance-d graph.

AMS subject classifications. 05C50 05E30

1 Preliminaries

Strongly distance-regular graphs were recently introduced by the author [9] by com-
bining the standard concepts of distance-regularity and strong regularity. A strongly
distance-regular graph Γ is a distance-regular graph (of diameter d, say) with the prop-
erty that the distance-d graph Γd—where two vertices are adjacent whenever they
are at distance d in Γ—is strongly regular. The only known examples of these graphs
are the strongly regular graphs (with diameter d = 2), the antipodal distance-regular
graphs, and the distance-regular graphs with d = 3 and third greatest eigenvalue
λ2 = −1. (In fact, it has been conjectured that a strongly distance-regular graph is
antipodal or has diameter at most three.) For these three families some spectral, or
“quasi-spectral”, characterizations are known. Thus, it is well-known that strongly
regular graphs are characterized, among regular connected graphs, as those having
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exactly three distinct eigenvalues. In the other two cases, however, the spectrum
is not enough and some other information about the graphs—such as the numbers
of vertices at maximum distance from each vertex—is needed to characterize them.
Then we speak about quasi-spectral characterizations, as those in [7, 14] (for an-
tipodal distance-regular graphs) and [5, 9] (for strongly distance-regular graphs with
diameter d = 3). Quasi-spectral characterizations for general distance-regular graphs
were also given in [16, 6] (for diameter three) and [10] (for any diameter).

Following these works, we derive in this paper a general quasi-spectral characteri-
zation of strongly distance-regular graphs. This includes, as particular cases, most of
the previous results about such graphs, and allows us also to obtain some new results
about their spectra. In particular, our approach makes clear some symmetry prop-
erties enjoyed by their eigenvalues and multiplicities. Eventually, and after looking
at the expressions obtained, one gets the intuitive impression that strongly distance-
regular graphs are among the graphs with more hidden “spectral symmetries”.

Before proceeding to our study we devote the rest of this introductory section to
fixing the terminology and to recalling some basic results. Let Γ a (simple, finite,
and connected) graph with adjacency matrix A := A(Γ) and (set of) eigenvalues
ev Γ := {λ0 > λ1 > · · · > λd}. The alternating polynomial P of Γ is defined as the
(unique) polynomial of degree d− 1 satisfying

P (λ0) = max
p∈Rd−1[x]

{p(λ0) : ‖p‖∞ ≤ 1}

where ‖p‖∞ = max1≤i≤d |p(λi)|. It is known that P is characterized by taking d
alternating values ±1 at ev Γ: P (λi) = (−1)i+1, 1 ≤ i ≤ d, which, together with
Lagrange interpolation, yields

P (λ0) =
d∑
i=1

π0

πi
. (1)

where the π′is are moment-like parameters defined from the eigenvalues as πi :=∏d
j=0,j 6=i |λi − λj|, 0 ≤ i ≤ d, and satisfying

∑
i even

λli
πi

=
∑
i odd

λli
πi

(0 ≤ l < d). (2)

(See [12, 14] for more details.)

In this work, it is useful to consider the following characterization of distance-
regular graphs (see e.g. Biggs [2] or Brouwer et al. [3]): A (connected) graph Γ, with
vertex set V = {u, v, . . .}, adjacency matrix A, and diameter d, is distance-regular
if and only if there exists a sequence of polynomials p0, p1, . . . , pd, called the distance
polynomials , such that dgr pi = i, 0 ≤ i ≤ d, and

Ai := A(Γi) = pi(A) (0 ≤ i ≤ d),

where Ai is the adjacency matrix of the distance-i graph Γi and, so, it is called
the distance-i matrix of Γ. Let n := |V | and assume that Γ has spectrum sp Γ :=



the electronic journal of combinatorics 7 (2000), #R51 3

{λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d } (as Γ is connected, m(λ0) = 1). Then the distance poly-

nomials are orthogonal with respect to the scalar product

〈p, q〉Γ :=
1

n
tr(p(A)q(A)) =

d∑
i=0

m(λi)

n
p(λi)q(λi), (3)

and they are normalized in such a way that ‖pi‖2
Γ = pi(λ0), 0 ≤ i ≤ d. (Of course, this

inner product makes sense—and it will be used later—for any graph Γ.) Moreover,
if Γi(u) denotes the set of vertices at distance i from a given vertex u, we have
pi(λ0) = ni(u) := |Γi(u)| for any u ∈ V and 0 ≤ i ≤ d. In fact, there are explicit
formulas giving the values of the highest degree polynomial pd at ev Γ, in terms of
the eigenvalues and their multiplicities. Namely,

pd(λ0) = n

(
d∑
i=0

π2
0

m(λi)π2
i

)−1

; pd(λi) = (−1)i
π0pd(λ0)

πim(λi)
. (4)

(From the second expression one has the known formulas for the multiplicities in
terms of pd—see, e.g., Bannai and Ito [1].) Hence, since pd(λ0) (the degree of Γd) is
a positive integer, the polynomial pd must take alternating values at the mesh ev Γ:

pd(λi) > 0 (i even); pd(λi) < 0 (i odd). (5)

In this paper, we also use the following results about strongly regular graphs (see,
for instance, Cameron’s survey [4] or Godsil’s textbook [15]):

Lemma 1.1 (a) A graph Γ, not complete or empty, with adjacency matrix A is
(n, k; a, c)-strongly regular if and only if

A2 − (a− c)A+ (c− k)I = J , (6)

where J represents the all-1 matrix.

(b) A connected regular graph Γ with exactly three distinct eigenvalues µ0 > µ1 >
µ2 is a (n, k; a, c)-strongly regular graph with parameters satisfying

k = µ0, c− k = µ1µ2, a− c = µ1 + µ2. (7)

Notice that, from the above and trA = 0, it follows that µ2 < 0 and µ1 ≥ 0 (with
µ1 = 0 only when Γ is the regular multipartite graph).

2 A quasi-spectral characterization

In this section we derive our main result, which characterizes strongly-regular graphs
among regular graphs, and study some of its consequences.

Given any vertex u of a graph with diameter d, we denote by Ni(u), 0 ≤ i ≤ d,
the i-neighbourhood of u, or set of vertices at distance at most i from u. Using some
results from [10, 13], the author proved in [8] the following result, which is basic to
our study.
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Theorem 2.1 Let Γ be a regular graph with n vertices and d+1 distinct eigenvalues.
For every vertex u ∈ V , let sd−1(u) := |Nd−1(u)|. Then, any polynomial R ∈ Rd−1[x]
satisfies the bound

R(λ0)2

‖R‖2
Γ

≤ n∑
u∈V

1
sd−1(u)

, (8)

and equality is attained if and only if Γ is a distance-regular graph. Moreover, in this
case, we have R(λ0)

‖R‖2Γ
R = qd−1 :=

∑d−1
i=0 pi, where the pi’s are the distance polynomials

of Γ.

Note that the above upper bound is, in fact, the harmonic mean of the numbers
sd−1(u), u ∈ V , which is hereafter denoted by H. Moreover, in case of equality,
qd−1(A) =

∑d−1
i=0 Ai = J −Ad, and the distance-d polynomial of Γ is just

pd = qd − qd−1 = qd −
R(λ0)

‖R‖2
Γ

R (9)

where qd represents the Hoffman polynomial ; that is, qd = n
π0

∏d
i=1(x− λi).

At this point it is useful to introduce the following notation: For a graph with n
vertices, spectrum {λm(λ0)

0 , . . . , λ
m(λd)
d }, and alternating polynomial P , note that, by

(1), the value of P (λ0) + 1 is given by the sum

Σ :=
d∑
i=0

π0

πi
= 1 + Σe + Σo , (10)

where Σe (respectively Σo) denotes the sum of the terms π0/πi with even non-zero
(respectively, odd) index i. Note also that, by (2) with l = 0, both numbers are closely
related: Σo = Σe + 1. However, the use of both symbols will reveal the symmetries of
the expressions obtained. With the same aim, let us also consider the following sum
decomposition:

n =
d∑
i=0

m(λi) = 1 + σe + σo , (11)

where σe represents the sum of all multiplicities of the eigenvalues with non-zero even
subindex σe := m(λ2) +m(λ4) + · · ·, and σo := n− σe − 1 = m(λ1) +m(λ3) + · · ·

The following result generalizes for any diameter a theorem of the author [9] (the
case of diameter three).

Theorem 2.2 A regular graph Γ, with n vertices, eigenvalues λ0 > λ1 > · · · >
λd, and parameters σe, Σe as above, is strongly distance-regular if and only if the
harmonic mean of the numbers sd−1(u), u ∈ V , is

H = n− nσeσo
nΣeΣo + (σe − Σe)(σo + Σo)

. (12)

Moreover, if this is the case, Γd is a strongly regular graph with degree k = n − H
and parameters

c = k − k2 ΣeΣo

σeσo
; a = c+ k

(
Σe

σe
− Σo

σo

)
. (13)
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Proof . Given any real number t, let us consider the polynomialR := (1+ t
2
)P− t

2
,

where P is the alternating polynomial of Γ. Notice that, from the properties of P ,
we have R(λi) = 1 for any odd i, 1 ≤ i ≤ d, and R(λi) = −1− t for every even i 6= 0.
Then, the square norm of R satisfies

n‖R‖2
Γ = R2(λ0) +

d∑
i=1

R2(λi)m(λi) = R2(λ0) + σe(1 + t)2 + σo. (14)

Hence, by Theorem 2.1, we must have, for any t,

Ψ(t) :=
n
[
(1 + t

2
)P (λ0)− t

2

]2
[
(1 + t

2
)P (λ0)− t

2

]2
+ σe(1 + t)2 + σo

=
R(λ0)2

‖R‖2
Γ

≤ H. (15)

Since we are interested in the case of equality, we must find the maximum of the
function Ψ. Such a maximum is attained at

t0 =
σo
σe

P (λ0)− 1

P (λ0) + 1
− 1 (16)

and its value is

Ψmax := Ψ(t0) = n− 4nσeσo
(n− 1)Σ2 + 4σo(σe − Σ)

(17)

= n− nσeσo
nΣeΣo + (σe −Σe)(σo + Σo)

, (18)

where we have used (10) and (11). Consequently, Ψmax ≤ H and, from the same
theorem, the equality case occurs if and only if Γ is a distance-regular graph with
distance d-polynomial given by (9). From this fact, let us now see that Γd is strongly
regular. In our case, all inequalities in (15) and (14) become equalities with t = t0
given by (16), so giving

R(λ0) =
(
1 + t0

2

)
P (λ0)− t0

2
; ‖R‖2

Γ = R2(λ0) + σe(1 + t0)2 + σo.

This allows us to compute, through (9), the distance-d polynomial and its relevant
values:

µ0 := pd(λ0) = n−H;

µ1 := pd(λi) = −R(λ0)

‖R‖2
Γ

R(λi) =
R(λ0)

‖R‖2
Γ

(1 + t0) (even i 6= 0);

µ2 := pd(λi) = −R(λ0)

‖R‖2
Γ

R(λi) = −R(λ0)

‖R‖2
Γ

(odd i).

Then Γd is a regular graph with degree k = µ0 and has at most three eigenvalues
µ0 ≥ µ1 > µ2 (with multiplicities m(µ0) = 1, m(µ1) = σe, and m(µ2) = σo). If it
has exactly three eigenvalues, µ0 > µ1, then Γd must be connected and Lemma 1.1
applies. Otherwise, if µ0 = µ1, the graph Γd is simply constituted by disjoint copies
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of the complete graph on k + 1 vertices. (See [9] for more details.) In both cases Γd
is strongly regular, as claimed. Moreover, after some algebraic manipulations, the
above formulas yield

k =
nσeσo

nΣeΣo + (σe − Σe)(σo + Σo)
; (19)

µ1 =
nΣeσo

nΣeΣo + (σe − Σe)(σo + Σo)
= k

Σe

σe
; (20)

µ2 =
−nσeΣo

nΣeΣo + (σe − Σe)(σo + Σo)
= −kΣo

σo
; (21)

and the values of c and a follow from (7).

Conversely, if Γ is a strongly distance-regular graph, its distance-d graph Γd,
with adjacency matrix pd(A), is a strongly regular graph with either three or two
eigenvalues, µ0 ≥ µ1 > µ2, satisfying µ0 = pd(λ0) = nd(u) := |Γd(u)| for every u ∈ V ,
µ1 = pd(λi) ≥ 0 for every even i 6= 0, and µ2 = pd(λi) for every odd i. Thus, by
adding up the corresponding multiplicities, obtained from the second expression in
(4), we get

σe =
∑

i even (i6=0)

π0

πi

µ0

µ1
=
µ0

µ1
Σe ; σo = −

∑
i odd

π0

πi

µ0

µ2
= −µ0

µ2
Σo .

These two equations give the values of µ1 and µ2—compare with (20) and (21)—
which, substituted into

n‖pd‖2
Γ = µ2

0 + σeµ
2
1 + σoµ

2
2 = nµ0,

and solving for µ0 = nd(u), give

nd(u) =
nσeσo

nΣeΣo + (σe −Σe)(σo + Σo)
(22)

for every vertex u ∈ V . Hence, all the numbers sd−1(u) = n − nd(u), u ∈ V , are
the same and their harmonic mean H satisfies (12). This completes the proof of the
theorem. 2

From the above proof, notice that, alternatively, we can assert that the regular
graph Γ is strongly distance-regular if and only if the distance-d graph Γd is k-regular
with degree k = nd(u) given by (19) or (22).

As a by-product of such a proof, we can also give bounds for the sum of “even
multiplicities” σe in any regular graph, in terms of its eigenvalues and harmonic
mean H.

Corollary 2.3 Let Γ be a regular graph , with n vertices, eigenvalues λ0 > λ1 >
· · · > λd, and harmonic mean H. Set α := n

2
(1− 1

H
) and β := Σe(

n
H
− 1). Then the

sum σe of even multiplicities satisfies the bounds

α− β −
√
α(1− αβΣ) ≤ σe ≤ α− β +

√
α(1− αβΣ).
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Proof . Solve for σe the inequality

n−Ψmax =
4nσe(n− σe − 1)

(n− 1)Σ2 + 4(n− σe − 1)(σe − Σ)
≥ n−H,

which comes from (17), (11), and Ψmax ≤ H, and use (10). 2

Let us now consider some particular cases of the above theorem, which contain
some previous results of Van Dam, Garriga, and the author. Note first that, for some
particular cases, we do not need to know the multiplicity sum σe (and hence nor σo),
since it can be deduced from the eigenvalues. For instance, for diameter d = 3, the
multiplicities m1,m2,m3 of a regular graph must satisfy the system

1 +m1 +m2 +m3 = n
λ0 +m1λ1 +m2λ2 +m3λ3 = 0
λ2

0 +m1λ
2
1 +m2λ

2
2 +m3λ

2
3 = nλ0

whence we get

σe = m2 =
π0 − n(λ1λ3 + λ0)(λ0 − λ2)

π2

. (23)

Thus, Theorem 2.2 gives the following result.

Corollary 2.4 A connected δ-regular graph Γ with n vertices and eigenvalues
λ0(= δ) > λ1 > λ2 > λ3 is strongly distance-regular if and only if the harmonic
mean of the numbers s2(u) = 1 + δ + n2(u), u ∈ V , satisfies

H = n− 4nσoσe
(n− 1)Σ2 + 4σo(σe + 1− Σ)

, (24)

where σe is given by (23), σo = n− σe − 1 and Σ =
∑3
i=0(π0/πi). 2

The above result slightly improves a similar characterization given in [9], in terms
of the degree of the graph Γ3, and where the additional condition λ2 = −1 was
required.

Let us now consider the case a = c. In this case, an strongly regular graph satisfy-
ing this condition is also called an (n, k, c)-graph (see Cameron [4]) and, consequently,
we will speak about an (n, k, c)-strongly distance-regular graph.

Corollary 2.5 Let Γ be a regular graph with eigenvalues λ0 > λ1 > · · · > λd and
alternating polynomial P . Then Γ is an (n, k, c)-strongly distance-regular graph if
and only if any of the following conditions hold.

(a) The harmonic mean H of the numbers sd−1(u), u ∈ V , is

H =
nP (λ0)

P (λ0)2 + n− 1
. (25)

(b) The distance-d graph Γd is k-regular with degree

k =
n(n− 1)

P (λ0)2 + n− 1
. (26)

In such a case, the other parameters of Γd are (a =)c = k(k − 1)/(n− 1).
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Proof . We only prove sufficiency for condition (a), the other reasonings being
almost straightforward from previous material. Note that the right-hand expression
in (25) corresponds to the value of the function Ψ at t = 0 satisfying

Ψ(0) ≤ Ψ(t0) = Ψmax ≤ H.

Then, if equality (25) holds, it must be t0 = 0, Ψmax = H and, by Theorem 2.2,
Γ is strongly distance-regular. Moreover, for such a value of t0, and using that
P (λ0) = 2Σe + 1 = 2Σo − 1 and σo = n− σe − 1, Eq. (16) yields

σo
σe

P (λ0)− 1

P (λ0) + 1
=
σo
σe

Σe

Σo
= 1 ⇒ Σe

σe
=

Σo

σo
and σe =

(n− 1)(P (λ0)− 1)

2P (λ0)

whence (13) gives

a = c = k − k2 Σ2
e

σ2
e

= k − k2 P (λ0)2

(n− 1)2
=
k(k − 1)

n− 1

(where we have used that P (λ0)2 = ( n
k−1
− 1)(n− 1)), as claimed. 2

Notice that, as before, the characterization in (a) implies that of (b). The latter
was given in [5] for diameter d = 3, whereas the general case was solved in [11].

Let us now consider the antipodal case. Note that a distance-regular graph Γ is an
antipodal r-cover if and only if its distance-d graph Γd is constituted by disjoint copies
of the complete graph Kr, which can be seen as a (unconnected) (n, r − 1; r − 2, 0)-
strongly regular graph.

Corollary 2.6 Let Γ be a regular graph with n vertices, eigenvalues λ0 > λ1 > · · · >
λd, Σ =

∑d
i=0(π0/πi), and sum of even multiplicities σe. Then Γ is an r-antipodal

distance-regular graph if and only if σe = Σe and the harmonic mean of the numbers
sd−1(u), u ∈ V , is

H = n
(

1− 2

Σ

)
− 1. (27)

In this case, r = 2n/Σ.

Proof . Again we only prove sufficiency. Let Σ = P (λ0) + 1. With σe = Σe,
Eq. (18) particularizes to

Ψmax = n− σo
Σo

= n− n− Σe − 1

Σo

= n− 2n

Σ
− 1,

where we have used that Σo = Σe + 1 = Σ/2. Hence, by Theorem 2.2, Γ is strongly
distance-regular, with Γd having degree k = (2n/Σ) − 1. Finally, the antipodal
character comes from (13), giving c = 0 and a = k − 1, so that r = k + 1 = 2n/Σ.
2

A similar result in terms of r can be found in [7] without using the condition on
the multiplicity sum σe = Σe.
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