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But seldom is asymmetry merely the absence of symmetry.
Hermann Weyl, “Symmetry”

Abstract

Given a space Ω endowed with symmetry, we define ms(Ω, r) to be the maximum of
m such that for any r-coloring of Ω there exists a monochromatic symmetric set of size
at least m. We consider a wide range of spaces Ω including the discrete and continuous
segments {1, . . . , n} and [0, 1] with central symmetry, geometric figures with the usual
symmetries of Euclidean space, and Abelian groups with a natural notion of central
symmetry. We observe that ms({1, . . . , n}, r) and ms([0, 1], r) are closely related, prove
lower and upper bounds for ms([0, 1], 2), and find asymptotics of ms([0, 1], r) for r
increasing. The exact value of ms(Ω, r) is determined for figures of revolution, regular
polygons, and multi-dimensional parallelopipeds. We also discuss problems of a slightly
different flavor and, in particular, prove that the minimal r such that there exists an
r-coloring of the k-dimensional integer grid without infinite monochromatic symmetric
subsets is k + 1.
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§ 0 Introduction

The aim of this work is, given a space with symmetry, to compute or to estimate the
maximum size of a monochromatic symmetric set that exists for any r-coloring of the
space.

More precisely, let Ω be a space with measure µ. Suppose that Ω is endowed with
a family S of transformations s : Ω→ Ω called symmetries. A set B ⊆ Ω is symmetric
if s(B) = B for a symmetry s ∈ S. An r-coloring of Ω is a map χ : Ω → {1, 2, . . . , r},
where each color class χ−1(i) for i ≤ r is assumed measurable. A set included into a
color class is called monochromatic. In this framework, we address the value

ms(Ω,S, r) = inf
χ

sup {µ(B) : B is a monochromatic symmetric subset of Ω} ,

where the infimum is taken over all r-colorings of Ω. Our analysis covers the following
spaces with symmetry.
§ 1–2 Segments. S consists of central symmetries.

1 Discrete segment {1, 2, . . . , n}. µ is the cardinality of a set.
2 Continuous segment [0, 1]. µ is the Lebesgue measure.

§ 3 Abelian groups. S consists of “central” symmetries sg(x) = g − x.
3.1 Cyclic group Zn. µ is the cardinality of a set. Equivalently: the vertex set of
the regular n-gon with axial symmetry.
3.2 Group R/Z. µ is the Lebesgue measure. Equivalently: the circle with axial
symmetry.
3.3 Arbitrary compact Abelian groups. µ is the Haar measure. A generalization
of the preceding two cases.

§ 4 Geometric figures. S consists of non-identical isometries of Ω (including all
central, axial, and rotational symmetries). µ is the Lebesgue measure.

4.1 Figures of revolution: disc, sphere etc.
4.2 Figures with finite S: regular polygons, ellipses and rectangles, their multi-
dimensional analogs.

§ 5 analyses the cases when the value ms(Ω,S, r) is attainable with a certain coloring χ.
§ 6 suggests another view of the subject with focusing on the cardinality of monochro-
matic symmetric subsets irrespective of the measure-theoretic aspects. § 7 contains a
list of open problems.

Techniques used for discrete spaces include a reduction to continuous optimization
(Section 2.2), the probabilistic method (Proposition 2.6), elements of harmonic analysis
(Proposition 3.4), an application of the Borsuk-Ulam antipodal theorem (Theorem 6.1).
Continuous spaces are often approached by their discrete analogs (e.g. the segment and
the circle are limit cases of the spaces {1, 2, . . . , n} and Zn, respectively). In Section
4.1 combinatorial methods are combined with some Riemannian geometry and measure
theory.

Throughout the paper [n] = {1, 2, . . . , n}. In addition to the standard o- and O-
notation, we write Ω(h(n)) to refer to a function of n that everywhere exceeds c·h(n), for
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c a positive constant. The notation Θ(h(n)) stands for a function that is simultaneously
O(h(n)) and Ω(h(n)). The relation f(n) ∼ h(n) means that f(n) = h(n)(1 + o(1)).

All proofs that in this exposition are omitted or only sketched can be found in full
detail in [1, 2, 3, 4, 5, 19, 20, 22] unless other sources are specified.

§ 1 Discrete segment [n]

1.1 Warm-up

A set B ⊆ Z such that B = g − B for an integer g is called symmetric (with respect
to the center at rational point 1

2
g). Given a set of integers A, let MS(A) denote the

maximum cardinality of a symmetric subset B ⊆ A. In the case that A ⊆ [n], notice
the lower bound

MS(A) >
|A|2
2n

. (1)

Indeed, since there are |A|2 ordered pairs (a, a′) of elements of A and at most 2n − 1
centers (a+ a′)/2, at least |A|2/(2n− 1) pairs have a common center g.

Clearly, the maximum subset of A symmetric with respect to 1
2
g is A∩ (g−A). The

cardinality of A∩ (g−A) is equal to the number of representations of g as a sum a+ a′

with both a and a′ in A. This gives us some links to number theory.

Example 1.1 Primes – much symmetry.
Let P≤n denote the set of all primes in [n]. The prime number theorem says that
|P≤n| ∼ n/ logn. It follows by (1) that MS(P≤n) = Ω(n/ log2 n). This simple estimate
turns out to be not so far from the true value Θ( n log logn

log2 n
) due to Schnirelmann [21] and

Prachar [18].

Example 1.2 Squares – little symmetry.
Let S≤n denote the set of all squares in [n]. The Jacobi theorem says that if g = 2km
with odd m, then the number of representations g = x2 + y2 with integer x and y is
equal to 4E, where E denotes the excess of the number of divisors t ≡ 1 (mod 4) of m
over the number of its divisors t ≡ 3 (mod 4). The value E does not exceed the number
d(m) of all positive divisors of m. It is known that d(m) = mO(1/ ln lnm) (Wigert, see
also [16]). Therefore, MS(S≤n) = nO(1/ log logn).

Example 1.3 (Krückeberg [12]) A Sidon set – no symmetry.
Given a prime p, define the set Ap = {a1, . . . , ap} by ai+1 = 2pi − (i2 mod p) + 1 for
0 ≤ i < p. This set turns out to be highly asymmetric, namely, MS(Ap) = 2. Really,
assume that ai + aj = ai′ + aj′ with i ≤ j and i′ ≤ j′. From this it is easy to derive that{

i+ j = i′ + j′ (mod p)
i2 + j2 = (i′)2 + (j′)2 (mod p)
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Since in the field Fp a system of the kind{
i+ j = a
i2 + j2 = b

can have only a unique solution i, j with i ≤ j, we conclude that i = i′ and j = j′,
which proves the claim.

Sets A with MS(A) = 2, known as Sidon’s sets or B2-sequences, were investigated by
many authors (see [17, section 4.1] for survey and references). For a Sidon set A ⊆ [n] the
estimate (1) implies |A| < 2

√
n. The stronger upper bound |A| ≤ √n(1+o(1)) is due to

Erdős and Turán. Thus, the setAp with the biggest p ≤ n, for which |Ap| =
√
n(1−o(1)),

is nearly as dense in [n] as possible.

1.2 Ramsey setting

Given positive integers n and r, consider the value

MS(n, r) = min
χ:[n]→[r]

max
i≤r

MS(χ−1(i)). (2)

In other words, MS(n, r) is the maximum integer such that for any r-coloring χ of [n]
there is a monochromatic symmetric subset B ⊆ [n] with |B| ≥MS(n, r).

For comparison let us define M(n, r) in the same way with the only change that B
is now an arithmetic progression. Clearly, M(n, r) ≤ MS(n, r). In this notation the
van der Waerden theorem (see [11, 15]) says that M(n, r)→∞ as n→∞ for any fixed
r, while the Berlekamp bound [6] reads to M(n, r) = O(logn). The function MS(n, r)
proves to grow much faster.

Proposition 1.4 For every r, the sequence MS(n, r)/n converges as n increases, and
its limit is at least 1/(2r2).

Proof. Observe relations

MS(k + j, r) ≤ MS(k, r) + 2j, (3)

MS(l · n, r) ≤ l ·MS(n, r). (4)

The first of them is obvious. To check the second, it suffices, given a coloring χ : [n]→
[r], to consider the coloring χ′ : [ln]→ [r] such that χ′(x) = χ(dx/le).

Let j = m mod n. By (3) and (4) we have

MS(m, r)

m
≤ MS(m− j, r) + 2j

m
≤ MS(n, r)

n
+

2j

m
.

Letting m go to the infinity while keeping n fixed, we obtain

lim sup
m→∞

MS(m, r)

m
≤ MS(n, r)

n
for any n. (5)

Hence the upper and lower limits of MS(n, r)/n coincide, which implies the convergence.
The estimate limn→∞MS(n, r)/n ≥ 1/(2r2) follows from (1). 2



the electronic journal of combinatorics 7 (2000), #R52 5

Notice that relation (5) has an important consequence.

Corollary 1.5 lim
n→∞

MS(n, r)/n exceeds no particular value MS(n, r)/n.

This fact suggests a way for computing upper bounds on limn→∞MS(n, r)/n as tight
as desired. Unfortunately, computing MS(n, r)/n seems not to be a feasible task for
big n. Nonetheless, in Section 2.2 we achieve some speed-up in approaching the value
limn→∞MS(n, r)/n.

1.3 General framework and the limit case of [n]

The following definition gives the background for all further considerations. In particu-
lar, it will allow us to characterize the limit of MS(n, r)/n.

Definition 1.6

• Let U be a space with measure µ.

• The space U is assumed to be endowed with a family S of one-to-one maps of U
onto itself, that are measurable and preserve the measure. These maps will be
called admissible symmetries.

• A set B ⊆ U is called symmetric if s(B) = B for some symmetry s ∈ S.

• Given A ⊆ U , define

ms(A) = sup {µ(B) : B is a symmetric measurable subset of A} .

• We consider a set Ω ⊆ U with µ(Ω) = 1, i.e. (Ω, µ) is a probability space.

• Let r ≥ 2. An r-coloring of Ω is a map χ : Ω → [r] such that each color class
χ−1(i) for i ≤ r is measurable. A subset of Ω is called monochromatic if it is
included into a color class.

• Define

ms(Ω, r) = inf
χ

max
i≤r

ms(χ−1(i)),

where the infimum is taken over all colorings of Ω.

To avoid any ambiguity in the presence of several families of admissible symmetries,
we will sometimes use more definite notation ms(Ω,S, r). The notation ms should be
recognized as an abbreviation of “the maximal measure of a monochromatic symmetric
subset”.
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For example, consider Ω = [n] in U = Z. Let µ(x) = 1/n for every x ∈ U . Let S
consist of central symmetries s(x) = g−x with center at point g/2 for arbitrary integer
g. Obviously, ms([n], r) = MS(n, r)/n.

Let Ω = [0, 1] now be the unitary segment. Considering the universe U = R with
the Lebesgue measure and central symmetries with center at any real point, we obtain
the definition of the value ms([0, 1], r). Proposition 1.4 can be made more precise.

Theorem 1.7 lim
n→∞

ms([n], r) = ms([0, 1], r). 2

Estimation of ms([0, 1], r) will be our concern in the next section.

§ 2 Continuous segment [0, 1]

In this section we estimate ms([0, 1], r) for r = 2 and describe the asymptotic be-
havior of this value for r→∞.

Theorem 2.1

(1)
1

4 +
√

6
≤ ms([0, 1], 2) ≤ 5

24
.

(2) ms([0, 1], r) ∼ c

r2
for a constant

1

2
≤ c ≤ 5

6
.

2.1 Lower bound on ms([0, 1], 2)

We prove the lower bound in Theorem 2.1 (1) by the double-counting argument. Given
ε > 0, fix a coloring of [0, 1] with color classes A1 and A2 such that both ms(Ai) do not
exceed ms([0, 1], 2) + ε. Consider Cartesian squares A2

1 and A2
2 in a plane. Obviously,

µ2(A2
1 ∪A2

2) = µ(A1)2 + (1− µ(A1))2 ≥ 1/2. (6)

We now have to bound the left hand side of (6) from above. Define S(a, b) =
{ (x, y) ∈ [0, 1]2 : a ≤ x+ y ≤ b}. Let 0 < t < 1 be a parameter whose value will be
chosen later. We split the square [0, 1]2 into three parts S(0, t), S(t, 2−t), and S(2−t, 2),
and estimate the area of intersection of A2

1 ∪ A2
2 with each part separately.

Consider first the intersection with the strip S(t, 2− t). From

µ
(
(A2

1 ∪A2
2) ∩ S(g, g)

)
=
√

2
(
µ(A1 ∩ (g − A1)) + µ(A2 ∩ (g −A2))

)
≤ 2
√

2 (ms([0, 1], 2) + ε)

we infer that

µ2
(
(A2

1 ∪A2
2) ∩ S(t, 2− t)

)
≤ 4(1− t)(ms([0, 1], r) + ε). (7)

To estimate the intersection with the triangle S(0, t), we use two lemmas.
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Lemma 2.2 If B ⊆ [0, t], then µ(B) ≤ (t+ms(B))/2.

Proof. Consider the partition of B into three parts B′ = B ∩ (t − B), B′′ = (B \
B′) ∩ [0, t/2], and B′′′ = (B \ B′) ∩ [t/2, t]. Since sets B′ ∩ [0, t/2], B′′, and t − B′′′ do
not intersect, we have µ(B′)/2 + µ(B′′) + µ(B′′′) ≤ t/2. As µ(B′) ≤ ms(B), we obtain
µ(B) = µ(B′)/2 + µ(B′)/2 + µ(B′′) + µ(B′′′) ≤ ms(B)/2 + t/2. 2

For Bi = Ai ∩ [0, t], Lemma 2.2 implies that µ(Bi) ≤ (t+ms([0, 1], 2) + ε)/2.

Lemma 2.3 Given a partition [0, t] = B1 ∪ B2, suppose that max{µ(B1), µ(B2)} ≤ s,
where

s ≥ 2
3
t. (8)

Then
µ
(
(B2

1 ∪B2
2) ∩ S(0, t)

)
≤ s2 − (2s− t)/2.

An equivalent reformulation of the lemma is that the area of (B2
1 ∪B2

2)∩S(0, t) attains
its maximum at the partition B1 = [0, s], B2 = [s, t]. This fact is not so obvious as it
appears at first sight, say, it is not true if the condition (8) is violated. The proof is
omitted in this exposition (see [5, lemma 6.12] for details).

Assuming that ms([0, 1], 2) < 1/3 (otherwise nothing to prove), we set

t = 3ms([0, 1], 2).

Apply Lemma 2.3 to the partition of [0, t] into Bi = Ai ∩ [0, t], i = 1, 2, with s =
(t+ms([0, 1], 2) + ε)/2 = 2ms([0, 1], 2) + ε/2. As the condition (8) is fulfilled, we obtain

µ2
(
(A2

1 ∪ A2
2) ∩ S(0, t)

)
= µ2

(
(B2

1 ∪B2
2) ∩ S(0, t)

)
≤ 7

2
ms([0, 1], 2)2 +O(ε). (9)

The same bound holds true for the intersection (A2
1 ∪ A2

2) ∩ S(2 − t, 2). Summing it
up with (9) and (7), we obtain an upper bound on µ2(A2

1 ∪A2
2) which after comparison

with the lower bound (6) implies

10ms([0, 1], 2)2 − 8ms([0, 1], 2) + 1 ≤ O(ε).

As ε can be here arbitrarily small, the bound ms([0, 1], 2) ≥ 1/(4 +
√

6) follows.

2.2 Blurred colorings

For the remaining claims of Theorem 2.1 we need to involve some machinery. The idea is
to move from our problem to its (hopefully) more tractable continuous version. For this
purpose we modify the notion of coloring, allowing a point x ∈ Ω be colored by several
colors mixed in arbitrary proportion. The fraction of each color at x is a non-negative
real number, and the sum of all color fractions should equal 1. A similar concept of the
fractional coloring of a graph is well known in combinatorics and discrete optimization.
However our approach is different in some important aspects; in particular, our problem
seems to fall out from the scope of linear or even convex programming. This justifies
our choice of other term blurred coloring.
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Definition 2.4

• Let a space U with measure µ, a set Ω ⊆ U , and a family of symmetries S satisfy
the conditions of Definition 1.6. Assume in addition that every symmetry s ∈ S
is involutive, i.e. s = s−1.

• A blurred r-coloring of Ω is an arbitrary set of measurable functions {βi : U →
[0, 1]}ri=1 such that

∑r
i=1 βi = χΩ, where χΩ denotes the characteristic function

of Ω.

• Given a measurable function f : U → R, we define a map f ? f : S → R by

f ? f(s) =

∫
U
f(x)f(s(x)) dµ(x).

We use the notation ‖ · ‖ for the uniform norm on the set of functions from S to
R, i.e. ‖F‖ = sups∈S |F (s)| for a function F : S → R.

• An analog of the maximum measure of a monochromatic symmetric subset under
a blurred coloring β = {βi}ri=1 is defined by

bms(Ω, r; β) = max
i≤r
‖βi ? βi‖.

We set
bms(Ω, r) = inf

β
bms(Ω, r; β),

where the infimum is taken over all blurred r-colorings of Ω.

Proposition 2.5 For every space Ω with involutive symmetries we have bms(Ω, r) ≤
ms(Ω, r) .

Proof-sketch. It suffices to observe that the notion of a blurred coloring generalizes the
notion of a coloring that has been considered so far. An ordinary “distinct” coloring χ
of Ω can be viewed as a blurred coloring β = {βi : U → [0, 1]}ri=1 taking on only two
values 0 and 1 in the segment [0, 1] so that βi(x) = 1 whenever χ(x) = i and βi(x) = 0
otherwise. 2

In a rather typical situation the values ms(Ω, r) and bms(Ω, r) turn out to be close
to each other. To be more precise, suppose that Ω is a finite subset of the universe U ,
every finite set A ⊆ U has measure µ(A) = |A|/|Ω|, and the family of symmetries S
consists of involutions. Given a symmetry s ∈ S, let Fix(s) = {x ∈ Ω : s(x) = x}.

Proposition 2.6 Let n = |Ω| and m = maxs∈S |Fix(s)|. Then

ms(Ω, r) ≤ bms(Ω, r) +
m

n
+

(
4 ln(r|S|)
n−m

)1/2

. (10)



the electronic journal of combinatorics 7 (2000), #R52 9

Proof-sketch. Since Ω is finite, bms(Ω, r) = bms(Ω, r; β) for some blurred coloring
β = {βi}ri=1. Define a random distinct coloring χ so that each point x ∈ Ω receives color
i with probability βi(x), independently of other points. With nonzero probability, every
χ-monochromatic symmetric subset of Ω has measure no more than the right hand side
of (10). 2

2.3 Upper bound on ms([0, 1], 2)

Recall that by Corollary 1.5 the values ms([n], r) approximate ms([0, 1], r) from above.
Let us show that the values bms([n], r) do the same as well (and likely even better).

Applying Propositions 2.5 and 2.6 to the discrete space [n], we obtain

bms([n], r) ≤ ms([n], r) ≤ bms([n], r) + o(1) (11)

for a fixed r and n increasing. By Theorem 1.7 this implies that

bms([n], r)→ ms([0, 1], r) as n→∞. (12)

Similarly to relations (3) and (4), one can prove their counterparts

bms([k + j], r) ≤ bms([k], r) k
k+j

+ 2j
k+j

bms([ln], r) ≤ bms([n], r).

In the same vein as in Section 1.2, we derive from here that

lim
m→∞

bms([m], r) ≤ bms([n], r)

for all n. By (12) we get

ms([0, 1], r) ≤ bms([n], r) (13)

for all n. We gain from (13) even with small n. To prove the desired boundms([0, 1], r) ≤
5/24 we just set n = 4 and apply the following fact.

Lemma 2.7 bms([4], 2) ≤ 5/24.

Proof. Consider the blurred coloring β = {β1, 1− β1} with

β1(1) =
1

2
, β1(2) =

1

2
− 1

2
√

3
, β1(3) =

1

2
+

1

2
√

3
, β1(4) =

1

2
.

Straightforward computation shows that bms([4], 2; β) = 5/24. 2
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2.4 Asymptotics of ms([0, 1], r) for r →∞
In this section we prove the second statement of Theorem 2.1. We again prefer to deal
with blurred colorings. In the case of the segment this is reasonable because

bms([0, 1], r) = ms([0, 1], r). (14)

This equality is true because, simultaneously with (12), bms([n], r) → bms([0, 1], r)
as n → ∞. The latter convergence is an analog of Theorem 1.7 and is provable by
essentially the same argument (see [5] for details).

Our next goal is to check the inequality

lim sup
r→∞

bms([0, 1], r)r2 ≤ bms([0, 1], k)k2 (15)

for any fixed k. Given ε > 0, let β = {βi}k−1
i=0 be a blurred k-coloring of [0, 1] with

bms([0, 1], k; β) < bms([0, 1], k) + ε. Assume r = kt and define a blurred r-coloring
χ = {χi}r−1

i=0 by χi(x) = 1
t
βi mod k(x) for all x ∈ [0, 1]. Then

bms([0, 1], r) ≤ bms([0, 1], r;χ) = max
0≤i<r

‖χi ? χi‖ =

max
0≤i<k

1

t2
‖βi ? βi‖ =

1

t2
bms([0, 1], k; β) <

1

t2
bms([0, 1], k) + ε.

As ε can be arbitrarily small, we obtain relation bms([0, 1], r) ≤ k2

r2 bms([0, 1], k) for r
multiple of k. For arbitrary r, letting j = r mod k we obtain

bms([0, 1], r) ≤ bms([0, 1], r − j) ≤ k2

r2
bms([0, 1], k)

(
r

r − j

)2

,

and inequality (15) follows.
From (15) we conclude that the upper and lower limits of bms([0, 1], r)r2 for r→∞

coincide, and hence there exists limr→∞ bms([0, 1], r)r2 = c. By equality (14) we obtain
ms([0, 1], r) ∼ c

r2 .
The bound c ≥ 1/2 follows from the relation ms([0, 1], r) ≥ 1/(2r2) (see Proposition

1.4 and Theorem 1.7). To prove the bound c ≤ 5/6 it suffices to put k = 2 in (15) and
use inequalities bms([0, 1], 2) ≤ bms([4], 2) ≤ 5/24.

§ 3 Abelian groups

The notion of symmetry in Z or R can be naturally extended to any Abelian group.
More precisely, two families of symmetries look reasonable for an Abelian group G.

S – the family of “central” symmetries s : G → G of kind s(x) = 2g − x for some
g ∈ G;
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S+ – the extended family of symmetries s : G→ G of kind s(x) = g−x for some g ∈ G.

Given a finite group G, we consider the counting measure µ, i.e. µ(A) = |A|/|G| for
any A ⊆ G. Given the group R/Z, which can be viewed equivalently as the unitary
circle in the complex plane, we consider the Lebesgue measure. Both cases are covered
by the most general setting where we consider the Haar measure on a compact Abelian
group G.

Therewith every compact Abelian group G can be regarded as a space with symme-
try. To shorten notation, we set ms(G, r) = ms(G,S, r) and ms+(G, r) = ms(G,S+, r).
As S ⊆ S+, it holds ms(G, r) ≤ ms+(G, r).

3.1 Cyclic group Zn
Consideration of Zn has a distinct geometric sense, since Zn can be viewed as the vertex
set of the rectangular n-gon. Then S consists of reflections in those axes that pass
through a vertex, while S+ consists of all axial symmetries. Another reason why Zn
deserves a detailed treatment is that this is the model case for a wide variety of compact
Abelian groups.

Notice that if n is odd, then S = S+ and hence ms(Zn, r) = ms+(Zn, r). In this
section we prove the following result.

Theorem 3.1 For a fixed number of colors r and n increasing we have

1/r2 ≤ ms(Zn, r) ≤ ms+(Zn, r) ≤ 1/r2 + o(1). (16)

Moreover, it holds the strict inequality

ms+(Zn, r) > 1/r2. (17)

Lower bounds. Recall that µ(A) = |A|/n is the density of a set A ⊆ Zn. Let
χA : Zn → {0, 1} denote the characteristic function of A. Define

f(g) = µ (A ∩ (g −A)) =
1

n

∑
x∈Zn

χA(x)χA(g − x) (18)

to be the density of the maximum subset of A symmetric with respect to symmetry
s(x) = g − x. The proof of lower bounds in Theorem 3.1 is based on the simple
observation that at least one of r color classes must have density at least 1/r. The
weakest bound ms+(Zn, r) ≥ 1/r2 immediately follows from the statement below.

Proposition 3.2 Every set A ⊆ Zn contains an S+-symmetric subset of density at least
µ(A)2.
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Proof. We apply the standard averaging argument. Using (18), we have

1

n

∑
g∈Zn

f(g) =
1

n

∑
x∈Zn

χA(x)
1

n

∑
g∈Zn

χA(g − x) = µ(A)2. (19)

Therefore, f(g) ≥ µ(A)2 for at least one g. 2

The next two statements strengthen Proposition 3.2 in two different directions. The
first of them implies the bound ms(Zn, r) ≥ 1/r2 in Theorem 3.1.

Proposition 3.3 Every set A ⊆ Zn contains an S-symmetric subset of density at least
µ(A)2.

Proof. For odd n the statement coincides with Proposition 3.2. Suppose that n = 2m.
Let A0 and A1 be two parts of A consisting of even and odd numbers respectively.
Averaging (18) on even arguments of f , we obtain

1

m

∑
g∈Zm

f(2g) =
1

n

∑
x∈Zn

χA(x)
1

m

∑
g∈Zm

χA(2g − x) =

1

n

∑
x even

χA0(x)
1

m

∑
x even

χA0(x) +
1

n

∑
x odd

χA1(x)
1

m

∑
x odd

χA1(x) =

2µ(A0)2 + 2µ(A1)2 ≥ (µ(A0) + µ(A1))2 = µ(A)2.

Therefore, f(2g) ≥ µ(A)2 for at least one g. 2

It remains to prove the bound ms+(Zn, r) > 1/r2 in Theorem 3.1.

Proposition 3.4 Let A be a proper nonempty subset of Zn. Then A contains an S+-
symmetric subset of density strictly more than µ(A)2.

Proof. Assume, to the contrary, that f(g) ≤ µ(A)2 for all g. By (19) this implies
f(g) ≡ µ(A)2, where ≡ means equality everywhere on Zn.

Let φi : Zn → C, for 0 ≤ i < n, be all characters of Zn, that is, all homomorphisms
from Zn to C. The system {φi}n−1

i=0 is an orthonormal basis of the Hilbert space L2(Zn) =
CZn ' Cn. This is a general property of characters of a compact Abelian group (see e.g.
[13, § 38]), which in the case of Zn reduces to the non-singularity of the Vandermonde
matrix. We will suppose that φ0 ≡ 1.

Relation (18) shows that the function f is representable as the convolution χA ? χA.
Assuming the expansion χA =

∑n−1
i=0 ciφi in the basis {φi}n−1

i=0 , we obtain f =
∑n−1

i=0 c
2
iφi.

Comparing this with f ≡ µ(A)2, from the uniqueness of expansion we conclude that
c2

0 = µ(A)2, while all the other coefficients ci are zero. Thus, χA ≡ µ(A) and A must be
either ∅ or Zn, a contradiction. 2
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The upper bound in Theorem 3.1 is a direct consequence of Proposition 2.6 that in
the case Ω = Zn reads as follows.

Proposition 3.5 ms+(Zn, r) ≤ 1/r2 +O(
√

log(rn)/n).

Indeed, in notation of Proposition 2.6 we have m ≤ 2. Moreover, for any space Ω we
have bms(Ω, r) ≤ 1/r2 as follows from consideration of the blurred coloring {βi}ri=1 with
each βi = 1/r everywhere on Ω.

3.2 Circle R/Z

The group R/Z is of especial interest because it can be alternatively viewed as the circle
with axial symmetry. Of course, S = S+.

Theorem 3.6 ms(R/Z, r) = 1/r2.

The proof of Theorem 3.6 borrows much from our analysis of Zn. Similarly to Zn,
the following properties are true for Ω = R/Z.

(L) Every measurable set A ⊆ Ω contains a symmetric subset B ⊆ A of measure
µ(B) ≥ µ(A)2.

(SL) Every measurable set A ⊂ Ω of measure 0 < µ(A) < 1 contains a symmetric
subset B ⊆ A of measure µ(B) > µ(A)2.

(U) ms(Ω, r) ≤ 1/r2.

The proof of (L) is the same as that of Proposition 3.2, with integration instead of sum-
mation. As a consequence, ms(R/Z, r) ≥ 1/r2. Property (SL), the remarkable strength-
ening of (L), can be proved with using the Fourier expansion similarly to Proposition
3.4. Property (U) is provable by reduction to Proposition 3.5 on account of the following
fact.

Proposition 3.7 Let H be a finite subgroup of a compact Abelian group G. Then
ms+(G, r) ≤ ms+(H, r). 2

We therefore have ms(R/Z, r) ≤ ms+(Zn, r) ≤ 1
r2 + O(

√
log(rn)/n) for all n, which

immediately implies (U).

We will refer to Properties (L), (SL), and (U) in the rest of the survey as they are
common for many spaces with symmetry.
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3.3 Arbitrary compact Abelian groups

Recall that we consider a compact Abelian group G along with its Haar measure µ.
The topology of G is assumed Hausdorff, and µ is assumed to be a complete probability
measure. This setting includes the groups Zn with the counting measure and R/Z with
the Lebesgue measure as particular cases.

Theorem 3.8 Let [G]2 denote the subgroup of a group G consisting of the elements of
order 2. Then ms(G, r) = ms+(G, r) = 1/r2 provided µ([G]2) = 0.

The lower bound ms(G, r) ≥ 1/r2 follows from Property (L) above that is true
for every compact Abelian group Ω = G with respect to the family of symmetries S.
Moreover, Property (SL) is true with respect to the extended family of symmetries S+.
To establish Property (U) with respect to S+, the following relation is useful.

Proposition 3.9 Let H be a closed subgroup of a compact Abelian group G. Then
ms+(G, r) ≤ ms+(G/H, r). 2

Proving (U), we distinguish two cases. If there exists a homomorphism from G onto
R/Z, then (U) follows from Proposition 3.9 and Theorem 3.6. Otherwise, the structural
theory of compact Abelian groups (see e.g. [14]) implies that G can be approximated
by a sequence of finite Abelian groups {Dn} in the sense that G has closed subgroups
Hn with G/Hn ' Dn and µ(Hn) → 0. By Proposition 3.9, ms+(G, r) ≤ ms+(Dn, r).
It remains to prove the upper bound ms+(Dn, r) = 1/r2 + o(1), what can be done by
the probabilistic method similarly to Proposition 3.5. As an example of this scenario
one can suggest the group Z(p) of integer p-adic numbers, which is approximated in the
above sense by the cyclic groups Zpn.

§ 4 Geometric figures

This section is devoted to symmetric geometric figures in Euclidean space Rk. The
general reference books on the topic are [8, 23]. We consider two classes of figures
that require completely different approaches. One class consists of surfaces and bodies
of revolution. Another class includes plane figures like regular polygons, ellipses and
rectangles (equivalent as spaces with symmetry), and their multi-dimensional analogs.
The crucial feature of this class is that its members have only finitely many symmetries.

Every figure Ω is considered with the Lebesgue measure µ on Ω normed so that
µ(Ω) = 1. The family of admissible symmetries consists of all non-identical isometries
of Rk leaving Ω invariant. We therewith have defined the value ms(Ω, r).



the electronic journal of combinatorics 7 (2000), #R52 15

4.1 Figures of revolution

Though our results apply to a wide range of figures of revolution including cylinder,
cone, torus etc., we will focus on the ball V k and the sphere Sk−1 in Euclidean space of
dimension k. We adopt formulations of Properties (L), (SL), and (U) from Section 3.2.

Theorem 4.1

(1) The spaces Ω = Sk−1 and Ω = V k for any k ≥ 2 have Properties (L) and (U).
Consequently, ms(Ω, r) = 1/r2.

(2) The sphere Sk for k ≥ 1 and the ball V k for k ≥ 3 have Property (SL).

(3) The disc V 2 does not have Property (SL). Moreover, there is an r-coloring of V 2

without monochromatic symmetric subsets of measure more than 1/r2.

Theorem 4.1 strengthens Property (U) shown in Section 3.2 for the circle S1, as now
this property is stated not only for bilateral but also for rotatory symmetry. In general,
Theorem 4.1 states the upper bounds (i.e. Property (U) and negation of (SL)) for the
fairly rich family of all non-identical isometries of a figure. On the other hand, the lower
bounds (L) and (SL) will be actually proved for much more limited family of symmetries
consisting of reflections in hyperplanes. This makes our results stronger, as decrease of
admissible symmetries can make the value ms(A) for A ⊆ Ω only smaller.

Property (L) follows from the argument common for all figures of revolution. From
the measure-theoretic point of view any figure of revolution Ω is representable as the
product Ω = S1 × Ω1 of the circle and some probability space Ω1. Correspondingly,
Ω has the product-measure µ = µ0 × µ1, where µ0 denotes the probability Lebesgue
measure on S1, and µ1 is the measure on Ω1. Identifying the circle S1 with the group
R/Z, for each g ∈ S1 we consider symmetry sg(x, x1) = (g − x, x1), where x ∈ S1 and
x1 ∈ Ω1. Notice that any such symmetry is reflection in a hyperplane.

Proposition 4.2 Every measurable set A ⊆ S1 × Ω1 contains a symmetric subset
B ⊆ A of measure µ(B) ≥ µ(A)2.

Proof. Let Bg = A ∩ sg(A) be the maximum subset of A symmetric with respect to a
symmetry sg. Denote Ax1 = {x ∈ S1 : (x, x1) ∈ A}, a section of the set A. Representing
µ(Bg) as the integral of the characteristic function of the set Bg, averaging it on g
and changing the order of integration, we come to the equality

∫
S1 µ(Bg) dµ0(g) =∫

Ω1
µ0(Ax1)

2 dµ1(x1). Applying the Cauchy-Schwartz inequality, we obtain∫
S1

µ(Bg) dµ0(g) =

∫
Ω1

µ0(Ax1)
2 dµ1(x1) ≥

(∫
Ω1

µ0(Ax1) dµ1(x1)

)2

= µ(A)2. (20)

There must exist g ∈ S1 such that µ(Bg) ≥ µ(A)2. 2
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Property (U). In fact, we are able to prove the bound ms(Ω, r) ≤ 1/r2 in a very
general form, namely, for Ω being any compact subset of a connected Riemannian
manifold. The basic idea is the same as in the proof of Proposition 3.5 where we,
in essence, show that large monochromatic symmetric subsets in Zn are avoidable by
coloring Zn at random. In a similar vein, we partition Ω into small measurable pieces
and color it piecewise at random. Then we show that with nonzero probability there
is no monochromatic symmetric set whose measure exceeds 1/r2 + ε, for a small ε > 0.
The obvious bottleneck in this scenario is that most often the family S of symmetries
is infinite. Nonetheless, we manage to approximate S by its finite subset in the metric
ρ(s1, s2) = supx∈Ω dist(s1(x), s2(x)), where dist denotes the distance between two points
in Rk. The complete proof contains some subtleties and is given in [5].

Property (SL) was already stated in Section 3.2 for the circle S1. For spheres and
balls in higher dimensions we use a different argument. To facilitate the exposition, we
prove the claim 2 of Theorem 4.1 only for the sphere S2.

Proposition 4.3 Every subset A ⊂ S2 of measure 0 < µ(A) < 1 contains a symmetric
subset B of measure µ(B) > µ(A)2.

Proof. Let Dδ(x) be the spherical disc of radius δ with center at the point x ∈ S2.
By the Lebesgue theorem on density [10, theorem 2.9.11], for almost all x we have

limδ→0
µ(A∩Dδ(x))
µ(Dδ(x))

= χA(x), where χA is the characteristic function of A. Therefore, A
contains a point N with

lim
δ→0

µ(A ∩Dδ(N))

µ(Dδ(N))
= 1. (21)

Choose spherical coordinates (x, x1) on S2, putting the north pole at the point N . Norm
the coordinates so that the longitude x lies on the circle S1 and the latitude x1 lies in
the segment I = [−1, 1]. We adhere to our previous convention that S1 = R/Z with
the probability Lebesgue measure µ0. For the appropriate choice of probability measure
µ1 on I, the sphere can be identified in the measure-theoretic sense with the product
S2 = S1 × I. For every g ∈ S1 we consider symmetry sg(x, x1) = (g − x, x1), which is
reflection in a plane.

Consider a symmetric set Bg = A ∩ sg(A) and prove by reductio ad absurdum that
for some g ∈ S1 the strong inequality µ(Bg) > µ(A)2 is true. Recall the relation (20) in
the proof of Proposition 4.2. It follows that if µ(Bg) ≤ µ(A)2 for all g, then∫

I

µ0(Ax1)
2 dµ1(x1) =

(∫
I

µ0(Ax1) dµ1(x1)

)2

= µ(A)2.

The latter implies µ0(Ax1) ≡ µ(A) almost everywhere on I. Therefore, for every mea-
surable set D ⊂ S2 of kind D = S1 × I1 with I1 ⊂ I we have

µ(A ∩D) =

∫
I1

µ0(Ax1) dµ1(x1) = µ(A) · µ(D).
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Applying this equality to D = Dδ(N), we have µ(A∩Dδ(N))
µ(Dδ(N))

= µ(A) for all δ > 0. By (21)

we get µ(A) = 1, a contradiction. 2

Violation of (SL). In the rest of this section we prove the claim 3 of Theorem 4.1
showing that the disc V 2 is an exception for which Property (SL) is false.

Proposition 4.4 For any 0 ≤ α ≤ 1/2 there is a set A ⊂ V 2 of measure µ(A) = α
without symmetric subsets whose measure exceeds α2.

Proof. Instead of the disc V 2, it will be technically more convenient for us to deal with
the space V = S1 × S1 supplied with the product measure µ0 × µ0, where µ0 is the
Lebesgue measure on the circle S1 = R/Z. For this purpose we establish f : V → V 2,
a one-to-one mapping from V onto the disc V 2 with the center pricked out, that will
preserve measure and symmetry. We describe a point in the space V by a pair of
coordinates (x1, x2) with x1 ∈ (0, 1] and x2 ∈ (0, 1], whereas for the disc V 2 we use
polar coordinates (ρ, φ) with ρ ∈ [0, π−1/2] and φ ∈ (0, 2π]. We set f(x1, x2) = (ρ, φ) iff
x1 = φ/(2π) and x2 = πρ2.

To explain the geometric sense of the correspondence f , let us identify S1 with (0, 1]
and regard the square V = (0, 1] × (0, 1] as the development of a cylinder on a plane.
Then a longitudinal section of the cylinder is carried by f onto a radius of the disc.
A cross section is carried onto a concentric circle so that the area below the section is
equal to the area within the circle. It follows that a set X ⊆ V 2 is measurable iff so is
f−1(X), and both have the same measure.

The correspondence f preserves symmetry in the following sense. For every admissi-
ble symmetry s of the disc V 2 there is a transformation s′ of the space V such that the
equality s(X) = X for X ⊆ V 2 is equivalent with the equality s′(f−1(X)) = f−1(X).
Every admissible symmetry of the disc is either a rotation around the center or a
reflection in a diameter. If s is the rotation by angle 2πg, then s′ is definable by
s′(x1, x2) = (g + x1, x2) (for the cylinder this is a rotation around its vertical axis). If s
is the reflection in the diameter φ = πg, then s′(x1, x2) = (g − x1, x2) (for the cylinder
this is reflection in one of its vertical planes of symmetry).

Thus, it suffices to find a set A ⊂ V of measure α but without s′-symmetric sub-
sets of measure more than α2. To do so, we fix an arbitrary set H ⊂ S1 of measure
µ0(H) = α so that H is completely contained in some semicircle. Then we define
A = {(x1, x2) : x1 + x2 ∈ H}.

It is not hard to see that A has no subset symmetric with respect to any symmetry
s′(x1, x2) = (g + x1, x2). Compute the measure of the maximum subset of A symmetric
with respect to a symmetry s′(x1, x2) = (g − x1, x2). We have

µ(A ∩ s′(A)) =

∫
S1

µ0

({
x1 ∈ S1 : x1 + x2, g − x1 + x2 ∈ H

})
dµ0(x2)

=

∫
S1

µ0(H ∩ (g + 2x2 −H)) dµ0(x2) = µ0(H)2 = α2.

The proposition follows. 2
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Figure 1: Construction of a bicoloring of the disc without monochromatic symmetric
sets of measure more than 1/4.

The above argument can be easily extended to construct an r-coloring of the disc
without monochromatic symmetric subsets of measure more than 1/r2. It suffices to
apply the transformation f to the partition V = A1 ∪ . . . ∪Ar, where

Ai =

{
(x1, x2) :

i− 1

r
< x1 + x2 ≤

i

r
or

i− 1

r
< x1 + x2 − 1 ≤ i

r

}
.

For r = 2 this coloring is shown in Figure 1.

4.2 Figures with finite number of symmetries

Let G denote the group of all isometries of Euclidean space leaving a figure Ω invariant.
Recall that for Ω we consider the family of symmetries S = G \ {id}, excluding the
identity. Suppose now that G is finite. In this case, which includes regular polygons,
rectangles, ellipses, and their multi-dimensional analogs, the previous techniques do not
apply, and we need a completely different approach.

The first thing to be understood is that the exact geometric shape of Ω is not so
relevant, as the value ms(Ω, r) eventually depends only on the group G. For instance,
ms(Ω, r) is the same for the rectangle and the ellipse (independently of whether contours
or areas are meant), for the parallelopiped and the ellipsoid etc.

To be more accurate, we assume that Ω contains a measurable subset I (a funda-
mental domain in the sense of [8]) such that all sI for s ∈ G are pairwise disjoint and
µ(
⋃
s∈G sI) = 1. In other words, {sI}s∈G is a partition of Ω into N = |G| congru-

ent pieces (points whose orbit under action of G is shorter than N are excluded from
consideration, and their measure is assumed to be zero).

The group G itself can be regarded as a space with symmetries σs : G → G, for
each s ∈ G defined by σs(g) = sg. Denote R = rN . Let φ1, . . . , φR : G → [r] be
all possible r-colorings of G. Introduce notation M j

s,i to denote the cardinality of the
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maximum σs-symmetric subset of G having color i under the coloring φj. Formally,

M j
s,i = |

⋂N
t=1 s

tφ−1
j (i)|. In the natural way we will identify the orbit Gx = {s(x)}s∈G of

a point x ∈ I with the group G itself. Given an r-coloring χ of Ω, let Ij consist of those
x ∈ I that χ induces the coloring φj on Gx. Set pj = µ(Ij).

It is not hard to see that the maximum s-symmetric subset of Ω that receives color
i under the coloring χ has measure

∑R
j=1 pjM

j
s,i. Therefore

ms(Ω, r) = min
(pj)

max
s∈G\{id}

i≤r

R∑
j=1

pjM
j
s,i (22)

where the minimum is taken over all vectors (p1, . . . , pR) with 0 ≤ pj ≤ 1/N and∑R
j=1 pj = 1/N . This equality, in particular, implies that ms(Ω, r) depends only on the

group G of all isometries of Ω.
In fact, relation (22) shows that any geometric figure with finite symmetry group

G is equivalent to the space Ω = G × [0, 1] with the uniform probability measure and
slice-wise symmetries σ̂s : Ω → Ω, for each s ∈ G \ {id} defined by σ̂s(g, x) = (sg, x).
For example, the regular n-gon in a plane can be identified with space D2n× [0, 1], where
D2n is the dihedral group; and the k-dimensional parallelopiped (as well as ellipsoid)
can be identified with space Zk2 × [0, 1].

Theorem 4.5

(1) Let p be the smallest prime divisor of n. Then for the regular n-gon Γn we have

ms(Γn, r) =


p−1

p2+2p−2
if r = 2,

1
3p2+6

if r = 3,

0 if r ≥ 4.

(2) For the k-dimensional parallelopiped Πk we have

ms(Πk, r) =
2k − r

r2(2k − 1)
,

whenever r = 2l for some 0 ≤ l < k. 2

The proof of Theorem 4.5 has not been published yet and will appear elsewhere.

§ 5 Extremal colorings

Given an r-coloring χ of a space Ω with symmetry, let ms(Ω, r;χ) denote the
supremum of µ(A) over all χ-monochromatic symmetric sets A ⊆ Ω. We call χ
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extremal if ms(Ω, r;χ) = ms(Ω, r). Similarly, a blurred r-coloring β is extremal if
bms(Ω, r; β) = bms(Ω, r) (see Definition 2.4).

Obviously, no extremal colorings exist whenever both of Properties (U) and (SL) are
met, in particular, for a wide variety of compact Abelian groups (see Section 3.3), for
spheres of all dimensions, and for balls starting from dimension 3 (see Theorem 4.1).
By Theorem 4.1 (3), an extremal coloring does exist for the 2-dimensional disc. We do
not know what is the case for the space Ω = [0, 1].

Whenever bms(Ω, r) = 1/r2, there exists the obvious extremal blurred coloring β =
{βi}ri=1 with each βi = 1/r everywhere on Ω. In particular, this is the case for the
aforementioned spaces without extremal “distinct” colorings. For the segment [0, 1] the
answer is not so obvious. The proof of the following result can be found in [5, theorem
7.2].

Theorem 5.1 There exists an extremal blurred r-coloring of [0, 1]. 2

One could expect that extremal colorings, if exist, have some regular properties.
Observe that color classes of the extremal coloring of the disc constructed in Section 4.1
are congruent (see Figure 1). In particular, if there is a symmetric set of one color with
measure α, then there must be a symmetric set of any other color with the same measure.
The latter property is actually fulfilled for all extremal colorings of the disc. This can be
inferred from relation (20) in the proof of Proposition 4.2. It turns out that an analog of
this property for blurred colorings is true for all spaces with symmetry. More precisely,
if β = {βi}ri=1 is an extremal blurred r-coloring of a space Ω, i.e. bms(Ω, r) = ‖βi ? βi‖
for some i ≤ r, then the same equality holds true for all i ≤ r.

§ 6 Infinitary issues

In this section we reconsider our original problem from another perspective. Modify-
ing the setting of Definition 1.6 in a quantitative aspect, we become concerned with the
cardinality of a monochromatic symmetric subset rather than with its measure. Given
a space Ω with symmetry and a cardinal number κ, the proper question to ask now is
what minimum (cardinal) number r of colors suffices to color Ω so that there were no
monochromatic symmetric subsets of cardinality κ.

As first example, consider an Abelian group G with symmetries sg(x) = g − x.
Define ν(G) to be the minimal r such that there exists an r-coloring of G without
infinite monochromatic symmetric subsets. The following result is proved in [3].

Theorem 6.1 ν(Zk) = k + 1.

Proof. To show that ν(Zk) ≤ k + 1, define a (k + 1)-coloring of Zk with color classes
A1, . . . , Ak+1 as follows. Consider a k-dimensional simplex S (a segment in R, a triangle
in R2, a tetrahedron in R3 and so on). Fix a point p inside S. For a point z ∈ Rk,



the electronic journal of combinatorics 7 (2000), #R52 21

let R(z) be the ray extending from p and passing through z. Let Ai consist of those
lattice points z that R(z) intersects i-th face of S. Clearly, no Ai contains an infinite
symmetric subset.

Now we need to prove that in any k-coloring of Zk one can find an infinite monochro-
matic symmetric set. The one-dimensional case is trivial, and the two-dimensional case
is still not so hard. We outline the proof for the first non-trivial case of k = 3 that can
be easily extended to higher dimensions.

Suppose the contrary and consider a 3-coloring of Z3 without infinite monochromatic
symmetric sets. Let C = {−1, 0, 1}3 be a discrete cube and K = [−m,m]3 a continuous
cube in R3. It follows from our assumption that if m is large enough, then the boundary
∂K of K contains no two lattice points of the same color and symmetric with respect to
a center in C. Fix such a cube K for some even m. Triangulate ∂K into isosceles right-
angled triangles with vertices in all those lattice points of ∂K whose three coordinates
are even. For convenience we choose this triangulation symmetric with respect to the
origin (0, 0, 0).

Fix now a triangle T in R2 and assign each of three colors to one of the vertices of
T . Define a mapping h : ∂K → T by the following two conditions.

(1) h takes each lattice point of ∂K with all three coordinates even (i.e. each vertex
of the triangulation) into the vertex of T with the same color.

(2) The mapping h is linear on each element of the triangulation. In other words, for
every triangle T ′ in the triangulation of ∂K, there is a linear transformation from
R3 to R2 that induces h : T ′ → T .

Clearly, h is uniquely determined by these two conditions and is continuous. Apply to h
the Borsuk-Ulam antipodality theorem (see e.g. [7, theorem 13.6]). It follows that there
exists a pair {x,−x} of antipodal points on ∂K with h(x) = h(−x). Let a, b, c ∈ ∂K be
vertices of the triangle containing the point x (if x lies on the border between two or more
triangles, we merely choose one of them). The triangle with vertices −a, −b, −c contains
the point −x. By the linearity of h, images h(x) and h(−x) belong to the convex hulls
of sets {h(a), h(b), h(c)} and {h(−a), h(−b), h(−c)} respectively. Consequently, the two
convex hulls have nonempty intersection.

On the other hand, any point in {a, b, c} is symmetric to any point in {−a,−b,−c}
with respect to a center in C. By our assumption, colors of {a, b, c} and colors of
{−a,−b,−c} do not intersect and, hence, {h(a), h(b), h(c)} and {h(−a), h(−b), h(−c)}
are disjoint sets of vertices of the triangle T . Therefore, convex hulls of these two sets
are disjoint too, a contradiction. 2

In [3] the cardinal ν(G) is computed for any Abelian group G. Other relevant
questions are discussed in [1, 2]. The following statement has been recently proven by
Igor Protasov and the first author [4] based on a version of the Erdős-Rado partition
theorem.
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Theorem 6.2 Assume that the generalized continuum hypothesis is true. Let G be an
infinite Abelian group whose order exceeds a cardinal number κ. Then, for any coloring
of G in finite number r of colors, G contains a monochromatic symmetric subset of
cardinality at least κ. 2

According to an earlier result of Protasov [20], for r ≤ 3 the theorem can be proved
without the generalized continuum hypothesis. If κ is equal to the order of G, the
statement is not true.

§ 7 Open problems

1. Improve our bounds on ms([0, 1], 2). In particular, a better upper bound can be
attained just at cost of more calculation, namely, by more careful estimating particular
values bms([n], 2) for n ≥ 4.

2. Does there exist an extremal blurred bicoloring {β1, β2} of [n] such that β1(x) =
β2(n+ 1−x) for all x ∈ [n]? If so, this would facilitate computation of particular values
bms([n], 2).

3. Improve our bounds on the constant c in Theorem 2.1 (2). In particular, can it
be separated from 1/2?

4. How fast does the sequence ms([n], r) converge? In particular, is the bound
|ms([n], r) −ms([0, 1], r)| = O(1/nα) true for a positive α? How faster is convergence
of bms([n], r)?

5. Does there exist an extremal coloring of the segment [0, 1]? In particular, is
the equality ms([0, 1], r) = ms([n], r) possible for some n? Recall that the value
ms([0, 1], r) = bms([0, 1], r) is achievable by a measurable blurred coloring of the seg-
ment. Is it achievable by a piecewise-continuous blurred coloring?

6. For a space Ω with symmetry and a real σ define

dms(Ω, σ) = inf {ms(A) : A ⊆ Ω, µ(A) ≥ σ} .

Clearly, ms(Ω, r) ≥ dms(Ω, 1/r). If Ω has Property (L), then dms(Ω, σ) ≥ σ2. Thus,
whenever Ω has both of Properties (L) and (U), we have the equality ms(Ω, r) =
dms(Ω, 1/r). Is this equality true for Ω = [0, 1]?

7. (P. Erdős, A. Sárközy, V. T. Sós [9]) Given an r-coloring χ : [n] → [r], let S(g)
denote the sum of the cardinalities of all monochromatic sets symmetric with respect
to 1

2
g, i.e., S(g) =

∑r
i=1 |χ−1(i) ∩ (g − χ−1(i))|. Does there exist a positive constant

c(r) such that, for every r-coloring of [n], the bound S(g) ≥ c(r)g is true for almost
all even integers g not exceeding n? A statement of such a kind is proven in [9] with
the bound S(g) ≥ 2. This cannot be extended to odd integers g, because if χ colors all
even numbers in [n] and all odd numbers in [n] in two different colors, then S(g) = 0
for every odd g.

8. The notion of symmetry can be extended also over any non-Abelian group G.
Namely, the symmetry sg : G → G with respect to an element g can be defined by
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sg(x) = gx−1g. As every compact topological group has the unique probability Haar
measure, for any group G of this class it makes sense to consider the value ms(G, r).
For instance, consider the group SO(3) of orientation-preserving rotations of the 3-
dimensional space. What is ms(SO(3), 2) equal to? We can suggest the bounds 1/16 ≤
ms(SO(3), 2) ≤ 1/4.

9. Let P be the family of all orientation-preserving involutive symmetries of the
sphere S2, i.e. all its axial symmetries. What is ms(S2,P, r) equal to? How far from
the true value is the upper bound 1/r2? Notice that P contains the group Z2

2, which is
generated by rotations of 180◦ around three pairwise perpendicular axes. It follows that
ms(S2,P, r) ≥ ms(Z2

2× [0, 1], r), where the space Z2
2× [0, 1] is considered with slice-wise

symmetries as in Section 4.2. Applying Theorem 4.5 (2) for k = 2, we obtain the lower
bound ms(S2,P, 2) ≥ 1/6.

10. Compute ms(Ω, r) for convex regular polyhedra in Rk. This research program
is of great interest even if restricted to particular directions. For example, it would be
desirable to know ms(∆k, r) for the regular k-dimensional simplex ∆k. Equivalently one
can consider the space Sk× [0, 1], where Sk is the symmetric group of degree k. Another
interesting direction is to compute ms(Ω, r) for all five Platonic solids in R3.

11. (R. I. Grigorchuk) Let F2 be a free group of rank 2. Compute ν(F2) for the
symmetries as in Problem 8.

12. Call a subset E of an Abelian group G essential if for every coloring of G in less
than ν(G) colors the group G contains an infinite subset A symmetric with respect to
a point g in E (i.e. A = 2g − A). For example, the proof of Theorem 6.1 shows that
the 27-element cube {−1, 0, 1}3 is an essential set in Z3. Let ρ(G) denote the minimum
cardinality of an essential set in G. The problem is to compute or to estimate ρ(Zk).
We know the bounds k(k + 1)/2 ≤ ρ(Zk) < 2k, where the lower bound is the precise
value for k = 1, 2, 3 (see [2]).

13. Is Theorem 6.2 provable in ZFC? In particular, can one prove without additional
set-theoretic assumptions that for every 4-coloring of R and for every cardinal number
κ < c there exists a monochromatic symmetric set A ⊂ R of cardinality at least κ?

14. Let M(n) be the maximum M such that every sequence v0, v1, . . . , vn of points in
Z2 with each difference vi+1−vi being either (0, 1) or (1, 0) contains an M-point centrally
symmetric subset. What is asymptotics of M(n)? We only know that 2 logn−O(1) ≤
M(n) ≤ (7 + o(1))

√
n (see [22]).
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