Franklin’s argument proves an identity of Zagier
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Abstract

Recently Zagier proved a remarkable g-series identity. We show that this iden-
tity can also be proved by modifying Franklin’s classical proof of Euler’s pentagonal
number theorem.
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1 Introduction

We use the standard g¢-series notation:

n

(@)n = [T(1 —ag"™)

k=1

where n is a nonnegative integer or n = oo. Euler’s pentagonal number theorem states
that

=1+ Z r(3r—1)/2 + qr(3r+1)/2)‘ (1)

Recently Zagier proved the followmg remarkable identity

Theorem 1

§[<q>m—<q>n1=<q> i +z L) g 3G ()

This is [8, Theorem 2] slightly rephrased.

Equation (1) has a combinatorial interpretation. The coefficient of ¢V in (). equals
do(N) — d,(N) where d.(N) (respectively d,(N)) is the number of partitions of N into
an even (respectively odd) number of distinct parts. Franklin [4] showed that

d(N) — d,(N) = (—=1)" if N = 1r(3r £ 1) for a positive integer r,
‘ ¢ B 0  otherwise.
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His proof was combinatorial. He set up what was almost an involution on the set of
partitions of N into distinct parts. This “involution” reverses the parity of the num-
ber of parts. However there are certain partitions for which his map is not defined.
These exceptional partitions occur precisely when N = %r(i’)r + 1), and so account for
the nonzero terms on the right of (1). Franklin’s argument has appeared in numerous
textbooks, notably [1, §1.3] and [5, §19.11].

We show that Zagier’s identity has a similar combinatorial interpretation, which,
miraculously, Franklin’s argument proves at once.

The author wishes to thank George Andrews and Don Zagier for supplying him with
copies of [3] and [8], and also an anonymous referee for helpful comments.

2 Proof of Theorem 1

We begin by recalling Franklin’s “involution”. Let Dy denote the set of partitions of N
into distinct parts and let D = UXN_, Dn. For A € Dy let Ny = N, n) be the number of
parts in A and my be the largest part of A (if A is the empty partition of 0 let my = 0).

Then
(@)oo = D (=1)"™g™. (3)
AeD

Let A be a non-empty partition in D. Denote its smallest part by ay. If the parts
of Nare Ay > Ay > A3 > --- let b = by denote the largest b such that A\, = A\ +1 -0
(so that A\, = A\ +1 =k if and only if 1 < k < b). If A € D is not exceptional (we
shall explain this term shortly), then we define a new partition A as follows. If ay < by
we obtain X by removing the smallest part from A and then adding 1 to the largest ay
parts of this new partition. If a) > by we obtain A\’ by subtracting 1 from the b, largest
parts of A and then appending a new part by to this new partition.

For example take the partition A illustrated in Figure 1.

Figure 1: the partition A
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Then ay = 2 and by = 3. As ay < by then ) is obtained by removing the smallest
part of A and adding 1 to its largest two parts. We get the partition )\ illustrated in
Figure 2. This time ay = 3 and by = 2, and we obtain \” by subtracting 1 from the

Figure 2: the partition \

two largest parts of ), and creating a new smallest part of 2. This operation reverses
the construction of X’ from A, and so \" = A.

The exceptional partitions are those for which this procedure breaks down. We regard
the empty partition as exceptional, also we regard those for which ny = by and a) = b, or
ba+1. If X is not exceptional, then neither is X and \” = X and (—1)" = —(—1)". Thus
on the right side of (3) the contributions from non-exceptional partitions cancel. The
non-empty exceptional partitions are of two forms: for each positive integer r we have
A=(2r—1,2r—2,...,r+1,r) for which ny =r, my = 2r —1 and N, = 3r(3r —1), and
we have A = (2r,2r—1,...,r+2,r+1) for which ny = r, my = 2r and N, = %T’(?ﬂ’—l—l).
Thus from (3) we deduce (1).

If A € D is non-exceptional, then either ny, = n, — 1, in which case my» = my, +1, or
ny = ny + 1, in which case my = m, — 1. In each case my + ny = my + n,. It follows
that in the sum

> (=1)™ (ma +na)g™
AeD

the terms corresponding to non-exceptional A cancel and so we get only the contribution
from exceptional A. Thus

o0

(=1 (ma 4 na)g™ =3 (=1)"[(Br = 1)g" V2 4 3rgr I, (4)
AeD r=1

This sum occurs in (2), which will follow by analysing the left side of (4).
We break this into two sums. The first

> (1) myg™

AeD
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is dealt with in [3, Theorem 5.2]. We repeat their argument. The coefficient of ¢
(@)oo — (@) is the sum of (—1)™ over all A € Dy having a part strictly greater than n.
Such a A is counted for exactly m, different n so that

>l(a) — (0] = (1) mag™ )

For each positive integer k,

1__7qqk(Q)oo =(1-q¢)(1-¢*)---(1— qkil)(—qk)(l _ qk+1) o

The coefficient of ¢V in this product is the sum of (—1)™ over all A € Dy having k as
a part. Such a A\ occurs for n) distinct k, and summing we conclude that

o0

(@)oo > = S (1) g™, (6)

mil—a \ED

Combining (4), (5) and (6) gives (2).

3 Another identity

Subbararo [7] (see also [2, 6]) has used essentially the above argument to prove a related
identity. As before Franklin’s involution proves that

Z(_l)n,\xm,\-l—n,\ Ny __ 1+Z 37‘ 1 7‘(37‘ 1)/2+:L,3rq7‘(37‘+1)/2]' (7)
AeD

By elementary combinatorial considerations the left side of (7) can be shown to equal

o0

Z('T)rJrlxr
r=0
and so i,
Z( r+1x — 1+Z 37“ 1 r(3r 1)/2+.’IZ'3TL]T(3T+1)/2] (8)
r=0

For details see [2, 6, 7]. An alternative method of proving (8) is outlined in [1] and
presented in more detail in [8]. Zagier [8] deduces (2) from (8), essentially by carefully
differentiating with respect to x and setting z = 1.
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