Large equiangular sets of lines in Euclidean space
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Abstract

A construction is given of %(d + 1)? equiangular lines in Euclidean d-space,
when d = 3-2%~! — 1 with t any positive integer. This compares with the well
known “absolute” upper bound of %d(d + 1) lines in any equiangular set; it is the
first known constructive lower bound of order d? .

For background and terminology we refer to Seidel [3]. The standard method for
obtaining a system of equiangular lines in Euclidean space is as follows. Let G be a

graph, with Seidel adjacency matrix S, i.e. Sy, = —1 if vertices x and y are adjacent,
Syy = 1 if  and y are distinct and non-adjacent, S, = 0 for all . Letting ¢ denote
the smallest eigenvalue of S, we see that M = I — %S is positive semidefinite of rank

d = n —m where n is the number of vertices and m is the eigenvalue multiplicity of 6.
Hence M is representable as the Gram matrix of n unit vectors x4, ..., x,, in real d-space,
with < x;,z; >= j:% whenever i and j are distinct. Thus the lines (1-dimensional
subspaces) spanned by these x;’s have constant pairwise angle arccos (%)

It is not hard to see that the above process is reversible, so that finding a large
equiangular set of lines in Euclidean space amounts to finding a graph whose Seidel
adjacency matrix has smallest eigenvalue of large multiplicity.

Theorem. For each d = 3 -2%"! — 1, with ¢ any positive integer, there exists an
equiangular set of %(d + 1)? lines in Euclidean d-space.

In order to describe the graphs relevant to this construction, we need to recall some
terms and facts from the theory of quadratic forms over GF'(2); a convenient reference is
[1], which contains everything we need here as well as some pointers to earlier literature.
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Let V' be a vector space over GF(2). If Q : V — GF(2) is a quadratic form, then
its polarization B(z,y) = Q(z + y) + Q(x) + Q(y) is an alternating bilinear form.
Note that B can be non-singular only if V' has even dimension; so we will assume that
dim (V') = 2t for some positive integer t. If @) polarizes to a non-singular B, then Q
must be of one of two types x(Q) = £1, where @Q has exactly 2%~ + x(Q)2!™! zeroes.
Next, let {By, Bs, ..., B, } be a set of alternating bilinear forms on V; if B; + B; is non-
singular for all ¢ # j then the set is called non-singular. It is not hard to show that
a non-singular set has r < 2%~!: when equality holds it is called a Kerdock set. Such
maximal non-singular sets do exist for all ¢.

We may now describe the graphs occurring in our construction of equiangular lines.
Let K be a Kerdock set of alternating forms on V', where dim(V') = 2t as above. The
graph G will have as vertex-set all pairs (B, )) where B belongs to K and ) polarizes
to B. Two vertices (B, Q) and (B, Q') are declared adjacent precisely when B # B’
and x(Q + Q') = —1. Note that G; is one of the two non-trivial relations in what is
called the Cameron-Seidel 3-class association scheme in [1]. The eigenvalues of the Seidel
adjacency matrix S(G;) are as follows:

0, = 2371 422t 9t 1, multiplicity one.

0y = 231=1 — 2t — 1: multiplicity 2¢ — 1 where ¢ := 2%~
05 = 22 — 2t — 1; multiplicity ¢ — 1.

0, = —2' — 1; multiplicity (¢ — 1)(2¢ — 1).

The foregoing spectral information can be derived from the (dual) eigenmatrix @) on
page 326 of [2], by setting n = 2% r =2%"1 ¢ =21 =2'—1 and 7 = —2' —1 in that
paper; the adjacency eigenvalues of G, are then given by the fourth column of @) and
the corresponding multiplicities by the first row of the P-matrix. Also please note that
the Seidel matrix S and ordinary adjacency matrix A are related by S = J — I — 2A.

We now have the following situation. The eigenvalue 6 = 6, is the smallest eigenvalue
of S(G;) and it has very large multiplicity. Indeed the rank of M = I — %S isd=3¢—1
and the graph has 2¢% = %(d—{— 1)? vertices. From the standard procedure sketched earlier,
we thus obtain an equiangular set of g(d + 1)? lines in Euclidean d-space, whenever
d=3q—1=23-2%"1_1 for some positive integer . This completes the presentation
and verification of our construction, or in other words, the proof of our theorem.

The graphs G; have already been known for over twenty-five years. It is perhaps
surprising that their relevance to equiangular lines was not noticed before. A likely
reason is that, generally speaking, the best constructions seem to come from regular
two-graphs where the Seidel adjacency matrix has just two distinct eigenvalues; for
example the absolute upper bound of 1d(d + 1) can only be achieved by a regular two-
graph. But so far (cf. [3], p.884) constructions using regular two-graphs have yielded
nothing better asymptotically than a constant times dv/d.
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