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Abstract

The known methods for constructing complete sets of mutually orthogonal
frequency squares all yield one of two parameter sets. We show that almost all
these constructions can be derived from one basic design theory construction.
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1 Introduction

Frequency squares are an extension of the concept of latin squares. Investigations have
centred on finding analogues to Bose’s theorem: a set of mutually orthogonal n×n latin
squares has at most n− 1 squares. The set is complete if it has n− 1 squares.

Laywine and Mullen ([8], [9]) have investigated frequency squares from this view-
point. See also [2] for an account. There are at present only two known parameter
sets of complete sets of mutually orthogonal frequency squares (MOFS). We shall show
that most of the known constructions may be obtained through just one general design
theory construction involving parallel classes of lines in affine designs.

More detailed information on basic design theorems, definitions and terminology used
in this paper may be found in [1], [2], [3] and [9]. Here we give a brief outline.

Let D be a 1-(v, k, r) design, with v points, k points on each block, b blocks and r
blocks on each point. If the blocks of D can be partitioned into r subsets of m = v/k
disjoint blocks, called parallel classes, then D is resolvable. In this case, if further any
two blocks from different parallel classes (i.e. non-parallel blocks) meet in a constant
number µ points, then µ = k/m and D is said to be affine, or D is an (m, r;µ) net.

1



the electronic journal of combinatorics 7 (2000), #R56 2

Suppose D is affine. If the dual design D∗ of D (which is a 1-(b, r, k) design) is
resolvable, then it can be shown that r ≤ k ([1], [11], [12]) with equality if and only if
D∗ is also affine. When D,D∗ are both affine then b = v = µm2 and r = k = µm and
D is called a symmetric (µ,m)-net.

Note that transversal designs are just the duals of affine designs.
An n × n matrix F is a frequency square of type F (n, µ) over an m-set S if each

element of S occurs with frequency µ (= n/m) in each row and each column. Thus F is
a latin square when µ = 1.

Two n× n frequency squares over S are orthogonal if when one is superimposed on
the other, each ordered pair from S × S occurs exactly µ2 times. (This clearly agrees
with the idea of orthogonality in latin squares.)

We remark that there is a more general definition for frequency squares which allows
the frequencies of different elements of S to differ.

Hedeyat et al [5] showed that a set of type F (µm, µ) MOFS has at most
(µm− 1)2/(m− 1) squares. The set is complete if it has this many squares.

According to [2], the only complete sets of MOFS known are of type F (n, µ) with
either: (i) m a prime power and n a power of m; or (ii) n = 2m is the order of a
Hadamard matrix, where n = µm.

2 A construction

The construction described here for complete sets of MOFS is based on a technique for
constructing affine 2-designs with parallel classes of lines.

A line in an affine 2-(µm2, µm, (µm − 1)/(m − 1)) design D is the intersection of
all blocks containing two given points. Thus a line L is contained in exactly λ =
(µm−1)/(m−1) blocks. A block B is parallel to L if B is parallel to a block containing
L. (So B either contains L or misses L.) A parallel class is parallel to L if some (and
hence every) block in it is parallel to L.

Thus a line is parallel to exactly λ parallel classes. We say two lines are parallel if
they are parallel to the same λ parallel classes.

It is well known and easy to prove that a line L has at most m points; and L has
exactly m points if and only if each block not parallel to L meets L in a point.

Theorem 1 If there exists an affine 2-(µm2, µm, (µm−1)/(m−1)) design with a parallel
class of lines, then there exists a complete set of MOFS of type F (µm, µ).

Proof. Let the affine 2-design be Γ and let L = {L1, L2, ..., Lµm} be a parallel class of
lines.

Choose any parallel class of blocks E = {E1, E2, ..., Em} of Γ not parallel to L. Let
Ej meet Li in the point Lij (1 ≤ i ≤ m; 1 ≤ j ≤ µm). Then each point of Γ is uniquely
expressible in the form Lij .
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Choose X from any of the λ = (µm− 1)/(m− 1) parallel classes that are parallel to
L. Now Γ has r = (µm2−1)/(m−1) parallel classes and so has r−λ = µm not parallel
to L. Choose Y from any of the µm− 1 parallel classes not parallel to L,where Y 6= E.
Then we define a frequency square F = F (X, Y ) as follows.

Given i, j where 1 ≤ i, j ≤ µm, then Fij is determined thus. Let Xt (1 ≤ t ≤ m)
be the unique block of X containing the line Li. Then if the block in Y on Ljt is Yα
(1 ≤ α ≤ m), we define Fij = α.

We show F is a frequency square of type F (µm, µ). Given j (1 ≤ j ≤ µm) and α
(1 ≤ α ≤ m), we count i for which Fij = α. Now if Ljt is the unique point of Lj on Yα,
then Li can be any of the µ lines of L contained in Xt. So there are µ values of i.

Next, given 1 ≤ i ≤ µm and α, let Xt be the unique block of X containing Li. Then
for Fij = α, we can choose Lj to be any of the µ lines in the intersection of Et and Yα.
It follows that α appears µ times in each row and column of F . So F is a frequency
square as required.

Consider another such frequency square F ′ = F (X ′, Y ′), where either X 6= X ′ or
Y 6= Y ′. We shall show that F and F ′ are orthogonal.

Given α, β (1 ≤ α, β ≤ m), consider the simultaneous equations in i and j: Fij = α,
F
′
ij = β.

There are two cases to examine:

Case X 6= X ′: Then λ > 1 and so µ > 1. Choose any j (1 ≤ j ≤ µm). Let Yα and Y ′β
meet the line Lj at Ljt and Lju, respectively. In Γ, Xt and X ′u meet in µ points, and
hence in µ/m lines of L. If Li is any of these lines, then the above equations both hold.
Case X = X ′: Then Y 6= Y ′. Let Ljt be any of the µ points in which Yα meets Y ′β.
Choose i so that Li is one of the µ lines of L contained in Xt. Then again the equations
both hold.

Therefore F and F ′ are orthogonal. It follows that by varying X and X ′ we get a
complete set of type F (µm, µ) MOFS.

Observe that in the case µ = 1, Γ is an affine plane of order m and the theorem gives
a complete set of n− 1 MOLS of order n.

Affine 2-designs with parallel classes of lines can be constructed using the following
result (see [11], [14], [12] or [6]).

Theorem 2 The symmetric subnets of an affine 2-design are in one-to-one correspon-
dence with its parallel classes of lines. There exists an affine 2-(µm, µ,
(µ− 1)/(m− 1)) design and a symmetric (µ,m)-net if and only if there exists an affine
2-(µm2, µm, (µm− 1)/(m− 1)) design with a parallel class of lines.

Using this theorem we easily deduce the following corollary to Theorem 1.

Corollary 3 If there exists an affine 2-(µm, µ, (µ−1)/(m−1)) design and a symmetric
(µ,m)-net, then there exists a complete set of MOFS of type F (µm, µ).
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Remark 4 It is well known (see [1] or [2], for instance) that the existence of a sym-
metric (µ,m)-net is equivalent to that of a generalized Hadamard µm× µm matrix over
a group of order m.

In particular it follows from this remark, putting m = 2, that the existence of a
symmetric (µ, 2)-net is equivalent to that of a Hadamard matrix of order 2µ.

Using this connection between symmetric nets and Hadamard matrices we obtain
the next result.

Theorem 5 If there is a Hadamard matrix of order 2µ, then there is a 2-(4µ, 2µ,
2µ − 1) design with a parallel class of lines. (The design is necessarily affine and is
in fact a 3-(4µ, 2µ, µ− 1) design.)

Proof. From Remark 4 we deduce the existence of a symmetric (µ, 2)-net. It is well
known (see [1], [2] or [15]) that the existence of a Hadamard matrix of order n implies
that of 2-(4µ, 2µ, 2µ− 1) design which is necessarily affine and a 3-design. Now apply
Theorem 2.

Remark 6
(a) A comparison of Theorems 2.1 and 2.2 suggests, broadly speaking, that the

existence of a symmetric (µ,m)-net is equivalent to that of a complete set of type
F (µm, µ) MOFS, perhaps under some extra conditions.

(b) It is well known (see [1], [2] or [15]) that the existence of a Hadamard matrix of
order 2µ implies that of a Hadamard matrix of order 4µ by the ‘doubling’ method, and
that the existence of a Hadamard matrix of order 4µ implies that of a design with the
parameters given in Theorem 2.5. However, Theorem 5 guarantees the existence of a
parallel class of lines in the design.

Now we can show how Theorem 1 implies some of the known and perhaps some new
ways of looking at constructions of complete sets of MOFS.

1. If we take Γ in Theorem 1 to be the affine design formed by the points and
hyperplanes of the n-dimensional affine space over GF (m) and choose any of its
parallel classes of lines, we obtain complete sets of MOFS of type F (mn−1,mn−2)
for any prime power m. This technique seems to be new.

2. ([2, IV.20.2, Theorem 20.8(4)]). Given an affine 2-(m2h,m2h−1, (m2h−1 − 1)/
(m − 1)) design D (i.e. an AD(m2h−1,m)) of dimension at least 2h − 2, (see
[10] or [13] for definitions), let C1, C2, . . . , C2h−1, be independent classes where
C1, C2, . . . , C2h−2 are prime. Then for any choice of representatives ci ∈ Ci
(1 ≤ i ≤ 2h − 1), the intersection of the ci is a line of size m of D. Thus we get
m2h−1 disjoint lines of size m which are evidently parallel. Hence we have a parallel
class of lines in D. Hence Theorem 1 applies, giving a complete set of MOFS of
type F (m2h−1,m2h−2).
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3. Street [14] showed there exists a complete set of type F (µm, µ) MOFS if there is
a generalized Hadamard µm× µm matrix over a group of order m, and an affine
2-(µm, µ, (µ−1)/(m−1)) design. We can deduce this as follows. The existence of
a symmetric (µ,m)-net follows from Remark 4. Then, from Theorem 2, Corollary
3 and Remark 4 we deduce that there exists a complete set of F (µm, µ) MOFS.

Remark 7 There exist symmetric nets which cannot be constructed from generalized
Hadamard matrices (see Mavron and Tonchev [12]). Thus Corollary 3 extends Street’s
result.

Remark 8 Laywine [7] constructs an affine 2-design which is not obtainable from a
family of MOFS. Then Remark 6 suggests that the affine design does not have a sym-
metric subnet. However, this is not immediately obvious and further investigation of
the relationship between nets and MOFS is needed as well as an analysis of Laywine’s
construction.

4. Federer [4] showed that there is a complete set of MOFS of type F (2µ, µ) if there
is a Hadamard matrix of order 2µ.

As a parameter existence result, we can deduce it from Theorems 1 and 5.

Before giving the next existence result for complete sets of MOFS, we state the
following theorem from Mavron [11].

Theorem 9 If there exists an affine plane of order m and an affine 2-(µm, µ,
(µ− 1)/(m− 1)), then there exists a symmetric (µ,m)-net.

5. ([2, IV.20.2, Theorem 20.8(5)]) Suppose there exists an affine plane of order m
and an affine 2-(µm, µ, (µ− 1)/(m− 1)) design. Then there exists a complete set
of type F (µm, µ) MOFS.

This can be obtained from Theorem 1 in the following way. From Theorem 8
we have the existence of a symmetric (µ,m)-net, and hence from Corollary 3 the
existence of the MOFS.
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