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Abstract

Let γ(n, δ) denote the largest possible domination number for a graph of order
n and minimum degree δ. This paper is concerned with the behavior of the right
side of the sequence

n = γ(n, 0) ≥ γ(n, 1) ≥ · · · ≥ γ(n, n− 1) = 1.

We set δk(n) = max{δ | γ(n, δ) ≥ k}, k ≥ 1. Our main result is that for any fixed
k ≥ 2 there is a constant ck such that for sufficiently large n,

n− ckn(k−1)/k ≤ δk+1(n) ≤ n− n(k−1)/k.

The lower bound is obtained by use of circulant graphs. We also show that for
n sufficiently large relative to k, γ(n, δk(n)) = k. The case k = 3 is examined in
further detail. The existence of circulant graphs with domination number greater
than 2 is related to a kind of difference set in Zn.
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n/δ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2 1
3 1 1
4 2 2 1
5 2 2 1 1
6 3 2 2 2 1
7 3 3 2 2 1 1
8 4 4 3 2 2 2 1
9 4 4 3 3 2 2 1 1

10 5 4 3 3 2 2 2 2 1
11 5 5 4 3 3 3 2 2 1 1
12 6 6 4 4 3 3 2 2 2 2 1
13 6 6 4 4 3 3 3 2 2 2 1 1
14 7 6 5 4 4 3 3 3 2 2 2 2 1
15 7 7 5 5 4 *4 3 3 †3 2 2 2 1 1
16 8 8 6 5 *5 4 *4 3 †3 †3 2 2 2 2 1

Table 1: Values of γ(n, δ) for 1 ≤ n ≤ 16. Entries marked with asterisks are unknown.
For these cases the best known upper bounds for γ(n, δ) are given. Entries determined
in Section 5 are marked by daggers.

1 Introduction

As in [2], we say that a (simple) graph Γ with n vertices and minimum degree δ is an
(n, δ)-graph and we define

γ(n, δ) = max{γ(Γ) | Γ is an (n, δ)-graph}

where γ(Γ) denotes the domination number of Γ.

We are interested in the behavior of the right side of the sequence

n = γ(n, 0) ≥ γ(n, 1) ≥ · · · ≥ γ(n, n− 1) = 1. (1.1)

In [2] the values γ(n, δ) for δ = 0, 1, 2, 3 were determined. Table 1 taken from [2] depicts
the sequences (1.1) for small values of n. Actually there were six undecided entries in the
table given in [2], three of which are decided in Section 5 of this paper. The remaining
three unknown entries are marked by asterisks. The values given for these cases are the
best known upper bounds.
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One easily sees that γ(n, δ) is a non-increasing function in δ. We are interested in
determining the numbers δk(n) where

δk(n) = max{δ | γ(n, δ) ≥ k}, k ≥ 1.

Since the domination number of an (n, δ)-graph G is 1 if and only if there is a vertex of
degree n−1, it is not difficult to see that δ1(n) = n−1 and that for n ≥ 4, δ2(n) ≥ n−2
if n is even while δ2(n) ≥ n − 3 if n is odd. A little reflection shows that these are in
fact the actual values of δ2(n) because when n is even, the graph whose complement is a
perfect matching is an (n, n− 2)-graph with domination number 2. When n ≥ 5 is odd,
the graph whose complement is a Hamilton cycle is an (n, n−3)-graph with domination
number 2. Therefore, for n ≥ 4,

δ2(n) =

{
n− 2, if n is even,
n− 3, if n is odd.

In this paper, we investigate for each fixed k ≥ 3, the behavior of δk(n) for all
sufficiently large n. We shall also consider the case k = 3 in more detail. There are
various known upper bounds of γ(n, δ) (see for example [3]). The upper bound γ∗(n, δ) in
Theorem 2 below differs only trivially from the upper bound γ6(n, δ) in [3]. This bound
actually gives the exact values of γ(n, δ) for most of the cases under our consideration
(see Theorem 7).

Theorem 1 ([3]) Let Λ = δ + 1 if nδ is odd, and let Λ = δ, otherwise. Define the
sequence g1, g2, . . . as follows:

g1 = n− Λ− 1 and gt+1 =

⌊
gt

(
1− δ + 1

n− t

)⌋
, for t ≥ 1.

Set γ∗(n, δ) = min{t | gt = 0}. Then γ(n, δ) ≤ γ∗(n, δ).

Theorem 2 For k ≥ 2, δk+1(n) < n− n(k−1)/k.

Proof. Assume δ ≥ n− n(k−1)/k. From the fact that

g1 < n− δ, and gt+1 < gt

(
n− δ
n

)
, t ≥ 1,

we have

gk < n

(
n− δ
n

)k
≤ n(n−1/k)k = 1.
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Hence gk = 0 and γ(n, δ) ≤ γ∗(n, δ) ≤ k. The theorem therefore follows from the
definition of δk+1(n) which is the maximum value of δ for which γ(n, δ) ≥ k + 1.

We shall show that this upper bound is quite tight in the sense that for all sufficiently
large n, there is a constant ck such that

δk+1(n) ≥ n− ckn(k−1)/k. (1.2)

Such a lower bound can be established by showing that there exists a graph G with
appropriate minimum degree and domination number greater than k. Notice that this is
not trivial as our lower bound for δk(n) is quite close to its upper bound in Theorem 2. We
shall in fact construct a circulant graph with the required properties. This requires the
construction of a suitably small subset W of the additive group Zn = {0, 1, 2, . . . , n−1}
of integers modulo n with the following property:

Zk−1
n =

⋃
w∈W

(w −W )k−1,

where for x0 ∈ X ⊆ Zn, x0 − X = {x0 − x | x ∈ X} and the superscripts indicate
Cartesian set products.

In Sections 4 and 5 we obtain more detailed results in the case of δ3(n). For this
it is useful to find circulant graphs of order n with large minimum degree and with
domination number at least 3. This turns out to be related to the existence of what
we call a symmetric, pseudo difference set, that is, a subset T of Zn such that 0 /∈ T ,
T = −T , and Zn = T − T . In Section 4 we prove that if T is a symmetric, pseudo
difference set of minimum size then

√
2
√
n− 1 ≤ |T | ≤ 2

√
n+ 3.

2 Circulant graphs with γ > k

We first review the definition of a circulant graph. Let

Zn = {0, 1, 2, . . . , n− 1}

denote the additive group of integers modulo n. For X, Y ⊆ Zn we define

−X = {−x | x ∈ X} and X ± Y = {x± y | x ∈ X, y ∈ Y }.
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If S ⊆ Zn satisfies the two conditions

0 /∈ S and S = −S (2.1)

the circulant graph with connection set S is the graph C(n, S) with vertex set Zn and
adjacency relation ∼ defined by

i ∼ j ⇐⇒ j − i ∈ S.

See Alspach [1] for general results concerning isomorphism of circulant graphs. For each
S ⊆ {±1,±2, . . . ,±9} Fisher and Spaulding [5] obtained a formula for the domination
number of the circulant graph C(S, n) as a function of n and S, but results and techniques
do not appear to be useful for our purposes.

Note that the closed neighborhood of a vertex i of C(n, S) is given by

N [ i ] = {i} ∪ i+ S = {i} ∪ {i+ j | j ∈ S}.

To illustrate our construction technique we first consider directed circulant graphs. Sup-
pose R ⊆ Zn and 0 6∈ R. Then the circulant digraph with connection set R is the
digraph D(n,R) with vertex set Zn and directed edges (i, j) whenever j − i ∈ R. Let
W = Zn− ({0} ∪R). Notice that i+W is the set of vertices not dominated by vertex i
in the digraph D(n,R). Since both C(n, S) and D(n,R) are vertex transitive, we have
the following result.

Lemma 1 If R ⊆ Zn, 0 6∈ R and W = Zn− ({0}∪R), then γ(D(n,R)) > k if and only
if for all x1, x2, . . . , xk−1 ∈ Zn, there exists w0, w1, . . . , wk−1 ∈W such that w0 = xi+wi,
for 1 ≤ i ≤ k − 1, that is,

Zk−1
n =

⋃
w∈W

(w −W )k−1. (2.2)

If also W = −W , then R = −R and γ(C(n,R)) > k.

Proof. Since D(n,R) is vertex transitive, we have that γ(D(n,R)) > k if and only
if for any x1, x2, . . . , xk−1 ∈ Zn, there is a vertex not dominated by any vertex in
{0, x1, x2, . . . , xk−1}. This is equivalent to

W ∩ (x1 +W ) ∩ . . . ∩ (xk−1 +W ) 6= ∅, for all x1, x2, . . . , xk−1 ∈ Zn,

which is equivalent to (2.2).

The following theorem gives the existence of suitably small sets W satisfying (2.2)
for all fixed k ≥ 2 and all sufficiently large n.
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Theorem 3 If k ≥ 2 and let A = a1a2 · · ·ak−1 where a1, a2, . . . , ak−1 are pairwise
relatively prime integers greater than 1 such that kA < n, there is a subset W of Zn−{0}
which satisfies equation (2.2) and

|W | ≤ kA+
k−1∑
i=1

b(n− 1)/aic

Proof. Write
W0 = {j | 1 ≤ j ≤ kA},

and for i = 1, 2, . . . , k − 1,

Wi = {jai | 1 ≤ j ≤ b(n− 1)/aic}.

Let

W =
k−1⋃
i=0

Wi.

We shall show that W satisfies condition (2.2). Let

x1, x2, . . . , xk−1 ∈ {0, 1, 2, . . . , n− 1}.

Since there are k intervals of the form

Ij = {jA+ 1, jA+ 2, . . . , (j + 1)A},

where 0 ≤ j ≤ k − 1, there is at least one value of j, say `, such that xi 6∈ I`, for
i = 1, · · · , k − 1. For each i, define the indicator

bi =

{
0, xi < `A+ 1,
1, xi > (`+ 1)A.

Consider now the system of linear congruences with variable x:

x ≡ xi − bin (mod ai) 1 ≤ i ≤ k − 1. (2.3)

Let w0 ∈ I` ⊆ W0 be a solution for x. From the Chinese Remainder Theorem, it follows
that there exists a w0 with the required properties. Thus there are integers qi such that

w0 = xi − bin+ qiai, 1 ≤ i ≤ k − 1.

For i = 1, 2, . . . , k − 1, we define wi = qiai. We claim that wi ∈ Wi. There are two
cases. Suppose that xi < `A+ 1. Then

qiai = w0 − xi, and 0 < w0 − xi < n,
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which implies that 1 ≤ qi ≤ b(n− 1)/aic. If xi > (`+ 1)A, then

qiai = w0 − xi + n, and 0 < n− (xj − w0) < n,

which implies again that 1 ≤ qi ≤ b(n− 1)/aic. Therefore,

wi = qiai ∈Wi,

and in Zn,
w0 = xi − bin+ wi = xi + wi.

We have therefore shown that (2.2) holds. Finally,

|W | ≤ |W0|+
k−1∑
i=1

|Wi| = kA+
k−1∑
i=1

b(n− 1)/aic.

We next turn our attention to undirected circulant graphs. We could simply take
T = W ∪−W where W is as in the above theorem. Then S = Zn − {0} − T provides a
connection set for a circulant graph C(n, S) with domination number > k with size at
most twice that of W . However, with additional effort we obtain the following somewhat
better result.

Theorem 4 Let k ≥ 2 and let A = a1a2 · · ·ak−1 where a1, a2, . . . , ak−1 are pairwise
relatively prime integers greater than 1 such that dk/2eA < n/2. Then there is a subset
T of Zn − {0} such that T = −T , (2.2) is satisfied and

|T | ≤ 2

⌈
k

2

⌉
A+ 2

k−1∑
i=1

⌊
n+ 2A

2ai

⌋
. (2.4)

Proof. Define the set
Q0 = {j | 1 ≤ |j| ≤ dk/2eA}.

And for i = 1, 2, . . . , k − 1, define the sets

Qi = {jai, | 1 ≤ |j| ≤ b(n+ 2A)/(2ai)c}.

Note that we consider the sets Qi to be subsets of Zn. Thus to show that an integer
u representing an element of Zn is in Qi we need to show that u ≡ v (mod n) where
v ∈ Qi. Let

T = Q0 ∪Q1 ∪ · · · ∪Qk−1,
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and
x1, x2, . . . , xk−1 ∈ {0, 1, 2, . . . , n− 1}.

We shall show that there are elements t0, t1, · · · , tk−1 ∈ T such that

xi = t0 − ti, i = 1, · · · , k − 1.

For j = 0, 1, . . . , dk/2e − 1, let Ij be the interval

Ij = {jA+ 1, jA+ 2, . . . , (j + 1)A}.

Since the 2dk/2e intervals ±Ij , 0 ≤ j ≤ dk/2e− 1 form a partition of Q0 there exists an
interval that contains none of the x1, x2, . . . , xk−1. Since T = −T , we can assume I`, for
some ` ∈ {0, 1, 2, . . . , dk/2e − 1}, is such an interval. Define the indicator

bi =

{
1, −n < (`+ 1)A− xi ≤ −n/2,
0, otherwise.

Consider the system of linear congruences with variable x:

x ≡ xi − bin (mod ai), 1 ≤ i ≤ k − 1.

By the Chinese Remainder Theorem there is a solution x = t0 in the interval I`. Then
for some integer qi, we have

t0 = xi − bin+ qiai.

Clearly t0 ∈ Q0. We shall next find for each i, ti such that in Zn,

t0 = xi + ti, and ti ∈ Qi.

We consider the following four cases:

(I) n/2 ≤ (`+ 1)A− xi < n. This is not possible since

(`+ 1)A ≤ dk/2eA < n/2.

(II) 0 < (`+ 1)A− xi < n/2. Observe that 0 < t0 − xi < n/2. Let ti = qiai. Then

t0 = xi + ti = xi + qiai,

and
qi = (t0 − xi)/ai ∈ (0, n/(2ai)),

which implies that ti = qiai ∈ Qi.
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(III) −n/2 < (`+ 1)A− xi < 0. In this case we have

t0 ≥ `A+ 1 ≥ (`+ 1)A− A.
Then,

t0 − xi ≥ (`+ 1)A−A− xi > −n/2− A.
Hence we have −(n+ 2A)/2 < t0 − xi < 0. Take ti = qiai. Then since t0 = xi + qiai,

qi = (t0 − xi)/ai ∈ (−(n+ 2A)/(2ai), 0),

which implies that ti ∈ Qi.

(IV) −n < (`+ 1)A− xi ≤ −n/2. Note that bi = 1 in this case. We also have

t0 − xi ≤ (`+ 1)A− xi ≤ −n/2
and t0 ≥ 1, so −n < t0 − xi. Hence

0 < n− (xi − t0) ≤ n/2.

Take ti = −n+ qiai. Then t0 = xi − n+ qiai = xi + ti, and

qi = (n− (xi − t0))/ai ∈ (0, n/(2ai)],

which implies that qiai ∈ Qi. Since ti ≡ qiai (mod n) it follows that ti ∈ Qi. Clearly
(2.4) holds. To complete the proof, we note that

|T | ≤ 2

(
|Q0|+

k−1∑
i=1

|Qi|
)

= 2

⌈
k

2

⌉
A+ 2

k−1∑
i=1

⌊
n+ 2A

2ai

⌋
.

3 Upper and lower bounds for δk+1(n)

We assume throughout that k ≥ 2. From [4], Theorem 2, we may choose the pairwise
relatively prime integers a1, a2, . . . , ak−1 in Theorem 4 so that for any small ε > 0 and
for all sufficiently large n,

(1− ε)n1/k ≤ ai ≤ n1/k, 1 ≤ i ≤ k − 1.

Also, if A = a1a2 · · ·ak−1 then kA ≤ kn(k−1)/k < n for sufficiently large n. Then

|W | ≤ kA+
k−1∑
i=1

b(n− 1)/aic

≤ kn(k−1)/k + (k − 1)
n

(1− ε)n1/k

= (2k − 1)n(k−1)/k +
(k − 1)ε

1− ε n(k−1)/k.
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Note that by [4], it is possible to have ε = Kn−1/k for any increasing function K of n.
Also, From (2.2)

Zk−1
n =

⋃
w∈W

(w −W )k−1,

we have that
nk−1 ≤ |W | × |W |k−1,

from which we have the following lower bound of |W |:

|W | ≥ n(k−1)/k.

This means that the cardinality of set W constructed above is of the correct order.

Now for the non-directed case, as above, from [4], Theorem 2, we may choose the
pairwise relatively prime integers a1, a2, . . . , ak−1 in Theorem 4 so that for any small
ε > 0 and for all sufficiently large n,

(1− ε)n1/k ≤ ai ≤ n1/k, 1 ≤ i ≤ k − 1,

and
dk/2ea1a2 · · ·ak−1 < n/2.

Then from (2.4) we have

|T | ≤ 2dk/2en(k−1)/k + 2(k − 1)
(n+ 2n(k−1)/k)

2(1− ε)n1/k

≤ (k + 1)n(k−1)/k +
(k − 1)(n(k−1)/k + 2n(k−2)/k)

1− ε

=

(
2k +

ε(k − 1)

1− ε

)
n(k−1)/k +

2(k − 1)

1− ε n(k−2)/k.

Thus we have the following theorem.

Theorem 5 For any fixed k ≥ 2, any ε > 0 and all sufficiently large n, the following
statements hold:
(I) There is a circulant digraph H with n vertices, outdegree at least

n− 1− (2k − 1)n(k−1)/k − (k − 1)ε

1− ε n(k−1)/k

and γ(H) > k.
(II) There is a circulant graph G with n vertices, degree at least

n− 1−
(

2k +
ε(k − 1)

1− ε

)
n(k−1)/k − 2(k − 1)

1− ε n(k−2)/k

and γ(G) > k.
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Combining Theorem 2 and statement (II) in Theorem 5, we have the following esti-
mates for δk+1(n).

Theorem 6 For any fixed k ≥ 2 and all sufficiently large n,

n− (2k + 1)n(k−1)/k ≤ δk+1(n) < n− n(k−1)/k.

Note that our lower bound is of the form δk+1(n) ≥ n− ckn(k−1)/k for some constant ck
depending on k. It would be of interest to determine if ck can be replaced by Lkα, for
some numbers L and α < 1. In the next section we give better estimates for δ3(n) by
dealing directly with the requirement that S = −S (or T = −T ).

We next consider the value of γ(n, δk(n)). It is in general not true that γ(n, δk(n)) =
k. For example, in the sequence {γ(13, δ)}, from Table 1, we have δ5(13) = δ6(13) = 2
and γ(13, 2) = 6. However, one might expect that for any fixed k and for sufficiently
large n, γ(n, δk(n)) = k. This is in fact true, as we now show.

Theorem 7 For all fixed k ≥ 3 and all sufficiently large n, γ(n, δk(n)) = k.

Proof. From Theorem 6, we have for all sufficiently large n,

δk(n) ≥ n− (2k + 1)n(k−2)/(k−1).

Recall also that in our proof of Theorem 2, we see that if δ ≥ n−n(k−1)/k then γ(n, δ) ≤ k.
Clearly for all sufficiently large n,

δk(n) ≥ n− (2k + 1)n(k−2)/(k−1) ≥ n− n(k−1)/k,

and thus γ(n, δk(n)) ≤ k. But γ(n, δk(n)) ≥ k by definition of δk(n). The theorem
therefore follows.

In the next section we show that if k = 3 then the above theorem holds for n ≥ 6.
Note that the results in this section are stated for fixed k and sufficiently large n. In fact,
the same results hold if k is a function of n so long as k does not grow too fast with n. For
example, the reader can check that Theorems 5 and 6 remain true if k ≤ lnn/(3 ln lnn).

The above results suggest the question: Given n find the largest value K(n) such
that for k ≥ K(n), γ(n, δk(n)) = k. From [2] γ(n, 4) ≥ bn/3c and γ(n, 3) = b3n/8c. So
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for n sufficiently large K(n) ≤ bn/3c. More generally we propose the following problem:
Given n find the spectrum of values

S(n) = {γ(n, δ) | 0 ≤ δ ≤ n− 1}.

From [2] we know the values of γ(n, δ) for δ = 0, 1, 2, 3. From Theorem 7 we know that
there is a function K(n) such that S(n) contains

{i | 1 ≤ i ≤ K(n)}.

4 Circulant Graphs with γ > 2 and Pseudo Differ-

ence Sets

When k = 2 from Lemma 1 we obtain:

Lemma 2 Let Zn = T ∪S∪{0} be a partition of Zn. Then S = −S and γ(C(n, S)) > 2
if and only if

T = −T and Zn = T − T. (4.1)

Let us say that a subset T of Zn is a symmetric, pseudo difference set if the following
three conditions hold

(i) 0 /∈ T ,

(ii) Zn = T − T , and

(iii) T = −T .

We note that in the presence of condition (iii), condition (ii) is equivalent to Zn =
T + T . Such sets have been studied for general groups and are sometimes called 2-bases
for Zn (see [7]). On the other hand, a k-subset T of Zn is called an (n, k, λ)-difference
set if for each non-zero i ∈ Zn there are exactly λ ordered pairs (u, v) such that i = u−v
(see, for example, [6].) As we will show, one can construct a small symmetric, pseudo
difference set using an (n, k, 1) difference set. In this case, n = q2 +q+1 where q = k−1
and the corresponding block design is a projective plane of order q. The only known
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examples are when q is a prime power. It is a famous open question whether or not
there exist projective planes of non-prime power order. So we do not expect to be able
to use (n, k, 1) difference sets for very many values of n. However, the following lemma
shows that we can do quite well for all n, even when an (n, k, 1) difference set does not
exist.

We are primarily interested in finding a symmetric, pseudo difference set in Zn with
the smallest size. From Lemma 2 this will give circulant graphs with large minimum
degree and domination number greater than 2.

Lemma 3 There exists a symmetric, pseudo difference set T ⊂ Zn, n ≥ 4, such that

|T | ≤ 2

(⌊√
n

2

⌋
+

⌈
n

4b
√
n

2
c

⌉)
≤ 2
√
n+ 3

Proof. Let b be any positive integer satisfying 1 ≤ b ≤ n
2
. Define

T1(b) = {1, 2, · · · , b} ∪ {2ib | i = 1, 2, · · · , dn/(4b)e}.

It is easy to see that

{0, 1, · · · , bn/2c} ⊆ T1(b)± T1(b).

The critical case is when x = (2i + 1)b + r ≤ n/2 where i and r are positive integers
with 0 < r < b. Then x = 2(i+ 1)b− (b− r). Hence

i+ 1 ≤ n

4b
+

1

2
− r

2b
<

n

4b
+

1

2

and i+ 1 ≤ dn/(4b)e. Thus x ∈ T1(b)− T1(b). It follows that the set

T (b) = T1(b) ∪−T1(b)

is a symmetric, pseudo difference set. Clearly,

|T (b)| ≤ 2(b+ dn/(4b)e).

Taking b = b√n/2c we obtain the desired symmetric, pseudo difference set.

In the next lemma we show how to construct symmetric, pseudo difference sets in
Zn of essentially the same size as that in Lemma 3 if there is an (n, k, 1) difference set.
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Lemma 4 If there esists an (n, k, 1) difference set, then there exists a symmetric, pseudo
difference set T satisfying

|T | ≤ 2
√
n− 3/4 + 1.

Proof If D is an (n, k, 1) difference set since k(k − 1) = n− 1 we have

|D| = 1 +
√

4n− 3

2
.

Since D 6= Zn there is an element a ∈ Zn such that a /∈ −D. Then B = a+D is also an
(n, k, 1) difference set and 0 /∈ B. Hence T = B ∪−B is a symmetric, pseudo difference
set and

|T | ≤ 2|D| = 1 +
√

4n− 3.

Lemma 5 If T is a symmetric, pseudo difference set then

|T | ≥
√

2n− 2 ≥
√

2
√
n− 1.

Proof Assume that T does not contain n/2. In this case, T = X ∪ −X where X =
{a1, a2, . . . , as} and |T | = 2s. Then there are just the following seven types of elements
in T − T :

1. ai − aj where i < j,

2. ai − aj where j < i,

3. ai + aj where i < j.

4. −ai − aj where i < j,

5. ai + ai,

6. −ai − ai,

7. 0
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There are at most
(
s
2

)
elements for each of the types (1), (2), (3) and (4). There are at

most s elements for each of the types (5) and (6). Since Zn = T − T , we must have

4

(
s

2

)
+ 2s+ 1 ≥ n.

It follows that s ≥
√

(n− 1)/2. Hence,

|T | = 2s ≥ 2
√

(n− 1)/2 =
√

2n− 2.

If n happens to be even and n/2 ∈ T then

T = X ∪ −X ∪ {n/2}

where as above X has s elements a1, a2, . . . , as. In this case, in addition to elements of
types (1)-(7) above, T − T also contains elements of the form n/2 ± ai. There are at
most 2s elements of this type. So we obtain the inequality

4

(
s

2

)
+ 2s+ 2s+ 1 ≥ n.

which gives

|T | = 2s+ 1 ≥
√

2n− 1.

Since this is larger that the previous bound, we obtain the desired lower bound for |T |.

The following theorem is immediate from Lemmas 3 and 5.

Theorem 8 If T ⊂ Zn, n ≥ 6 is a symmetric, pseudo difference set of smallest size
then

√
2
√
n− 1 ≤ |T | ≤ 2

√
n+ 3.

Since each such T leads to a circulant graph C(n, S), where S = Zn − ({0} ∪ T ),
with γ(C(n, S)) > 2 we have

Corollary 1 For every positive integer n ≥ 6 there is a circulant graph of order n with
domination number at least 3 and minimum degree δ satisfying

n− 2
√
n− 4 ≤ δ ≤ n−

√
2
√
n.
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Theorem 9 For n ≥ 4,

n− 2
√
n− 4 ≤ δ3(n) ≤ n− 3/2−

√
n− 3/4.

Proof. From the definition of gk in Theorem 1 we see that

g2 ≤
(n− δ − 1)(n− δ − 2)

n− 1
. (4.2)

From Theorem 2, γ(n, δ) ≤ 2 if g2 < 1. Let δ = n− x, then the right side (4.2) becomes

(x− 1)(x− 2)

n− 1
< 1, (4.3)

which is equivalent to x < (3 +
√

4n− 3)/2. So if δ > n −
√
n− 3/4 − 3/2 then

γ(n, δ) ≤ 2. This gives the desired upper bound for δ3(n). The lower bound follows
from Corollary 1. .

Using Theorem 9 we are able to establish the following result.

Theorem 10 If n ≥ 6 then γ(n, δ3(n)) = 3.

Proof. From the definition of δ3(n) we only need to show that for each n ≥ 6 there
is some graph Γ of order n with domination number 3. For 6 ≤ n ≤ 16 the result
follows directly Table 1. For 16 ≤ n ≤ 150 it is easy to show by straightforward
computation that the small symmetric, pseudo difference sets T constructed in Lemma
3 yield circulant graphs with domination number 3. For n > 150, from Theorem 9 it
suffices to prove that if δ ≥ n − 2

√
n − 4 then γ(n, δ) ≤ 3. From Theorem 1 we only

need to show for δ ≥ n− 2
√
n− 4 and n > 150 that g3 < 1. Now

g3 ≤
(n− δ − 1)(n− δ − 2)(n− δ − 3)

(n− 1)(n− 2)

≤ (n− δ − 1)3

(n− 2)2

≤ (2
√
n+ 3)3

(n− 2)2
.

It is easy to see that

ϕ(n) =
(2
√
n+ 3)3

(n− 2)2

is a decreasing function for n > 2 so it suffices to calculate

ϕ(150) =
1

39601

(
2
√

150 + 3
)3

≈ .5248680758 < 1.
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5 Exact values of δ3(n) for small n.

In this section we give exact values of δ3(n) for 6 ≤ n ≤ 16 and for n = 19. This
entails showing that γ(15, 9) = 3, γ(16, 10) = 3, and γ(19, 12) = 3. We also show that
γ(16, 9) = 3. This fills in three of the six unknown entries in the table of values of γ(n, δ)
in [2]. The following table gives known values for δ3(n) for 6 ≤ n ≤ 16 and n = 10.
(Note that for n ≤ 5, γ(n, δ) ≤ 2.)

n 6 7 8 9 10 11 12 13 14 15 16 19
δ3(n) 1 2 3 4 4 6 6 7 8 9 10 12

Exact values of δ3(n) for 6 ≤ n ≤ 14 are given in [2]. Since γ(15, 10) = 2 and γ(16, 11) =
2 by [2], to show that δ3(15) = 9 and δ3(16) = 10 it suffices to exhibit a (15, 9)-graph with
domination number 3 and a (16, 10)-graph with domination number 3. The following
is an adjacency list for a (15, 9)-graph with domination number 3. The vertex set is
{0, 1, 2, . . . , 14}. Note that all vertices have degree 9 except for vertex 14 which has
degree 10.

0 1 5 6 7 9 11 12 13 14
1 0 2 6 8 9 10 11 13 14
2 1 3 7 8 9 10 12 13 14
3 2 4 6 7 9 10 11 12 14
4 3 5 6 8 9 10 12 13 14
5 0 4 7 8 9 10 11 13 14
6 0 1 3 4 8 10 12 13 14
7 0 2 3 5 8 10 11 13 14
8 1 2 4 5 6 7 11 12 14
9 0 1 2 3 4 5 11 12 14
10 1 2 3 4 5 6 7 11 13
11 0 1 3 5 7 8 9 10 12
12 0 2 3 4 6 8 9 11 13
13 0 1 2 4 5 6 7 10 12
14 0 1 2 3 4 5 6 7 8 9

There is no (16, 10)-circulant graph with domination number 3. However, we were able
to find a Cayley graph on the semi-dihedral group of order 16 with δ = 10 and γ = 3
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showing that γ(16, 10) = 3 and δ3(16) = 10. Again, if we take the vertex set to be the
integers {0, 1, 2, . . . , 15}, the adjacency list of the graph is:

0 2 3 4 7 8 9 14 13 5 1
1 2 3 4 6 8 9 15 12 5 0
2 3 4 6 7 10 11 15 13 0 1
3 2 6 7 10 11 14 12 5 0 1
4 2 6 7 9 11 12 13 5 0 1
5 3 4 6 7 8 10 12 13 0 1
6 2 3 4 7 8 11 14 15 5 1
7 2 3 4 6 9 10 14 15 5 0
8 6 9 10 11 14 15 13 5 0 1
9 4 7 8 10 11 14 15 12 0 1
10 2 3 7 8 9 11 15 12 13 5
11 2 3 4 6 8 9 10 14 12 13
12 3 4 9 10 11 14 15 13 5 1
13 2 4 8 10 11 14 15 12 5 0
14 3 6 7 8 9 11 15 12 13 0
15 2 6 7 8 9 10 14 12 13 1

We have one additional exact value of δ3(n), namely, δ3(19) = 12: A complete search of
circulant graphs of order n ≤ 50 finds the (19, 12)-graph C(19, S1) where

S1 = {1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18}
such that γ(C(19, S1)) = 3, showing that δ3(19) = 12, since γ∗(19, 12) ≤ 3 and
γ∗(19, 13) = 2.

We also mention here the (16, 9)-graph C(16, S2) where

S2 = {1, 2, 3, 6, 8, 10, 13, 14, 15}
which has domination number 3. This shows that γ(16, 9) = 3, thereby filling another
missing entry in the table of values of γ(n, δ) in [2]

Acknowledgement We wish to thank Gordon Royle for providing Cayley tables for
the 14 groups of order 16 and Cayley graphs of groups of orders up to 31.
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