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Abstract
In this paper, we prove that the dimension of the space spanned by the
characters of the symmetric powers of the standard n-dimensional representa-
tion of S, is asymptotic to n?/2. This is proved by using generating functions
to obtain formulas for upper and lower bounds, both asymptotic to n?/2, for
this dimension. In particular, for n > 7, these characters do not span the full
space of class functions on S,,.

Primary AMS subject classification: 05E10. Secondary: 05A15, 05A16, 05E05.

Notation

Let P(n) denote the number of (unordered) partitions of n into positive integers,
and let ¢ denote the Euler totient function. Let V' be the standard n-dimensional
representation of S,,, so that V' = Ce; @ - - - @ Ce,, with o(e;) = e, for o € S,,. Let
SNV denote the N symmetric power of V', and let yu : S,, — Z denote its character.
Finally, let D(n) denote the dimension of the space of class functions on S, spanned
by all the xn, N > 0.

LSupported by an NSERC PGS-B fellowship
2Partially supported by NSF grant DMS-9500714




THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #R6 2

1 Preliminaries

Our aim in this paper is to investigate the numbers D(n). It is a fundamental prob-
lem of invariant theory to decompose the character of the symmetric powers of an
irreducible representation of a finite group (or more generally a reductive group).
A special case with a nice theory is the reflection representation of a finite Coxeter
group. This is essentially what we are looking at. (The defining representation of S,
consists of the direct sum of the reflection representation and the trivial representa-
tion. This trivial summand has no significant effect on the theory.) In this context
it seems natural to ask: what is the dimension of the space spanned by the sym-
metric powers? Moreover, decomposing the symmetric powers of the character of an
irreducible representation of S, is an example of the operation of inner plethysm |1,
Exer. 7.74], so we are also obtaining some new information related to this operation.
We begin with:

Lemma 1.1. Let A\ = (Ay,..., \x) be a partition of n (which we denote by A+ n),
and suppose o € S, is a A-cycle. Then xn(0) is equal to the number of solutions
(x1,..., k) in nonnegative integers to the equation \yxy + -+ + \gxp = N.

Proof. Suppose without loss of generality that o = (1 2 --- A\)(A +1 -+ A\ +
o) (A 4+ -+ A1+ 1 - n). Consider a basis vector ef' @ - - - ® e2" of SNV,
so that ¢ + -+ ¢, = N with each ¢; > 0. This vector is fixed by o if and only if
€] = -+ = Cy, Cy41 =+ = Cxy1+a, and so on. Since yn (o) equals the number of
basis vectors fixed by o, the lemma follows. O

It seems difficult to work directly with the yx’s; fortunately, it is not too hard to
restate the problem in more concrete terms. Given a partition A = (A,..., Ax) of n,
define

f,\(Q) =

A=) () W

Next, define F,, C C|[g]] to be the complex vector space spanned by all of these
fr(q)’s. We have:

Proposition 1.2. dim F,, = D(n).

Proof. Consider the table of the characters yy; we are interested in the dimension
of the row-span of this table. Since the dimension of the row-span of a matrix is
equal to the dimension of its column-span, we can equally well study the dimension
of the space spanned by the columns of the table. By the preceeding lemma, the
N™ entry of the column corresponding to the A-cycles is equal to the number of
nonnegative integer solutions to the equation \jx; + - - - + A\yzp, = N. Consequently,
one easily verifies that f,(q) is the generating function for the entries of the column
corresponding to the A-cycles. The dimension of the column-span of our table is
therefore equal to dim F;,, and the proposition is proved. O
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2 Upper Bounds on D(n)

Our basic strategy for computing upper bounds for dim F), is to write all of the
generating functions fy(q) as rational functions over a common denominator; then
the dimension of their span is bounded above by 1 plus the degree of their numerators.
For example, one can see without much difficulty that (1—¢)(1—¢?)---(1—¢") is the
least common multiple of the denominators of the f\(¢q)’s. Putting all of the f\(¢)’s
over this common denominator, their numerators then have degree n(n + 1)/2 — n,
which proves

n(n—1)

D(n) < ==

41 2)

By modifying this strategy carefully, it is possible to find a somewhat better bound.
Observe that the denominator of each of our f\’s is (up to sign change) a product
of cyclotomic polynomials. In fact, the power of the j* cyclotomic polynomial ®;(q)
dividing the denominator of fy(q) is precisely equal to the number of \;’s which are
divisible by j. It follows that ®;(¢q) divides the denominator of fy(q) at most HJ
times, and the partitions A for which this upper bound is achieved are precisely the

P(n—j|%|) partitions of n which contain || copies of j. Let S; be the collection
J J J

; n

of f\’s corresponding to these P (n —J |3 partitions. One sees immediately that

the dimension of the space spanned by the functions in S; is just D (n -7 HJ)

n

in fact, the functions in this space are exactly 1/(1 — ¢/) [5] times the functions in
Fusilz )

Now the power of ®;(¢) in the least common multiple of the denominators of all
of the f\(q)’s excluding those in S; is only HJ — 1, so the degree of this common

denominator is only n(n 4+ 1)/2 — ¢(j). Therefore, as in the first paragraph of this
section, the dimension of the space spanned by all of the f\’s except those in S; is
at most n(n —1)/2+ 1 — ¢(j); since the dimension spanned by the functions in S; is

D <n -7 HJ ), we have proved the upper bound

D@)g@Jrl—gb(j)JrD(n—jED.

If it happens that D (n -7 HJ) < ¢(j), then this upper bound is an improvement

on our original upper bound. If we repeat this process, this time simultaneously
excluding the sets S; for all of the j’s which gave us an improved upper bound in the
above argument, we find that we have proved:



THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #R6 4

Proposition 2.1.
D(n) < ”(”2_ D —Zmax (0 6(j) — <n—j H))

Finally, we obtain an upper bound for D(n) which does not depend on other values
of D(+):

Corollary 2.2.  Recursively define U(0) =1 and

o= S (00t (- [2])

Then D(n) < U(n).
Proof. We proceed by induction on n. Equality certainly holds for n = 0. For larger
n, the inductive hypothesis shows that D (n -7 HJ) <U (n -7 HJ) when j > 0,

- )
)

Below is a table of values of D(n) and U(n) for 1 < n < 34, calculated for
1 <n < 23 using Maple and for 24 < n < 34 using a Python program. For contrast,
P(n) and our first estimate ”(” Y 41 are provided for n < 24, but are omitted
(due to space considerations) for n > 25. Note that in the range 1 < n < 34, we
have D(n) = U(n) except for n = 19,20, 25,27,28,31, when U(n) — D(n) = 1, and
n = 32,33, when U(n) — D(n) = 2,3 respectively. What is the behaviour of

mw@“‘gmw (000 = (n=s[5]))

as n — oo?

.| 3

I IO SN (R (e

MnT—l)+1_z":maX <0,¢(j)—U<”_j{

j=1

~.|3

= U(n). O

Example 2.3.  The first dimension where D(n) < P(n) is n = 7, and it is easy
then to show that D(n) < P(n) for all n > 7. The difference P(7) — D(7) = 2 arises

from the following two relations:

4 3 1

I—22(1—2¢F (-2 (-2 (1=-)1-22)
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n 112314 5| 6| 7| 8| 9|10]11]12} 13| 14
D(n) 112135 7111319123 |29|35|45| 51| 62
U(n) 112135 7111319123 |29|35|45| 51| 62
nn—1)/2+1| 1|2 4|7 1116|2229 37|46 |56]67| 79| 92
P(n) 112135 7|11 |15|22|30|42 |56 | 77| 101|135
n 15 16| 17| 18| 19| 20| 21 22 23 24
D(n) 69| 79| 901|106 | 118 | 134 | 146 | 161 | 176 | 195
U(n) 69| 79| 901|106 | 119 | 135|146 | 161 | 176 | 195
n(n—1)/2+ 1106 | 121 | 137 | 154 | 172 | 101 | 211 | 232 | 276 | 300
P(n) 176 | 231 | 297 | 385 | 490 | 627 | 792 | 1002 | 1255 | 1575

n 25| 26| 27| 28] 29| 30| 31| 32| 33| 34

D(n) | 212 | 233 | 255 | 277 | 293 | 315 | 337 | 370 | 395 | 421

U(n) | 213 | 233 | 256 | 278 | 293 | 315 | 338 | 372 | 398 | 421

Table 1: Values of D(n), U(n), n(n —1)/2+ 1, P(n) for small n

and

3 B 2 1

1—-2)(1—-22)(1—2)2 (QA—2%(1—2)3 * (1—a2%)(1 —a3)

The first relation, for example, says that if x is a linear combination of xy’s, then

4-x((2,2)-cycle) = 3 - x(3-cycle) + x((3, 2, 2)-cycle).

Alternately, it tells us that for any N > 0, four times the number of nonnegative
integral solutions to 2z1 + 2x5 4+ 23+ x4 + x5 = N is equal to three times the number
of such solutions to 3x; + 9 + 23 + x4 + x5 = N plus the number of such solutions
to 31’1 +2.l’2+21’3 = N

3 Lower Bounds on D(n)

Let A = (A1,...,A\x) b n. The rational function f)(q) of equation (1) can be written
as
f)\(q) - p>\(17 q, q27 s )7

where p, denotes a power sum symmetric function. (See [1, Ch. 7] for the necessary
background on symmetric functions.) Since the p) for A F n form a basis for the
vector space (say over C) A™ of all homogeneous symmetric functions of degree n [1,
Cor. 7.7.2], it follows that if {uy} -, is any basis for A then

D(n) = dimspanc{uy(1,q,¢% ...) : AFn}.
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In particular, let uy = ey, the elementary symmetric function indexed by A. Define
d(\) = Z (2)

According to [1, Prop. 7.8.3], we have

) B qd(A)

LA -1 —¢?) (1 —gh)

Since power series of different degrees (where the degree of a power series is the expo-
nent of its first nonzero term) are linearly independent, we obtain from Proposition 1.2
the following result.

6)\(17 q, q27 s

Proposition 3.1.  Let E(n) denote the number of distinct integers d(X), where A
ranges over all partitions of n. Then D(n) > E(n).

NoOTE. We could also use the basis s, of Schur functions instead of ey, since by |1,
Cor. 7.21.3] the degree of the power series s)(1,q,q? ...) is d(\'), where X' denotes
the conjugate partition to .

Define G(n) + 1 to be the least positive integer that cannot be written in the
form ), (’\2’), where A F n. Thus all integers 1,2,...,G(n) can be so represented, so
D(n) > E(n) > G(n). We can obtain a relatively tractable lower bound for G(n), as
follows. For a positive integer m, write (uniquely)

()5 ()

where k1 > ko > -+ > k. > 2 and kq, ko, ... are chosen successively as large as

possible so that
kA ko k;
_ _ e >
n=(3)-(5) ()=

for all 1 < i < r. For instance, 26 = (}) + (3) + (}) + (3). Define v(m) = ki +
ko + -+ 4 k.. Suppose that v(m) < n for all m < N. Then if m < N we can write
m = (") 4+ (%) so that k; + -+ +k, < n. Hence if A = (ky,..., k., 1""2k)
(where 1° denotes s parts equal to 1), then A is a partition of n for which ), (’\21) =m.
It follows that if v(m) < n for all m < N then G(n) > N. Hence if we define H(n)
to be the largest integer N for which v(m) < n whenever m < N, then we have

established the string of inequalities
D(n) > E(n) > G(n) > H(n). (4)

Here is a table of values of these numbers for 1 < n < 23. Note that D(n) appears to
be close to E(n+ 1). We don’t have any theoretical explanation of this observation.
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n |1]2[3[4[5] 6] 7] 8] 9J10[11]12]13]14
D) [ 1235|711 13[19]23 (29354551 | 62
Em)|1|2[3|5|7| 9|13|18|21|27|34|39|46]54
Gn)|0|1|1|3|4| 4| 7|13|13|18]25|32(32]32
Hn)|0|1|1|3]4] 4| 7|11|13|18|19]19]25 |32

n | 15|16 |17] 18] 19] 20| 21| 22 23
D(n) | 69 | 79 | 90 | 106 | 118 | 134 | 146 | 161 | 176
E(n) | 61|72 ]83| 92106 | 118 | 130 | 145 | 162
G(n) |40 |49 [ 52| 62| 73| 85| 102|112 | 127
H(n) |40 43|52 | 62| 73| 85| 89| 102|116

Table 2: Values of D(n), E(n), G(n), H(n) for small n

Proposition 3.2. We have
v(m) < v2m + 3m*/* (5)

for all m > 405.

Proof. The proof is by induction on m. It can be checked with a computer that
equation (5) is true for 405 < m < 50000. Now assume that M > 50000 and that (5)
holds for 405 < m < M. Let p = py; be the unique positive integer satisfying

(o)== ("2)

Thus p is just the integer k; of equation (3). Explicitly we have

{1+\/8M+1J
Sl e

By the definition of v(M) we have

um@:pM+qu—<%Q).

It can be checked that the maximum value of v(m) for m < 405 is v(404) = 42. Set
qu = (1 ++/8M +1)/2. Since M — (pé”) < pm < qur, by the induction hypothesis
we have

v(M) < qu + max(42, \/2qn + 3q]1\44).

It is routine to check that when M > 50000 the right hand side is less than v2M +
3MY* and the proof follows. O



THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #R6 8

Proposition 3.3. There exists a constant ¢ > 0 such that
n2
H(n) > ) — cen®/?

foralln > 1.

Proof. From the definition of H(n) and Proposition 3.2 (and the fact that the
right-hand side of equation (5) is increasing), along with the inquality v(m) < 42 =
[v/2-405 + 3 - 405'/4] for m < 404, it follows that

H ([\/Qm—l— 3m1/4]) >m
for m > 404. For n sufficiently large, we can evidently choose m such that n =

[vV2m + 3m!/4], so H(n) > m. Since v/2m + 3m!'/* + 1 > n, an application of the
quadratic formula (again for n sufficiently large) shows

1/4

—3+\/9+4\/§(n—1)
>
el 2\/§ )

from which the result follows without difficulty. O

m

Since we have established both upper bounds (equation (2)) and lower bounds
(equation (4) and Proposition 3.3) for D(n) asymptotic to n?/2, we obtain the fol-
lowing corollary.

Corollary 3.4.  There holds the asymptotic formula D(n) ~ %nQ.
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