Queens on Non-square Tori
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Abstract

We prove that for m < n, the maximum number of nonattacking queens that
can be placed on the n x m rectangular toroidal chessboard is ged(m,n), except in
the case m = 3,n = 6.

The classical n-queens problem is to place n queens on the n x n chessboard such that
no pair is attacking each other. Solutions for this problem exist for all for n # 2,3 [1].
The queens problem on a rectangular board is of little interest; on the n x m board for
m < n, one can obviously place at most m nonattacking queens and for 4 < m < n, one
can just take a solution on the m x m board and extend the board. Moreover, the reader
will easily find solutions on the 3 x 2 and 4 x 3 boards and so these give solutions on the
n X 2 and n x 3 boards for all 3 < n and 4 < n respectively.

In chess on a torus, one identifies the left and right edges and the top and bottom edges
of the board. On the n x n toroidal board, the n-queens problem has solutions when n is
not divisible by 2 or 3 [3], and the problem of placing the maximum number of queens when
n is divisible by 2 or 3 is completely solved in [2]. The traditional n-queens problem and
the toroidal n-queens problem are closely related, both logically and historically (see [4]).
However, unlike the rectangular traditional board, the queens problem on the rectangular
toroidal board is interesting and non-trivial and yet it seems that it has not been studied.

In order to work on the toroidal board we use the ring Z; = Z/(i), which we identify
with {0,...,7 — 1}, and the natural ring epimorphism Z — Z;;x — [z];, where [z]; is
to be interpreted as the remainder of x on division by ¢. We give the squares of the
n x m toroidal board coordinate labels (x,y), © € Z,,,y € Z,, in the obvious way.
The positive (resp. negative) diagonal is the subgroup P = {([x]m, [z].) ; * € Z} (resp.
N = {([x]m,[—x]n) ; = € Z}). Notice that the diagonals are both subgroups of Z,, x Z,
of index ged(m,n). In addition, there is the vertical subgroup V = {(0, [z],) ; =z € Z}
which has index m, and the horizontal subgroup H = {([z],»,0) ; « € Z} which has index
n. Queens at distinct positions (z1,¥1), (z2,y2) are nonattacking if and only if (z1,y;)
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and (x2,y9) belong to distinct cosets of V, H, P and N. In particular, the n x m toroidal
board can support no more than ged(m,n) nonattacking queens.
The aim of this paper is to prove the

Theorem. For m < n, the maximum number of nonattacking queens that can be placed
on the n xm rectangular toroidal chessboard is ged(m,n), except in the case m = 3,n = 6.

Proof. First let d = ged(m,n) and suppose that d # 3. Notice that in order to place d
nonattacking queens on the n xm toroidal board, it suffices to place d nonattacking queens
on the 2d x d toroidal board. Indeed, although the natural injection Zy X Zoy — Z, X 2.y, is
not in general a group homomorphism, it is easy to see that if two queens are nonattacking
in Zgx Zog, their images in Z,, X Z,, are also nonattacking. Thus, without loss of generality,
we may assume that n = 2m. In this case ged(m,n) = m.

If m=1,2,4,5 (mod 6), a solution is easily obtained by placing a queen at each point
in the set A = {(¢,2¢) ; i € Z,,}. Indeed, it is clear that no two distinct elements of A
belong to the same coset of H or V. If elements (i,2i) and (j,2j) belong to the same
coset of P, then i — j = 2¢ — 2j (mod m) and so i = j (mod m) which implies i = j. If
elements (7,2¢) and (j,27) belong to the same coset of N, then one has 3i = 3j (mod m)
which also gives ¢ = 5 when m is not divisible by 3.

Now suppose that m is divisible by 6, say m = 2*.6.1, where [ is odd. Here the situation
is slightly more complicated; a solution is obtained by placing queens at positions (i, f(i)),
forte=0,...,m — 1, where

£li) = {22' e i [a = [a
2i+ 1+ [ilgg ;otherwise.

The case where m = 3 (mod 6) is a good deal more complicated; we consider two subcases.
First if m = 3 (mod 12), say m = 12k + 3, a solution is obtained by placing queens at

positions (i, ¢(7)), for i = 0,...,m — 1, where
(3i [if § < 4k,
P if =4k 41,
24+ m Sif i = 4k + 3,

g(1)=<¢3i—m+4 ;if 4k+2 <17 <10k and 7 is even,
3i—m+2 ifi=10k+2,

3i—m—4 ;if 4k+5 <7 <10k + 3 and 7 is odd,
\3i—m (if 7 > 10k + 4.

On the other hand, if m =9 (mod 12), say m = 12k +9, a solution is obtained by placing
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queens at positions (i, h(i)), for i = 0,...,m — 1, where

p

3 (if 5 < 4k + 2,
2 (if ¢ = 4k + 3,
24+m (if i = 4k + 5,

h(i)=<3i—m+4 ;if4k+4 <i <10k + 6 and ¢ is even,
3i—2m —2 ;if i = 10k + 8,
3i—m—4 ifdk+7 <1 <10k + 7 and 7 is odd,
(3t —m ;if ¢ > 10k + 9.

The verification that the above functions f, g and h have the required properties is tedious
but elementary.

It remains to deal with the case where ged(m, n) = 3. Here the reader will readily find
that there is no solution on the 6 x 3 board, but there are solutions on the 9 x 3 board.
It follows that there are solutions on the n x m board for all m < n with ged(m,n) = 3
except in the case m = 3,n = 6. This completes the proof of the theorem. O
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