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Abstract

Balanced generalized weighing matrices are applied for constructing a family of
symmetric designs with parameters (1 + qr(rm+1 − 1)/(r − 1), rm, rm−1(r − 1)/q),
where m is any positive integer and q and r = (qd − 1)/(q − 1) are prime powers,
and a family of non-embeddable quasi-residual 2−((r+1)(rm+1−1)/(r−1), rm(r+
1)/2, rm(r− 1)/2) designs, where m is any positive integer and r = 2d− 1, 3 · 2d− 1
or 5 · 2d − 1 is a prime power, r ≥ 11.

1 Introduction

A balanced incomplete block design (BIBD) with parameters (v, b, r, k, λ) or a 2-(v, k, λ)
design is a pair D = (V,B), where V is a set (of points) of cardinality v and B is a
collection of b k-subsets of V (blocks) such that each point is contained in exactly r
blocks and each 2-subset of V is contained in exactly λ blocks. If V = {x1, x2, . . . , xv}
and B = {B1, B2, . . . , Bb}, then the v×b matrix, whose (i, j)-entry is equal to 1 if xi ∈ Bj

and is equal to 0 otherwise, is the incidence matrix of the design. A (0, 1) matrix X of size
v× b is the incidence matrix of a (v, b, r, k, λ) BIBD if and only if XXt = (r− λ)Iv + λJv
and JvX = kJv×b, where Iv, Jv, and Jv×b are the identity matrix of order v, the v × v
all-one matrix, and the v × b all-one matrix, respectively.

It is admissible that two distinct blocks of a BIBD consist of the same points. In
particular, repeating s times each block of a (v, b, r, k, λ) BIBD yields its s-fold multiple
whose parameters are (v, sb, sr, k, sλ).

The parameters of a (v, b, r, k, λ) BIBD satisfy equations vr = bk and (v − 1)λ =
r(k − 1). If v = b (or equivalently r = k), the BIBD is called a symmetric (or square)
(v, k, λ)-design. Any two distinct blocks of a symmetric (v, k, λ)-design meet in exactly λ
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points. The most celebrated symmetric design, PG(d, q), is formed by the one-dimensional
and d-dimensional subspaces of the (d + 1)-dimensional vector space over the finite field
GF(q). It has parameters ((qd+1−1)/(q−1), (qd−1)/(q−1), (qd−1−1)/(q−1)). Another
famous symmetric design, a Hadamard 2-design, has parameters (4n− 1, 2n− 1, n − 1),
where 4n is the order of a Hadamard matrix.

Replacing each block of a (v, b, r, k, λ) BIBD by its complement yields the complemen-
tary (v, b, b− r, v − k, b− 2r + λ) BIBD. Another standard construction produces BIBDs
from a symmetric design. If D = (V,B) is a symmetric (v, k, λ)-design and A ∈ B,
then define BA = {B ∩ A : B ∈ B, B 6= A} and BA = {B \ A : B ∈ B, B 6= A}.
Then DA = (A,BA) is a (k, v − 1, k − 1, λ, λ − 1) BIBD called a derived design of
D and DA = (V \ A,BA) is a (v − k, v − 1, k, k − λ, λ) BIBD called a residual de-
sign of D. Any derived design of PG(d, q) is a q-fold multiple of PG(d − 1, q). Any
residual design of PG(d, q) is isomorphic to the design AG(d, q) which formed by the
points and hyperplanes of the d-dimensional vector space over GF(q). Its parameters are
(qd, q(qd − 1)/(q − 1), (qd − 1)/(q − 1), qd−1, (qd−1 − 1)/(q − 1)).

The parameters (v, b, r, k, λ) of a residual design satisfy the equation r = k + λ. Any
(v, b, r, k, λ) BIBD with r = k + λ (or equivalently b = v + r − 1) is called quasi-residual.
Any (v, b, r, k, λ) BIBD with k = λ+ 1 (or equivalently v = r+ 1) is called quasi-derived.
The complement of a quasi-residual design is quasi-derived and vice versa. If a quasi-
residual (quasi-derived) design is not a residual (derived) design of a symmetric design,
it is called non-embeddable.

For further references on BIBDs see [1].
The goal of this paper is to construct parametrically new symmetric designs and non-

embeddable quasi-residual designs. The main tool in both constructions are balanced
generalized weighing matrices.

A balanced generalized weighing matrix BGW(w, l, µ) over a multiplicatively written
finite group G is a matrix W = [ωij] of order w with entries from the set G ∪ {0}
such that (i) each row of W contains exactly l nonzero entries and (ii) for any distinct
i, h ∈ {1, 2, . . . , w}, the multiset

{ω−1
hj ωij : 1 ≤ j ≤ w, ωij 6= 0, ωhj 6= 0} (1)

contains exactly µ/|G| copies of every element of G. If M is a set of v × b incidence
matrices of (v, b, r, k, λ) BIBDs and G is a group of bijections M → M, then, for any
X ∈ M, W ⊗ X is the (wv) × (wb) block-matrix obtained by replacing every nonzero
entry ωij of W by the matrix ωijX and every zero entry of W by the v × b zero matrix.
In Theorem 2.4, we give a sufficient condition for the matrix W ⊗X to be the incidence
matrix of a (vw, bw, rl, kl, λl) BIBD. (This condition was originally proved in the author’s
paper [4].) In the papers [5, 6, 7], the author applied this technique to a square matrix
X to obtain a large symmetric design from a smaller one. In the current paper, we will
use balanced generalized weighing matrices to obtain a large quasi-residual design from a
smaller one.

In Section 4 we apply this technique to non-embeddable quasi-residual designs with
parameters (r+ 1, 2r, r, (r+ 1)/2, (r− 1)/2), where r ≥ 11 is of the form 2d− 1, 3 · 2d− 1
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or 5 · 2d − 1 (these designs were recently found by Mackenzie-Fleming [10, 11]), and, if r
is a prime power, we obtain (Theorem 4.5) for any positive integer m a non-embeddable
quasi-residual design with parameters ((r+1)(rm−1)/(r−1), 2r(rm−1)/(r−1), rm, (r+
1)rm−1/2, (r − 1)rm−1/2).

A balanced generalized weighing matrix without zero entries, i.e., a matrix BGW
(w,w,w) over a group G is called a generalized Hadamard matrix over G. If |G| = g,
then the matrix BGW(w,w,w) is denoted by GH(g, s), where s = w/g, so the multiset
(1) contains exactly s copies of each element of G. If G = {±1}, then matrices GH(2, s)
over G are precisely Hadamard matrices of order 2s.

In the paper [12], Rajkundlia showed how generalized Hadamard matrices can be used
to obtain a large quasi-derived design from a smaller one. In Section 5, we combine ours
and Rajkundlia’s methods and, starting with a symmetric (v, r, λ)-design with r a prime
power, construct a quasi-residual design with parameters ((v − r)(rm − 1)/(r − 1), (v −
1)(rm − 1)/(r − 1), rm, (r − λ)rm−1, λrm−1) and a quasi-derived design with parameters
((rm, (v − 1)(rm − 1)/(r − 1), rm − 1, λrm−1, λrm−1 − 1). Though the parameters of both
designs are those of a residual and a derived design of a symmetric (1 + (v − 1)(rm −
1)/(r − 1), rm, λrm−1)-design, these constructions do not imply that such a symmetric
design exists. In Theorem 5.1, we give a sufficient condition for this symmetric design to
exist. We then demonstrate (Theorems 5.3, 5.8, and 6.4) several possible realizations of
this condition.

The first realization (Corollary 5.4) yields a new family of symmetric designs with
parameters (1 + qr(rm+1− 1)/(r− 1), rm, rm−1(r− 1)/q), where m is any positive integer
and q and r = (qd−1)/(q−1) are prime powers. If m = 2, this is precisely the Rajkundlia–
Mitchell family (Family 10 in [3]). Designs with q = 8 and m = 3 were obtained by the
author in [4] by a different method.

The second realization yields the Wilson–Brouwer family of symmetric designs (Family
11 in [3]).

The third realization (Theorem 5.8 and Remark 5.9) yields a family of symmetric
designs that the author constructed in [4].

Theorem 6.4 shows that certain residual designs, which admit a cyclic automorphism
group on the point-set, would also lead to infinite families of symmetric designs though
we were not able to obtain new symmetric designs on this way.

Throughout the paper, I, J , and O denote identity, all-one, and zero matrices of
suitable orders.

For any matrix M and any positive integer m, m×M will denote the matrix obtained
by repeating m times consecutively each row of M .

We will use angular brackets 〈, 〉 for the inner product of rows of matrices.

2 Balanced generalized weighing matrices

Definition 2.1 A balanced generalized weighing matrix BGW(w, l, µ) over a (multiplica-
tively written) group G is a matrix W = [ωij ] of order w with entries from the set G∪{0}
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such that (i) each row of W contains exactly l non-zero entries and (ii) for any distinct
i, h ∈ {1, 2, . . . , w}, the multiset

{ω−1
hj ωij : 1 ≤ j ≤ w, ωij 6= 0, ωhj 6= 0}

contains exactly µ/|G| copies of every element of G. A balanced generalized weighing
matrix BGW(w,w,w) over G is called a generalized Hadamard matrix over G and is
denoted by GH(g, s), where g = |G| and s = w/|G|.

Remark 2.2 Replacing by 1 every nonzero entry of a BGW(w, l, µ) yields the incidence
matrix of a symmetric (w, l, µ)-design. This implies that every column of a BGW(w, l, µ)
has exactly l nonzero entries.

Remark 2.3 Any matrix obtained from a balanced generalized weighing matrix BGW
(w, l, µ) over G by a permutation of rows or a permutation of columns or by multiplying
all entries in a row or a column by the same element of G is a balanced generalized
weighing matrix over G with the same parameters. In particular, one can make all (i, 1)
and (1, i) entries with w − l + 1 ≤ i ≤ w equal to the identity element of group G. Such
a BGW matrix is called normalized.

If M is a set of v × b matrices, G is a group of bijections M → M, and W is a
BGW(w, l, µ) over G, then, for any X ∈ M, W ⊗X will denote the (wv)× (wb) matrix
obtained by replacing every nonzero entry ωij in W by the matrix ωijX ∈ M and every
zero entry in W by the v × b zero matrix.

In this paper we will use balance generalized weighing matrices

BGW

(
qm+1 − 1

q − 1
, qm, qm − qm−1

)
over Zs, (2)

where q is a prime power, s is a divisor of q− 1, m is a positive integer, and Zs is a cyclic
group of order s. Different constructions of these matrices can be found in [4, 8, 9]. We
will also use in the sequel generalized Hadamard matrices GH(q, qm−1) over EA(q), where
q is a prime power, m is a positive integer, and EA(q) is an elementary abelian group of
order q. A construction of these matrices can be found in [1, Corollary VIII.3.12].

The construction of quasi-residual designs in the current paper will be based on the
following theorem.

Theorem 2.4 Let M be a set of v by b incidence matrices of (v, b, r, k, λ) BIBDs. Let
G be a finite group of bijections M→M satisfying conditions (i) (σX)(σZ)t = XZt for

all X,Z ∈ M and all σ ∈ G and (ii)
∑

σ∈G σX = k|G|
v
J for all X ∈ M. Let W be a

balanced generalized weighing matrix BGW(w, l, µ) over G with krµ = vλl. Then, for any
X ∈ M, W ⊗X is the incidence matrix of a BIBD with parameters (vw, bw, rl, kl, λl).
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Proof. Let X ∈ M. Since every column of W = [ωij ] has exactly l nonzero entries,
the column sum of W ⊗X is equal to kl. For i, h = 1, 2, . . . , w, let

Pih =
w∑
j=1

(ωijX)(ωhjX)t.

It suffices to show that

Pih =

{
(rl − λl)I + λlJ if i = h,

λlJ if i 6= h.
(3)

Since each row of W has exactly l nonzero entries, we have, for some σj ∈ G,

Pii =
l∑

j=1

(σjX)(σjX)t = lXX t = (rl − λl)I + λlJ.

If i 6= h, then, for some σj, τj ∈ G,

Pih =

µ∑
j=1

(σjX)(τjX)t =

µ∑
j=1

(τ−1
j σjX)X t =

µ

|G|
∑
σ∈G

(σX)X t =
kµ

v
JX t =

krµ

v
J = λlJ.

2

Remark 2.5 Under the conditions of Theorem 2.4, if X is the incidence matrix of a
quasi-residual design, then so is W ⊗X.

Remark 2.6 If the (v, b, r, k, λ) designs in Theorem 2.4 are quasi-residual and W is a
matrix (2), then the equality krµ = vλl required by Theorem 2.4 is equivalent to r = q.

The construction of quasi-derived designs in the current paper will be based on the
following theorem by Rajkundlia [12].

Theorem 2.7 Let Y be the incidence matrix of a (v, b, r, k, λ) BIBD with v > 1 and k > 1
and let G be a sharply transitive group of permutations of rows of Y . For each positive
integer m, let Hm be a generalized Hadamard matrix GH(v, vm−1) over G. Put Y0 = Y
and define inductively for m ≥ 1 block-matrices Ym = [Hm ⊗ Y v × Ym−1]. Then Ym is
the incidence matrix of a (vm+1, bm, rm, v

mk, λm) BIBD with bm = b(vm+1 − 1)/(v − 1),
rm = λ(vm+1 − 1)/(k − 1), and λm = λ(vmk − 1)/(k − 1).

Proof. The statement is true for m = 0, so let m ≥ 1 and let Ym−1 be the incidence
matrix of a (vm, bm−1, rm−1, v

m−1k, λm−1) BIBD. Then the column sum of Ym is vmk and
the row sum is vm+1r + rm−1 = rm. We will split the rows of Ym into vm groups of v
consecutive rows each and denote by yij the jth row of the ith group. Then

〈yij, yhl〉 =

{
vmλ+ rm−1 if i = h and j 6= l,

vm−1r + (vm − vm−1)λ+ λm−1 if i 6= h.

Since vmλ+ rm−1 = vm−1r + (vm − vm−1)λ+ λm−1 = λm, the proof is now complete. 2
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Remark 2.8 Any group of order v can be regarded as a sharply transitive group of per-
mutations of rows of a v × b matrix if the rows of the matrix are indexed by the elements
of the group and the action of the group is given by σ(τ th row) = (στ)th row.

Remark 2.9 If Y is the incidence matrix of a quasi-derived design, then so is each Ym.

Remark 2.10 The proof of Theorem 2.7 shows that each row of Ym can be represented
as [y1 y2 . . . ys], where each yj is a row of Y and s = (vm+1 − 1)/(v − 1).

Remark 2.11 It will not be important in the sequel how derived designs Ym are con-
structed as far as they satisfy the property stated in Remark 2.10. It is possible to construct
such designs in the case of r a prime power by a method proposed by S.S. Shrikhande and
Raghavarao in the paper [13]

3 Resolvability in 2-designs

Definition 3.1 Let D = (V,B) be a 2 − (v, k, λ) design. A non-empty subset C of B is
called a resolution class if there exists an integer α(C) such that every point x ∈ V is
contained in exactly α(C) blocks from C.

Counting in two ways yields

Lemma 3.2 If C is a resolution class of a 2− (v, k, λ) design, then vα(C) = k|C|.

Definition 3.3 Let D = (V,B) be a 2− (v, k, λ) design. A partition of B into resolution
classes is called a resolution of the design D. If D admits a resolution R such that α(C)
has the same value α for all C ∈ R, the design D is called α-resolvable. If the cardinality
of the intersection of any two distinct blocks in an α-resolvable design depends only on
whether or not the blocks belong to the same resolution class, the design is called affine α-
resolvable; α-resolvable and affine α-resolvable designs with α = 1 are called resolvable and
affine resolvable, respectively. Resolution classes of resolvable designs are called parallel
classes.

Remark 3.4 All known affine resolvable designs are residual designs of either a PG(d, q)
or a Hadamard 2-design.

Remark 3.5 The designs constructed in Theorem 2.7 are r-resolvable.

The following two propositions explain our interest in resolvability.

Proposition 3.6 Let X be the incidence matrix of a 2−(v, k, λ) design D and let G be a
group of permutations on the set of columns of X. For each σ ∈ G, let σX be the matrix
obtained by applying σ to the set of columns of X. If∑

σ∈G
σX =

k|G|
v

J, (4)

then the set of blocks of D corresponding to the columns of a G-orbit is a resolution class.
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Proof. Let a set C of columns of X be a G-orbit and let H = {σ ∈ G : σ(C) = C}.
Let x be a point of the design D and let α be the number of blocks which contain x and
correspond to columns from C. Then (4) implies that α|G|/|H| = k|G|/v, so α = k|H|/v
is the same for all points x. 2

Proposition 3.7 Let X be the incidence matrix of a 2−(v, k, λ) design D which admits a
resolution R = {C1, C2, . . . , Cs}. There exists a cyclic group G of permutations of columns
of X such that the order of G is the least common multiple of |C1|, |C2|, . . . , |Cs| and (4)
is satisfied.

Proof. For i = 1, 2, . . . , s, let Ci be the set of columns of X corresponding to blocks
from Ci and let σi cyclically permute Ci. Let G be the group generated by σ1σ2 . . . σs.
Since α(Ci)|G|/|Ci| = k|G|/v, (4) is satisfied. 2

4 Quasi-residual designs

In order to apply Theorem 2.4 to constructing quasi-residual designs one has to deal
with two obstacles. Firstly, balanced generalized weighing matrices are relatively rare.
Most BGW matrices, which are not generalized Hadamard matrices, are given by (2). If
these matrices are applied to quasi-residual (v, b, r, k, λ) BIBDs in Theorem 2.4, then the
equality krµ = vλl required by the theorem is equivalent to q = r. Secondly, we have
to find a cyclic group G satisfying conditions (i) and (ii) of Theorem 2.4. The condition
(i) is always satisfied if G is a group of permutations of columns of the given matrices.
In this case, we can start with the incidence matrix X of a (v, b, r, k, λ) BIBD and define
M = {σX : σ ∈ G}. Then, as Propositions 3.6 and 3.7 show, condition (ii) of Theorem
2.4 is satisfied if and only if the design with the incidence matrix X admits a resolution
with the cardinality of each resolution class dividing r − 1.

These considerations lead to the following

Theorem 4.1 Let r be a prime power. Suppose there exists a quasi-residual (v, b, r, k, λ)
BIBD which admits a resolution with the cardinality of each resolution class dividing r−1.
Then, for any positive integer m, there exists a quasi-residual design with parameters(

v(rm − 1)

r − 1
,
b(rm − 1)

r − 1
, rm, krm−1, λrm−1

)
.

Proof. Let X be the incidence matrix of a quasi-residual (v, b, r, k, λ) BIBD which
admits a resolution with the cardinality of each resolution class dividing r − 1. Consider
the same group G as in Proposition 3.7 and define M = {σX : σ ∈ G}. For m ≥ 2, let
W be a BGW(w, l, µ) over G with w = (rm− 1)/(r− 1), l = rm−1, and µ = rm−1− rm−2.
Then, by Theorem 2.4, W ⊗ X is the incidence matrix of a BIBD with the required
parameters. 2

Affine resolvable designs AG(d, q) satisfy the conditions of Theorem 4.1 whenever
r = (qd − 1)/(q − 1) is a prime power. Thus we obtain
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Corollary 4.2 If q and r = (qd − 1)/(q − 1) are prime powers, then, for any positive
integer m, there exists a quasi-residual design with parameters(

qd(rm − 1)

r − 1
,
qr(rm − 1)

r − 1
, rm, qd−1rm−1,

(qd−1 − 1)rm−1

q − 1

)
. (5)

The group G in Theorem 2.4 does not have to be a group of permutations of columns
of a matrix X. A different group will work for quasi-residual designs with parameters(

r + 1, 2r, r,
r + 1

2
,
r − 1

2

)
. (6)

Observe that the complement of such a design is a quasi-residual design with the
same parameters. If X is the incidence matrix of a design with parameters (6), then
(J − X)(J − X)t = X(J − X)t = (J − X)Xt = XX t. Therefore, if M = {X, J − X}
and σ is the transposition of X and J −X, then the group G of order 2 generated by σ
satisfies conditions (i) and (ii) of Theorem 2.4. Thus we obtain

Theorem 4.3 If there exists a BIBD with parameters (6), where r is an odd prime power,
then, for any positive integer m, there exists a quasi-residual design with parameters(

(r + 1)(rm − 1)

r − 1
,
2r(rm − 1)

r − 1
, rm,

(r + 1)rm−1

2
,
(r − 1)rm−1

2

)
. (7)

We shall show that some of the designs (7) are non-embeddable. We start with the
following sufficient condition for non-embeddability.

Proposition 4.4 If a quasi-residual (v, b, r, k, λ) BIBD has three distinct blocks, B1, B2,
and B3, such that

|B1 ∩B2|+ |B1 ∩B3|+ |B2 ∩B3| > r, (8)

then the design is non-embeddable.

Proof. Suppose that a quasi-residual (v, b, r, k, λ) BIBD has distinct blocks B1, B2,
and B3 satisfying (8). Suppose that this design is embeddable in a symmetric (v+r, r, λ)-
design D. For i = 1, 2, 3, let Ai be the block of D that contains Bi and let Ci = Ai \ Bi.
Then, for i 6= j, |Ci ∩ Cj| = λ− |Bi ∩Bj|. Therefore,

r ≥ |C1 ∪ C2 ∪ C3| ≥ |C1|+ |C2|+ |C3| − (|C1 ∩ C2|+ |C1 ∩ C3|+ |C2 ∩ C3|)

= 3(r−k)−3λ+(|B1∩B2|+ |B1∩B3|+ |B2∩B3|) = |B1∩B2|+ |B1∩B3|+ |B2∩B3| > r,

a contradiction. 2

Let X be the incidence matrix of a quasi-residual design (6) with r an odd prime power.
Suppose further that this design has three distinct blocks, B1, B2, and B3, satisfying (8),
and let these blocks correspond to the first three columns of X. Suppose that, for m ≥ 2,
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W is a normalized BGW((rm− 1)/(r− 1), rm−1, rm−1 − rm−2) matrix (Remark 2.3) such
that W ⊗X is the incidence matrix of the design (7) that is obtained in Theorem 4.3. Let
B′1, B′2, and B′3 be the blocks of this design corresponding to the first three columns of
W ⊗X. Then, for i, j = 1, 2, 3, |B′i ∩B′j| = rm−1|Bi ∩Bj|. Therefore, the blocks B′1, B′2,
and B′3 satisfy (8), and the design with the incidence matrix W ⊗X is non-embeddable.

In the recent papers [10, 11] Mackenzie-Fleming showed that for every positive integer
d there exist designs (6) with r = 2d− 1 ≥ 15, r = 3 · 2d− 1 ≥ 11, and r = 5 · 2d− 1 ≥ 19
having three distinct blocks satisfying (8). Therefore,

Theorem 4.5 Let m and d be positive integers and let r = 2d − 1 or r = 3 · 2d − 1 or
r = 5 · 2d − 1. If r is a prime power and r ≥ 11, then there exists a non-embeddable
quasi-residual design with parameters (7).

5 Three families of symmetric designs

Let X be the incidence matrix of a quasi-residual (v−r, v−1, r, r−λ, λ) BIBD and Y the
incidence matrix of a quasi-derived (r, v−1, r−1, λ, λ−1) BIBD. If r is a prime power, then,
for any positive integer m, there exist matrices BGW((rm+1 − 1)/(r − 1), rm, rm − rm−1)
and GH(r, rm−1). Suppose that the conditions of Theorem 2.4 are satisfied. Then we can
obtain a quasi-residual design with parameters(

(v − r)(rm+1 − 1)

r − 1
,
(v − 1)(rm+1 − 1)

r − 1
, rm+1, (r − λ)rm, λrm

)
. (9)

Theorem 2.7 yields a quasi-derived design with parameters(
rm+1,

(v − 1)(rm+1 − 1)

r − 1
, rm+1 − 1, λrm, λrm − 1

)
. (10)

These designs could be a residual design and a derived design of a symmetric design
with parameters (

1 +
(v − 1)(rm+1 − 1)

r − 1
, rm+1, λrm

)
(11)

if such a symmetric design exists. Of course, existence of designs (9) and (10) does not
automatically imply existence of a symmetric design (11). The next theorem gives a
sufficient condition for combining designs (9) and (10) into a symmetric design.

Theorem 5.1 Let X and Y be incidence matrices of a (v−r, v−1, r, r−λ, λ) BIBD and
a (r, v − 1, r − 1, λ, λ− 1) BIBD, respectively. Suppose there exists a set M of matrices
containing X, a finite group G of bijectionsM→M, and, for every positive integer m, a
BGW((rm+1− 1)/(r− 1), rm, rm− rm−1) over G, which satisfy the conditions of Theorem
2.4. Suppose further that, for every positive integer m, there exists a GH(r, rm−1) over a
group of order r. If (σX)Y t = λJ for all σ ∈ G, then there exists a symmetric design
with parameters (11).
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Proof. LetM be a set of incidence matrices of (v−r, v−1, r, r−λ, λ) BIBDs, containing
X, G a group of bijections M→M, and W a BGW((rm+1 − 1)/(r − 1), rm, rm − rm−1)
over G which satisfy Theorem 2.4. Then W ⊗X is the incidence matrix of a BIBD with
parameters (9). Let H be a GH(r, rm−1) over a group of order r whose elements index the
rows of Y . Then, in the notation of Theorem 2.7, Ym is a BIBD with parameters (10).
Let matrix S be defined by

S =

[
W ⊗X 0
Ym 1

]
, (12)

where 0 and 1 are the all-zero and the all-one column, respectively. We claim that S is the
incidence matrix of a symmetric design (11). It suffices to show that (W ⊗X)Y t

m = λrmJ .
Each row x of W ⊗ X can be represented as x = [x1 x2 . . . xs], where s = (rm+1 −

1)/(r − 1) and, for rm values of j, xj is a row of σX for some σ ∈ G, while for the
remaining values of j, xj is the row of v − 1 zeros. We will represent a row y of Ym as
y = [y1 y2 . . . ys] where each yj is a row of Y (Remark 2.10). Since (σX)Y t = λJ for all
σ ∈ G, we obtain that 〈x, y〉 = λrm. 2

Remark 5.2 Applying the equality (σX)Y t = λJ required by Theorem 5.1 to the identity
element of group G yields XY t = λJ, which means that X and Y are the incidence
matrices of a residual design and the corresponding derived design of a symmetric (v, r, λ)-
design.

The following theorem presents two cases when the conditions of Theorem 5.1 are
satisfied.

Theorem 5.3 Let r be a prime power and D a symmetric (v, r, λ)-design. If D is (i) a
PG(d, q) or (ii) a Hadamard 2-design, then, for any nonnegative integer m, there exists
a symmetric design with parameters (11).

Proof. Since r is a prime power, then, for any positive integer m, there exists a
BGW(rm+1 − 1)/(r − 1), rm, rm − rm−1) over any cyclic group G with |G| dividing r − 1
and there exists a GH(r, rm−1) over an elementary abelian group of order r.

Let M be the incidence matrix of D. Remove a column from M and split the obtained
matrix into two matrices, X and Y , corresponding to a residual design and a derived design
of D.

(i) Suppose D is a PG(d, q). Then the residual design is AG(d, q) and the derived
design is a q-fold multiple of PG(d−1, q). The columns of X are partitioned into r classes
corresponding to parallel classes of AG(d, q). The ith column of X and the jth column of
X are in the same class if and only if the ith column of Y and the jth column of Y are
equal to each other. Therefore, if ρ is a permutation of columns of X which permutes the
columns of each parallel class without changing the classes, then (ρX)Y t = XY t = λJ
with λ = (qd−1 − 1)/(q − 1). Thus, if we assume that ρ cyclically permutes the columns
of each class and denote by G the cyclic group of order q generated by ρ, then G and
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M = {σX : σ ∈ G} satisfy the conditions of Theorem 5.1 which yields a symmetric design
with parameters (11).

(ii) Suppose D is a symmetric (2r + 1, r, (r − 1)/2)-design (this is a Hadamard 2-
design and it exists for any odd prime power r). Then X is the incidence matrix of a
(r + 1, 2r, r, (r + 1)/2, (r − 1)/2) BIBD, Y is the incidence matrix of a (r, 2r, r − 1, (r −
1)/2, (r−3)/2) BIBD, and XY t = r−1

2
J . Therefore, (J−X)Y t = (r−1)J−XY t = r−1

2
J .

LetM = {X, J −X} and let G be the group of order 2 generated by the transposition τ
acting on M. Then again Theorem 5.1 yields a symmetric design with parameters (11).
2

For case (i), we obtain

Corollary 5.4 Let q and r = (qd−1)/(q−1) be prime powers. Then, for any nonnegative
integer m, there exists a symmetric design with parameters(

1 +
qr(rm+1 − 1)

r − 1
, rm+1,

rm(r − 1)

q

)
. (13)

Remark 5.5 For d = 2 and m ≥ 1, the parameters (13) are precisely the parameters
of the Rajkundlia–Mitchell family (Family 10 in the CRC Handbook [3]). For q = 2 and
m ≥ 1, the designs (13) are contained in the Wilson–Brouwer family (Family 11 in [3]).
The family with q = 8, d = 3, and m ≥ 1 had been obtained by the author in [4] by a
different method. With these exceptions, the parameters (13) for m ≥ 1 were previously
undecided.

Remark 5.6 The designs of case (ii) are precisely the designs of the Wilson–Brouwer
family of symmetric designs (Family 11 in [3]) constructed by Brouwer in [2].

The smallest previously unknown design in family (13) is a symmetric (547, 169, 52)-
design corresponding to q = 3, d = 3, r = 13, and m = 1. The incidence matrix of this
design is the matrix (12), where W = [ωij ] is a BGW(14, 13, 12) over Z3, X is the incidence
matrix of the design AG(3, 3) whose blocks are so ordered that the blocks of each parallel
class correspond to consecutive columns of X, Ym = Y1 = [GH(13, 1) ⊗ Y 13 × Y ],
and Y is the incidence matrix of the 3-fold multiple of PG(2, 3) whose blocks are so
ordered that equal blocks correspond to consecutive columns of Y . Let D = (V,B) be
the complementary (547, 378, 261)-design and let A be the block of D corresponding to
the last column of the incidence matrix J − S. Then B \ {A} is partitioned into classes
C1, C2, . . . , C14 of cardinality 39 so that each point a ∈ V \A is contained in 27 blocks of
each class Ci, i.e., the design DA is 27-resolvable. Each class Ci is in turn partitioned into
subclasses Ci1, Ci2, . . . , Ci,13 of cardinality 3 so that, for each a ∈ V ,

|{B ∈ Cij : a ∈ B}| =


0 or 3 if a 6∈ A,
3 if a ∈ A and ωij = 0,

2 if a ∈ A and ωij 6= 0.

(14)
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The following theorem shows that a symmetric design that admits an α-resolvable
residual design and satisfies a condition similar to (14) and certain restrictions of arith-
metical nature, starts an infinite family of symmetric designs.

Theorem 5.7 Let D = (V,B) be a symmetric (v, r, λ)-design and let A ∈ B. Suppose
that the residual design DA is α-resolvable with resolution classes C1, C2, . . . , Cs. Suppose
further that each Ci admits a partition {Ci1, Ci2, . . . , Cit} into classes of the same cardinality
q so that, for each a ∈ V , for i = 1, 2, . . . , s, and for j = 1, 2, . . . , t,

|{B ∈ B : B \A ∈ Cij , a ∈ B}| =
{

0 or q if a 6∈ A,
ni(a) if a ∈ A,

where ni(a) is an integer depending on i and a but not on j. If r is a prime power and
t divides r − 1, then, for any positive integer m, there exists a symmetric design with
parameters (11).

Proof. We assume that the blocks of D are so ordered that if B1 precedes B2, B1 \A ∈
Cij , B2 \A ∈ Ckl, then either i < k or i = k and j < l.

Let X and Y be the incidence matrices of the designs DA and DA, respectively. Let
1, 2, . . . , v − 1 be the indices of consecutive columns of X and let σ be a permutation
on the set of columns of X such that, for l = 1, 2, . . . , v − 1, σ(l) ≡ l + q (mod qt)
and l and σ(l) correspond to blocks from the same resolution class. In other words, σ
permutes cyclically subclasses Ci1, Ci2, . . . , Cit, for each i, without changing the order of
blocks within each subclass Cij . Let G be the cyclic group generated by σ. Then |G| = t.
We claim that (σmX)Y t = XY t for m = 0, 1, . . . , t− 1.

We will represent any row x of length v − 1 as x = [x1 x2 . . . xs], where each xi is a
row of length (v − 1)/s, and then represent each xi as xi = [xi1 xi2 . . . xit], where each
xij is a row of length q.

Let x and y be a row of X and a row of Y , respectively. Let a ∈ A be the point of D
corresponding to y, and let x′ be the row of σmX corresponding to x. We have to show
that 〈x, y〉 = 〈x′, y〉.

Each xij as well as each x′ij is the all-one or the all-zero row of length q. Since the row
sum of both xi and x′i is equal to α, the number of all-one rows xij for a fixed i as well as
the number of the all-one rows x′ij is equal to α/q. Since the row sum of each yij is equal
to ni(a)/t, we obtain that

〈xi, yi〉 =
t∑

j=1

〈xij, yij〉 =
αni(a)

qt

and

〈x′i, yi〉 =
t∑

j=1

〈x′ij , yij〉 =
αni(a)

qt
.
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This proves that (σmX)Y t = XY t. We also have

t∑
m=1

σmX =
α

q
J.

Since DA is α-resolvable, we have α = r/s, which implies α/q = (r − λ)t/(v − r). Since
r is a prime power and t divides r − 1, there exists, for any m, a BGW((rm+1 − 1)/(r −
1), rm, rm − rm−1) over G. Thus all the conditions of Theorem 5.1 are satisfied and we
obtain a family of symmetric designs with parameters (11). 2

Let D be the complement of the symmetric design obtained in Corollary 5.4. Then D
is a symmetric (v, k, λ)-design with v = 1+qr(rm+1−1)/(r−1), k = qd(rm+1−1)/(r−1),
and λ = qr(qd−1rm − 1)/(r − 1), where q and r = (qd − 1)/(q − 1) are prime powers. If
A is the block corresponding to the last column of the incidence matrix J − S, where S
is the matrix (12), then the residual design DA is qd-resolvable. If each resolution class
is divided into t = r subclasses, each formed by q blocks corresponding to consecutive
columns of the incidence matrix, then all the structural conditions of Theorem 5.7 are
satisfied. Since k ≡ qd (mod t), t divides k − 1. Therefore, we obtain

Theorem 5.8 Let d and e be positive integers. If q, p = (qd − 1)/(q − 1), and r =
qd(pe+1 − 1)/(p− 1) are prime powers, then, for any nonnegative integer m, there exists
a symmetric design with parameters (11), where v = 1 + qp(pe+1 − 1)/(p − 1) and λ =
qp(qd−1pe − 1)/(p− 1).

Remark 5.9 The only realization of the conditions of Theorem 5.8 that we are aware of
is q = 2, p = 2d − 1 is a Mersenne prime, and e = 1, so r = 22d. The designs that the
theorem yields in this case were constructed by the author in [4].

6 Cyclic designs

In this section, we will describe another approach to satisfying the conditions of Theorem
5.1 and thus obtaining an infinite family of symmetric designs. Though we do not have an
example when this approach leads to new symmetric designs, we hope that such examples
can be found.

Definition 6.1 Let D = (V,B) be a BIBD. A bijection σ : V → V is called an auto-
morphism of D if σ(B) ∈ B for all B ∈ B. A group G of automorphisms of D is called
regular if it acts transitively and faithfully on points, i.e., for any x, y ∈ V , there is a
unique σ ∈ G such that σ(x) = y. If a BIBD has a regular cyclic group of automorphisms,
it is called cyclic.

Remark 6.2 The order of a regular automorphism group of a (v, b, r, k, λ) BIBD is v.
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Remark 6.3 It is immediate that the complement of a cyclic BIBD is cyclic and multiples
of a cyclic BIBD are cyclic. A classical example of a cyclic design is a symmetric design
generated by a cyclic difference set. Thus, for any prime power q and any positive integer
d, there exists a cyclic PG(d, q). An extensive list of cyclic BIBDs can be found in the
section on difference families in [3].

Theorem 6.4 Let D be a symmetric (v, r, λ)-design with r a prime power and v − r
dividing r − 1. If D has a cyclic residual design, then, for any positive integer m, there
exists a symmetric design with parameters (11).

Proof. Let DA be a residual design of D having a cyclic regular automorphism group
G and let X and Y be the incidence matrices of DA and DA, respectively, corresponding
to the same order of blocks. Since r is a prime power and |G| = v− r divides r− 1, there
exists a BGW with parameters (2) over G. For each σ ∈ G, σX can be obtained from X
by a permutation of rows. Since each row of σX is a row of X, we have (σX)Y t = λJ for
all σ ∈ G. and we apply Theorem 5.1. 2

Remark 6.5 If D is the complement of PG(d, q) with d ≥ 2, then any residual design
DA is a q-fold multiple of the complement of PG(d − 1, q). Therefore, D can be selected
so that the conditions of Theorem 6.4 are satisfied. The design that Theorem 6.4 yields
in this case is the complement of PG((m+ 1)d, q).
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