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Abstract

Suppose we are given some fixed (but unknown) subset X of a set Ω, and our
object is to learn as much as possible about the elements of X by asking binary
questions. Specifically, each question is just a function F : Ω → {0, 1}, and the
answer to F is just the value F (Xi) for some Xi ∈ X, (determined, for example, by
a potentially malevolent but truthful, adversary). In this paper, we describe various
algorithms for solving this problem, and establish upper and lower bounds on the
efficiency of such algorithms.

1 Introduction

In this paper we consider a variant of the familiar “20 questions” problem in which

someone (called the “Seeker”) tries to discover the identity of some unknown ”secret” by

asking binary questions (e.g., see [15]). In our variation, there is now a set of k ≥ 2 secrets.

For each question asked, an “Adversary” gets to choose which of the k secrets to use in

supplying the answer, which in any case must be truthful. We will describe a number

of algorithms for dealing with this problem, although we still are far from a complete

understanding of the situation. We will also describe the connection of these problems

with some classic results of Erdős and Lovász [12] and others [13, 14] on 3-chromatic

hypergraphs. Secret guessing problems of this type have arisen recently in connection

with certain Internet traffic routing applications [20].
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2 The basic setup

To begin with we restrict ourselves to the case of k = 2. In this case, the Adversary

A has a set X = {X1, X2} of two secrets, taken from a universe Ω of N possible secrets.

A question F is just a function F : Ω → {0, 1}. The adversary A has a choice of

answering the question F with either of the values F (X1) or F (X2). The job of the

Seeker S is to select questions so as to determine as much about the secrets as efficiently

as possible. Observe that S can never hope to learn with certainty more than one of A’s

secrets, since A can always answer every question using the same Xi ∈ X. So, how

much can S be guaranteed of finding out about A’s secrets ?

To get a firmer grip on these questions, we will model our problem in terms of graphs.

Let KN denote the complete graph on the set of N vertices Ω. A pair of secrets X =

{X1, X2} corresponds to an edge X1X2 of KN . Each question F : Ω → {0, 1} induces

a partition of Ω = F−1(0) ∪ F−1(1). The answer α ∈ {0, 1} to the question F given by

A implies that X ∩ F−1(1 − α) = ∅. Thus, S can remove all the edges spanned by

F−1(1− α) as possible candidates for X = {X1, X2}.

The process is complete and S is finished as soon as the set W of surviving edges is

“intersecting”, i.e., contains no pair of disjoint edges. For S can certainly reach this state

(by repeatedly placing disjoint edges in different blocks of the partitions). It is equally

clear that A can “protect” any intersecting set W by making sure not to discard any

block of a partition which contains an edge of W . We will call a strategy “separating” if

by using it, S can always reach an intersecting set of edges, no matter how A answers

the questions.

For graphs, there are just two types of intersecting sets W . The first type is a star,

i.e., a set of edges all sharing a common vertex X0. In this case, S can assert that X0 is

indeed one of A’s secrets. The second type is a triangle, i.e., the complete graph K3 with

3 edges on a set {X0, X1, X2} of size 3. In this case, all that S can assert is that A’s

secret pair is one of the edges X0X1, X0X2 or X1X2 of the K3. (In other words, A can

choose the answer majority {F (X1), F (X2), F (X3)}. By doing so, no edge of W is ever
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removed.) In particular, S cannot specify that any particular element of Ω is one of A’s

secrets.

There are two kinds of strategies we will consider for S, namely adaptive and oblivious.

In an adaptive strategy each question of S can depend on the answers to all preceding

questions. On the other hand, in an oblivious strategy, all of S’s questions must be asked

in advance of any of A’s answers.

We will give an adaptive separating strategy for S for which the number of steps

required is reasonably close to the optimum. We will also give oblivious separating strate-

gies with somewhat larger constants. In addition, we will discuss possible strategies when

the questions are restricted in various ways, e.g., to be very compact. Finally we will

examine the more complex situation in the case of k ≥ 3 secrets.

3 Adaptive algorithms

In this section we focus on adaptive strategies, i.e., where future questions can depend

on past answers. Let us say that a separating strategy has length t if S can force the

surviving set W of edges to be intersecting in at most t steps, no matter how A selects

answers. Define f(N) to be the least value of t such that there exists a separating strategy

of length t for the initial set Ω of size N .

Theorem 1

3 log2(N)− 5 ≤ f(N) ≤ 4 log2(N) + 3, N > 2.

Proof: For the lower bound, it suffices to observe that since the initial graph KN

has
(
N
3

)
triangles, and at each stage, A can guarantee to save at least half of the existing

triangles, and since the final set of edges can have at most one triangle, then any separating

strategy will require at least log2

(
N
3

)
steps which is at least log2

(
N
3

)
> 3 log2N − 5 for

N > 2.

For the upper bound, we will derive recursive bounds on the minimum number of steps

required to reach an intersecting set of edges starting from three special kinds of graphs.

These are:
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• K(m,n) - the complete bipartite graph on m and n vertices;

• K̄(m,n) - the graph formed by joining every vertex of a complete graph K(m) on

m vertices to every vertex of an independent set of n vertices; and

• K(m,m, n) - the complete tripartite graph on m,m and n vertices.

We denote these symbolically in Figure 1:

m n

K(m,n) K(m,n) K(m,m,n)

m n

n

m m

Figure 1: Three basic graphs

Denote the minimum number of steps in any adaptive separating strategy starting

with these graphs by f(m,n), f̄(m,n) and f(m,m, n), respectively. For convenience, we

will assume that m and n are powers of 2, with n ≥ m > 1. We will then use the

monotonicity of the f ’s to obtain bounds for general m and n.

To begin, let us first consider f(m,n). S’s strategy will be to select a question (=

partition) F which splits each of the two vertex sets in half. Symbolically, we show this

in Figure 2

m n

m/2

1 m/2

n/2

n/2

0 0

1

Figure 2: Splitting K(m,n)

where the 0’s and 1’s indicate the vertices in F−1(0) and F−1(1), respectively. Since this

assignment is symmetrical then we can assume without loss of generality that A chooses

the answer 0, so that all edges spanned by F−1(1) are eliminated. This leaves the graph

in Figure 3

(i.e., the edges between the two lower-level boxes are gone). Next, suppose S specifies

the partition shown below in Figure 4.
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m/2

m/2

n/2

n/2

Figure 3: The remaining graph after splitting.

m

m/2

0 m/2

n/2

n/2

1 0

1

m/2 n/2

n/2

m/2

m/2

n/2

nn/2 m/2

0 1

Figure 4: Reduction into bipartite graphs

If A answers 0, then we follow the left-hand branch labeled 0. Otherwise, we follow

the right-hand branch. In each branch, we have simplified the presentation of the resulting

graph by recognizing that it is a (smaller) complete bipartite graph. Hence, we have the

recurrence

f(m,n) ≤ 2 + max{f(m,n/2)), f(m/2, n)} (1)

Of course, f(1, n) = f(m, 1) = 0, since K(1, n) and K(m, 1) are both stars. It is now

straightforward to show that this recurrence implies the bound

f(m,n) ≤ 2(log2m+ log2 n− 1). (2)

Next, we will treat f(m,m, n), this time in a more abbreviated fashion. We begin

with K(m,m, n) where n ≥ m > 1, with m and n powers of 2. S’s first question will split

each of the three vertex sets in half as shown in Figure 5.
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n

m/2

1 m/2

m/20 0

1

n/2

n/2

m/2

0

1

m/2

m/2m/2

m/2

n/2

n/2

mm

Figure 5: Splitting K(m,m, n)

By symmetry, we can assume without loss of generality that A selects the answer 0,

resulting in the graph shown in Figure 5. In the next diagram (in Figure 6), we show the

strategy tree for S’s next three questions.

Thus, we have the bound

f(m,m, n) ≤ 4 + max{f(m/2,m/2, n/2), f(2m,n/2), f(2n,m/2)}

≤ 4 + max{f(m/2,m/2, n/2), 2(log2m, log2 n− 1)} (3)

For the case that m = 1 we have the picture in Figure 7.

Thus,

f(1, 1, n) ≤ 2 + f(1, 1, n/2), f(1, 1, 1) = 0 (4)

which implies

f(1, 1, n) ≤ 2 log2 n. (5)
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m/2

m/2m/2

m/2

n/2

n/2
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1 1

1

m/2

m/2m/2

m/2

n/2
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0 1 m/2

m/2m/2

m/2

n/2

n/2
1 10

0 1

010

0 0 11

m/2

m/2 n/2 0
1

1

m 0

m/2

m/2

n/20
1

1

m/20

m/2 m/2

n/2
0

1

1

0 m    n
2 2

+

m/2 m/2

n/2
0

1

1

0 m    n
2 2

+

2m

0

n/2 m/2 m/2

n/2

1 10

m+n

m/2 m/2 m/2

n/2

1
1

0
0

Figure 6: Three more steps

An easy calculation now shows that together with (2), we have

f(m,m, n) ≤ 2(1 + log2m+ log2 n). (6)

Finally, we have f̄(m,n) with m a power of 2, and n ≥ m > 1.

Thus,

f̄(m,n) ≤ 2 + max{f̄(m/2, n+m/2), f(m/2,m/2, (n/2)+)} (7)

where x+ denotes the least power of 2 which is ≥ x.

By (6), f(m/2,m/2, (n/2)+) ≤ 2(log2m+ log2 n), so that

f̄(m,n) ≤ 2 + max{f̄(m/2, n+m/2), 2(log2m+ log2 n)}. (8)

Therefore we have
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n

n+1

n/2

n/2

1

0

1

(by symmetry)

01

1

1 011

n/2 0

n/2 0n/2 0

n/2 1

11

11

1

1

0

done

Figure 7: The case m = 1

f̄(m,n) ≤ 2 + 2(log2m+ log2(n+m/2)). (9)

Finally, since our starting graph KN can be reduced in one step to K̄(dN/2e, bN/2c)

then f(N), the number of steps required for any separating strategy is bounded by

f(N) ≤ 1 + f̄(dN/2e+, bN/2c)

≤ 3 + 2(log2N + log2(N/2 +N/2)) by (9)

≤ 3 + 4 log2N. (10)

This completes the proof for Theorem 1. �
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m/2

1 m/2

n/2

n/2

0 0

1

m/2

1 m/2

n/2

n/2

0 1

0

1 (by symmetry)

m/2+n
n/2

m/2m/2

m/2

01

Figure 8: Reductions for K̄(m,n)

We suspect that the truth here is

f(N) = (1 + o(1))4 log2N.

4 Oblivious algorithms

In the case of oblivious algorithms (where all questions are asked before any answers are

given), let f0(N) denote the minimum number of questions needed to separate the edges

of KN .

Theorem 2

f0(N) ≤ (c+ o(1)) log2N (11)

where c = 3/ log2 8/7 = 15.57 . . . .
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Proof: First we state a simple proof using the basic probabilistic method. For

an integer t to be specified later, label each vertex S of Ω with a random binary t-tuple

λ(S) = (S(1), S(2), ..., S(t)). The value of S(i) will correspond to the part of the ith

partition of Ω = F−1
i (0) ∪ F−1

i (1) to which S belongs. The assignment λ separates the

disjoint pairs X = {X1, X2} and Y = {Y1, Y2} provided for some i, X1(i) = X2(i) 6=

Y1(i) = Y2(i). There are 14 of the 16 possible assignments to these four coordinates for

which this does not happen (X and Y are disjoint). Hence, the probability that λ does

not separate X and Y is ≤ (7/8)t. Since there are just 1/2
(
N
2

)(
N−2

2

)
disjoint pairs X and

Y in KN , then some separating set of t questions must exist provided

(7/8)t(1/2)

(
N

2

)(
N − 2

2

)
< 1. (12)

This is satisfied for t = (c1 + o(1)) log2N with c1 = 4/(log2 8/7) = 20.76 . . . .

This bound can be improved by using the deletion method (see [5]) as pointed out by

Noga Alon [1], or by using the inner product strategy as described in the next section. To

apply the deletion method, we choose a random t× 2N binary array M . The probability

that a given disjoint pair X and Y of pairs of elements of Ω′ with |Ω′| = 2N are not

separated by any particular row (= question) of M is 7/8 . Hence, the expected number

of “bad” pairs X and Y is less than
(

2N
2

)2
(7

8
)t . We choose t large enough so that this

expression is less than N . Thus, some t × 2N array M0 has < N bad pairs X and Y .

Now, delete one column corresponding to one element from each of these bad pairs (of

pairs). The resulting array M1 has t rows and ≥ N columns with no bad pairs, i.e., all

its disjoint pairs are separated by the rows of M1. This gives an upper bound of c log2N

where c = 3/log2 8/7 = 15.57 . . . . �

5 Inner product strategies

One disadvantage of the preceding approach is that the questions used to achieve the

O(logN) bounds might in fact require Ω(N) bits for their description. We would like

to have questions that can be represented very compactly, e.g., using just O(logN) bits.
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One way to do this is as follows. Let us represent Ω as GF (2)n, an n-dimensional vector

space over GF (2) = {0, 1} (so that N = 2n). The allowable questions F will now just

be vectors F = (F (1), F (2), . . . , F (n)) ∈ GF (2)n. The answer to the question F will be

F ·Xi, the inner product (mod 2) of F with some secret Xi ∈ X. We will call strategies

for separating edges in this setting “inner product” strategies.

Theorem 3 There is an inner product separating strategy for Ω = GF (2)n with at most

3/(log2 8/7) log2N questions, where N = 2n.

Proof: We again use the probabilistic method. We choose a random set of

3/(log2 8/7)n random inner product questions. A particular question F will separate

the disjoint pairs X = {X1, X2} and Y = {Y1, Y2} provided

F ·X1 ≡ F ·X2 6≡ F · Y1 ≡ F · Y2(mod 2)

For these disjoint pairs X and Y , define the three vectors

∆1 = X1 −X2,∆2 = X2 − Y1,∆3 = Y2 − Y1,

and let ∆ denote the 3× n array

∆ =

 ∆1

∆2

∆3

 =

 ∆1(1) ∆1(2) . . . ∆1(n)
∆2(1) ∆2(2) . . . ∆2(n)
∆3(1) ∆3(2) . . . ∆3(n)


Thus, F separates X and Y provided

F ·∆1 ≡ 0, F ·∆2 ≡ 1, F ·∆3 ≡ 0,

i.e.,

F ·

 ∆1

∆2

∆3

 =

 F ·∆1

F ·∆2

F ·∆3

 =

 0
1
0

 (13)
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Let us say that a column ∆(i) =

 ∆1(i)
∆2(i)
∆3(i)

 = C(k) of ∆ is of type k, 0 ≤ k ≤ 7, if

k = ∆1(i) + 2∆2(i) + 4∆3(i) (i.e., the column ∆(i) is just the binary expansion of k), and

let Nk denote the number of columns of ∆ of type k. Thus,

7∑
k=0

Nk = n.

The hypothesis that X ∩ Y = ∅ implies

N2 +N3 +N4 +N5 > 0

N2 +N3 +N6 +N7 > 0

N1 +N2 +N5 +N6 > 0

N1 +N2 +N4 +N7 > 0 (14)

Claim: At least 1/8 of the 2n possible F ∈ Ω satisfy (13).

Proof of Claim: There are several cases.

Case 1. ∆ has three independent columns, say ∆(i)∆(j) and ∆(k). Since the linear span

of these three columns contains each of the eight possible columns exactly once, then

the Claim holds in this case. That is, for any choice of F (t), t 6= i, j, k, we can choose

F (i), F (j), F (k) ∈ {0, 1} so that (13) holds.

In particular, this implies that the Claim also holds when ∆ has at least four distinct

columns, say ∆(k1),∆(k2),∆(k3),∆(k4). For if no three columns were independent then

we would have

∆(k1) + ∆(k2) + ∆(k3) = 0,

∆(k1) + ∆(k2) + ∆(k4) = 0

which implies that ∆(k3) = ∆(k4), a contradiction.

Case 2. Case 1 does not hold and N2 > 0. Thus, ∆ contains at least one column

∆(i) = C(k) =

 0
1
0

 of type 2. Since there can be at most r ≤ 2 other column types in
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∆, then at least (1/2)(1/2r) ≥ 1/8 of the F ∈ Ω satisfy (13) (where the factor 1/2r comes

from the choices for the non-type 2 columns to contribute

 0
0
0

 and the 1/2 comes from

the number of ways of choosing an odd number of coordinates of F to be 1 in positions

which have a type 2 column).

Case 3. ∆ has just two different column types, and N2 = 0. Since these two column

types must satisfy (14) then they can only be the columns {C(1), C(3)}, {C(4), C(6)}, or

{C(5), C(7)}. However, in each of these cases, the sum of the two columns in equal to

C(2), and so, at least 1/4 of the linear combinations of the columns of ∆ are C(2)’s, and

consequently, this case is done.

Case 4. ∆ has three distinct (dependent) column types and N2 = 0. Thus, the three

column types are {C(1), C(4), C(5)} or {C(1), C(6), C(7)}. However, in both of these

cases, (14) fails to be satisfied, so that this case cannot hold.

This proves the Claim.

Hence, for each choice of ∆ (corresponding to X and Y withX∩Y = ∅), the probability

that t randomly chosen F ’s all fail to separate X and Y is ≤ (7/8)t. Since there are strictly

fewer than 8n choices for ∆ (taking the symmetry of X and Y into account), then there

must exist some set of t questions which separate all disjoint pairs of X and Y , provided

8n(7/8)t ≤ 1,

i.e.,

t ≥ (log2 8)/(log2 8/7)n = 3/(log2 8/7) log2N.

This proves Theorem 3. �

6 Constructive inner product strategies

One disadvantage of the approach taken in the preceding sections for showing the existence

of small separating sets of questions is that they are non-constructive. That is, they do

not give any information on how to actually produce the desired sets. We now remedy

this defect, but at the cost of increasing the number of questions to Ω(log2N).

the electronic journal of combinatorics 8 (2001), #R13 13



For this construction, we choose a large prime p ≥ 49n2 and we form the (cyclic)

sequence Q = (q(0), q(1), ..., q(p− 1)) where

q(k) =

{
1 if k is a quadratic non-residue of p,
0 otherwise.

The inner product questions for this construction will just be the p consecutive blocks

Qx = (q(x+ 1), q(x+ 2), ..., q(x+n)), 0 ≤ x < p, where index addition is taken modulo p,

i.e., q(p) = q(0), etc. Note that q(k) can be expressed as

q(k) = 1/2(1− χ∗p(k))

where

χ∗p(k) =

{
−1 if k is a quadratic non-residue of p,
1 otherwise.

Note that χ∗p differs from the usual non-trivial quadratic character χp of p only in that

we have defined χ∗p(0) = 1, whereas by convention χp(0) is taken to be 0.

For a given disjoint pair X = {X1, X2} and Y = {Y1, Y2} in Ω = GF (2)n, define

∆1 = X1 −X2, ∆2 = Y1 −X2, ∆3 = Y2 − Y1

and

∆ =

 ∆1

∆2

∆3

 =

 ∆1(1) ∆1(2) . . . ∆1(n)
∆2(1) ∆2(2) . . . ∆2(n)
∆3(1) ∆3(2) . . . ∆3(n)


As before, we want to show that (for p large enough) there will always be a block Qx of

Q of length n such that

Qx ·

 ∆1

∆2

∆3

 =

 Qx ·∆1

Qx ·∆2

Qx ·∆3

 =

 0
1
0


(which implies by the remarks in the preceding section that the Qx are separating). Next,

for 1 ≤ k ≤ 3, define
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δk = {i : ∆k(i) = 1}.

Observe that

1

2
(1−

∏
i∈δk

χ∗(x+ i)) = 0

if an even number of terms x+ i are quadratic non-residues of p, and 1 otherwise. Hence,

we have

1

2
(1−

∏
i∈δk

χ∗(x+ i)) =

{
0 if Qx ·∆k ≡ 0 (mod 2),
1 if Qx ·∆k ≡ 1 (mod 2).

Thus, the product

P (x) = (1 +
∏
i∈δ1

χ∗(x+ i))(1−
∏
i∈δ2

χ∗(x+ i))(1 +
∏
i∈δ3

χ∗(x+ i)) > 0

if and only if  Qx ·∆1

Qx ·∆2

Qx ·∆3

 =

 0
1
0


i.e., if and only Qx separates X and Y . Note that we always have P (X) ≥ 0. Now

consider the sum S =
∑p−1

x=0 P (X). We will show that if p ≥ 49n2 then S > 0. This will

then imply that some P (x) > 0, and so, X and Y are separated by Qx. Since X and Y

were arbitrary, then the proof will be complete.

To estimate S, we expand each term P (x) into a sum of eight terms, sum each of these

over x, and use a variant of the powerful character sum estimate of Weil to bound all the

non-trivial terms. The trivial terms in the expansion are 1, and we will see that its sum∑p−1
x=0 1 = p will be a dominant term. The other sums will have the forms

±
p−1∑
x=0

∏
i∈δu

χ∗p(x+ i), ±
p−1∑
x=0

∏
i∈δu

χ∗p(x+ i)
∏
j∈δv

χ∗p(x+ j),

and ±
p−1∑
x=0

∏
i∈δu

χ∗p(x+ i)
∏
j∈δv

χ∗p(x+ j)
∏
k∈δw

χ∗p(x+ k) for distinct u, v, w.
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Recall the Weil estimate:

Theorem ( [8] ) For distinct a1, a2, . . . , as residues modulo a prime p, and s ≥ 1,

|
p−1∑
x=0

s∏
k=1

χp(x+ ak) |≤ (s− 1)
√
p. (15)

A simple modification of (15) with χ∗p replacing χp gives under the same hypothesis the

estimate

|
p−1∑
x=0

s∏
k=1

χ∗p(x+ ak) |≤ s
√
p. for p ≥ s2. (16)

Notice that the only sums which occur with a minus sign are those involving a product

over δ2. None of these products can “collapse” to 1 (i.e., every factor χ∗p(t) occurs an

even number of times) since the assumption that X and Y are disjoint implies that

∆2 6= 0̄,∆1 + ∆2 6= 0̄,∆2 + ∆3 6= 0̄ and ∆1 + ∆2 + ∆3 6= 0̄. Each of the products

corresponds to a polynomial of degree at most n since there are only n distinct terms of

the form χ∗p(x+ i). Thus, (16) implies

S > p− (3n
√
p+ 3 · n√p+ 1 · n√p) = p− 7n

√
p ≥ 0 for p ≥ 49n2.

This proves the theorem. �
We believe that this construction may well be valid for much smaller values of p, e.g.,

p = cn3/2 or perhaps even p = cn logn (or p = cn for large c?). We have performed some

limited computational experiments which are consistent with this belief. To prove such

statements, however, would require much more careful analysis of the terms of S, and

more powerful character sum estimates than are currently available.

It is possible that the same kind of analysis can be done using ”quasi-random” subsets

of the integers modulo p (or for general composites m) in place of quadratic residues.

These are subsets of Z/mZ which share many of the properties of random subsets of

Z/mZ (e.g., see [9, 10] for a discussion). We plan to explore this approach in the future.

7 Invertible strategies

It turns out that all the preceding strategies suffer from one slight (!) defect. Namely, it

is not at all obvious how to deduce the sought-after secret (or the 2-out-of-3 secrets) from
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A’s answers, even when we know that the questions do separate. In other works, even

knowing that the surviving edges are intersecting, how do we identify the resulting star or

triangle? In this section we present an even simpler (though larger) set of inner product

questions for Ω = GF (2)n for which there is a polynomial-time algorithm for recovering

the secrets. For this construction, we take for our set of inner product questions all vectors

V ∈ Ω with at most three non-zero coordinates. An easy case analysis shows that this set

is separating. To invert, we outline a recursive algorithm due to Lincoln Lu [19]. Suppose

we have an algorithm ALG(2k) for inverting the answers for an initial set Ωk = GF (2)2k

which requires f(2k) steps. We assume ALG(2k) produces as its output either one secret

Xi and a matrix of consistent linear constraints which the other secret X2 must satisfy,

or a triple {X1, X2, X3} from which any pair is valid. We will use it three times to invert

answers for Ω3k = GF (2)3k as follows.

Define three subsets of the coordinate set {1, 2, . . . , 3k}
A1 = {1, 2, . . . , 2k}, A2 = {k + 1, . . . , 3k}, A3 = {1, . . . , k} ∪ {2k + 1, . . . , 3k}. Apply

ALG(2k) to each of the sets Ai, 1 ≤ i ≤ 3. The result for each will be a small set of

possibilities which must all be consistent with the actual pair of secrets chosen for Ω3k.

In particular, it is not hard to see that some secret Xi must be represented in at least

two of the three cases and since the union of any pair of the Ai is {1, 2, . . . , 3k}, then we

can write down all bits of candidates for possible solutions of ALG(3k). (In fact, all the

solutions of ALG(3k) must be contained in the set of candidates.) Then we check all the

questions on each of the candidates Y1, computing at the end the companion matrix of

linear constraints not satisfied by Y1. For those Y1 having solvable companion matrices,

we can then deduce the solutions for ALG(3k).

Lincoln Lu has written a very slick recursive program for implementing this algorithm.

Although the upper bound for the complexity of this algorithm is of O(n4) (because of the

steps involving Gaussian elimination for sparse matrices), the actual running time seems

to be much faster in all the examples that we tested.
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8 More Secrets

We next consider the situation in which A has k = 3 secrets X = {X1, X2, X3} ⊆ Ω,

where we assume that |Ω| = N . As usual, we will restrict ourselves to the situation

that S must use binary questions to gain information about X. From a graph-theoretic

point of view, we begin with K
(3)
N , the complete triple system (= 3-uniform hypergraph)

on Ω. Each question F of S is a partition of Ω into two sets Ω = F−1(0) ∪ F−1(1).

A then selects one of the sets F−1(α) and all the triples in the complement F−1(1− α)

are discarded. The process terminates as soon as S can guarantee that the surviving

triples form an intersecting family of triples, i.e., T ∩ T ′ 6= ∅ for any two surviving triples

T and T ′.

For k = 2, it was easy to see that there were just two types of intersecting sets,

namely stars and triangles. We call the first type extendible, since there is no bound

on the possible degree of the star. On the other hand, the triangle is a non-extendible

intersecting family (of edges).

For k = 3, the situation is more complicated. We will describe the various possibilities

that the vertex set is Ω = 1, 2, ..., N. We first list the extendible intersecting families of

triples.

(i) 1xy (in other words, all the triples containing a fixed element, here called 1)

(ii) 12x, 13y, 23z (in other words, all triples containing at least two elements from a fixed triple).

(iii) 134, 135, 145, 234, 235, 245, 12x

(iv) 134, 156, 235, 236, 245, 246, 12x

(v) 134, 136, 156, 235, 236, 246, 12x

We next list the non-extendible (i.e., maximal) intersecting families of triples.

(vi) 123, 124, 125, 134, 135, 145, 234, 235, 245, 345 (i.e., all the triples from a fixed 5-element set).

(vii) 123, 145, 167, 246, 257, 347, 356 (i.e., the 7 lines of a projective plane PP (2) of order 2).

(viii) Any set of 10 triples from {1, 2, 3, 4, 5, 6} which doesn’t contain a triple and its complement,

and which is not (i) or (ii). By results of Frankl, Ota and Tokushige [13], there are
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5 non-isomorphic such families.

(ix) 123, 145, 167, 124, 126, 146, 246, 247, 256, 356

Since there are cN7 different copies of PP (2) in Ω then any separating algorithm

will require at least 7 log2N + O(1) steps. In the other direction, it can be shown by

probabilistic methods that there is an oblivious algorithm with 5/(log2 32/31) log2N <

110 log2N questions which separates all pairs of disjoint triples in Ω. At present, we have

no better upper bound for a corresponding adaptive algorithm (although a much better

bound must certainly exist).

We next turn to the general case of k secrets. As before, S’s goal is to reach an

intersecting family of k-sets, where we start with K
(k)
N , the complete k-uniform hypergraph

on Ω, and we follow the usual partition-and-choose process by S and A as before. It

is easy to see that A can preserve any given intersecting family by appropriate choices,

namely, always choosing any block of a partition which contains one of the k-set’s of the

family. While there is a fairly large literature on intersecting families of k-graphs (often

called k-cliques), relatively little is known.

Let H denote an intersecting family of k-sets in Ω. We say that H is non-extendible

if any k-set in Ω which is not in H is disjoint from some k-set in H. We say that H has

covering number k (written τ(H) = k) if any set in Ω which hits every k-set in H must

have size at least k. Finally, we say that H has chromatic number 3 (written χ(H) = 3)

if for any partition of Ω into two sets, Ω = Ω0 ∪ Ω1, some Ωi contains a k-set of H. The

following (strict) implications are well known (see [12]) for intersecting k-graphs H:

χ(H) = 3 ⇒ H is non-extendible ⇒ τ(H) = k.

To see the first implication, for example, suppose χ(H) = 3 but there is some k-set

X ⊆ Ω not in H which hits every k-set in H. Color all the points in X red, and all

the other points in Ω \ H blue. Since X hits every k-set in H, then every k-set in H

has a red point. Thus, H has no red k-set (the only one in Ω is X) and no blue k-set,

which contradicts the assumption that χ(H) = 3. A classic result of Erdős and Lovász

[12] shows that the number e(H) of edges in an intersecting k-graph H with χ(H) = 3 is
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bounded. In fact, they show

k!(e− 1) < max{e(H) : τ(H) = k} ≤ kk.

The lower bound was recently improved by Frankl, Ota and Tokushige [13] to ((k +

1)/2)(k − 1). In fact, Erdős and Lovász [12] show that 3-chromatic intersecting k-graphs

must have many edges. Their result was improved by Beck [6] and then by Radhakrishnan

and Srinivasan [22] recently who showed that for an intersecting k-graph H,

min{e(H) : χ(H) = 3} > 0.17

√
k

log k
2k.

However, if we only require that τ(H) = k, then e(H) can be much smaller. A celebrated

($500) conjecture of Erdős asserted that

min{e(H) : τ(H) = k} = O(k).

This was finally proved by Jeff Kahn [16] by a highly non-trivial probabilistic argument.

If we restrict H further, requiring it to be non-extendible, then it is conjectured that

the same bound should hold:

Conjecture: (Kahn [16])

min{e(H) : H is non-extendible} = O(k).

It is known in this case that the following hold.

min{e(H) : H is non-extendible} ≤ (1 + o(1))k2, for k a prime power (Füredi [14])

min{e(H) : H is non-extendible} ≤ k5, for all k, (Blokhuis[7]).

Recall for comparison the classic theorem of Erdős-Ko-Rado [11] which asserts

max{e(H) : H is intersecting } =

(
N − 1

k − 1

)
for N ≥ 2k.

The extremal k-graphs here have τ(H) = 1. We also mention the related bounds of Erdős

and Lovász [12], on v(H), the maximum possible number of vertices of an intersecting

k-graph H with χ(H) = 3:

1

2

(
2k − 2

k − 1

)
≤ max{v(H) : χ(H) = 3} ≤ 1

2

(
2k − 1

k − 1

)
( which are not so far apart!)
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9 Concluding remarks

There are numerous questions about guessing secrets that remain open, in particular for

the general case of k ≥ 3 secrets. Here we mention several suggestions by Noga Alon [1]

which could provide interesting directions for further work.

The problem of guessing secrets is closely related to the study of small sample spaces

supporting k-wise independent (or nearly independent) random variables, which has a rich

literature [2, 21, 3, 4]. The problem of interest there is to find a sample space as small

as possible, and n binary random variables defined on it, with the property, called k-wise

independence, that for any choice of k random variables X1, . . . , Xk, the probabilities

satisfy:

Prob(X1 . . .Xk = a1 . . . ak) =
1

2k

for each of the 2k binary k-tuples, denoted by a1 . . . ak. A somewhat weaker property,

called almost k-wise independence, only requires that

(1− ε) 1

2k
< Prob(X1 . . . Xk = a1 . . . ak) < (1 + ε)

1

2k
.

Our problem of guessing secrets for the case of two secrets can be viewed as finding a

small sample space satisfying a still weaker condition that the probability of any 4 random

variables assuming the values 0011 or 1100 is nonzero. Therefore, the constructions of

small sample spaces for almost k-wise independent random variables in, for example, [3]

can be used for constructing efficient oblivious algorithms. By using these sample spaces,

we can get upper bounds for the minimum number f
(k)
0 (N) of questions required for an

oblivious algorithm giving a separating strategy of guessing k secrets in a space of size N

of the form

f
(k)
0 (N) ≤ ck logN

where ck depends exponentially on k. Moreover, this gives an explicit construction for

such oblivious algorithms.
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The linear binary error-correcting codes used in the constructions of these sample

spaces can be used to provide explicit, oblivious inner product strategies with O(logN)

questions for the case of two secrets. Indeed, it suffices to find a family of t binary vectors

F of length n = log2N , so that the matrix consisting of their columns generates a binary

linear error correcting code consisting of N codewords provides a separating strategy if

for any three vectors of length n, denoted by ∆1,∆2 and ∆3, whose sum (over GF (2))

is not the zero vector, and with ∆2 different from ∆1,∆3 there is a vector f ∈ F whose

inner products with the vectors ∆i are 0, 1, 0, respectively. Noga Alon [1] pointed out

that the t columns of the generating matrix of any linear binary codes of dimension n and

length t in which the weight of every nontrivial code word deviates from half the length

by less than 1/14 the length provides such an F . The known constructions in [3, 21]

gives an explicit, oblivious, inner product strategy with t = O(logN) queries. In fact, the

construction described in Section 6 here can be obtained from one of the codes of [4] in

the same manner.

By using results from coding theory (or by applying some probabilistic arguments,

together with an argument similar to the one used in the study of perfect hash families),

the following lower bound for f
(k)
0 (N) can be derived:

f
(k)
0 (N) ≥ c · 22k log2N,

where c is an absolute positive constant.

On the other hand, an easy probabilistic argument shows that (non-explicitly)

f
(k)
0 (N) ≤ c′k · 22k log2N,

for some absolute positive constant c′. The same bound follows also from the result in

[18].

For the adaptive case, and k secrets, one can derive the lower bound

f(N) ≥ Ω((22k/
√
k) · log2N)

using the bound of Erdös and Lovász mentioned at the end of Section 8.
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Applying results from coding theory (using the linear programming bounds together

with combinatorial arguments), the following bounds can be obtained for oblivious algo-

rithms for k = 2 and 3:

f
(2)
0 (N) > 3.5276 log2N,

f
(3)
0 (N) > 15.1862 log2N.

One can also study the preceding questions in the cases that questions can have more

than two possible answers. Of course, this makes it easier for S to deduce information

about A’s secrets. For example, if S can ask just a single question with a 2-bit answer

in the inner product scenario, then S can always identify some secret of A (i.e., S can

resolve the 2-out-of-3 ambiguity). On the other hand, suppose A has a set of r(t−1) + 1

secrets from which to choose to answer S’s question, but each question can now have one

of t different answers. Then by a simple majority strategy, A can make sure that S will

never be able to claim that any particular r-element set T ⊂ Ω contains one of A’s secrets.

The preceding analyzes can also be carried out for these cases as well, although not as

much is known here. One could also look at other variants, e.g., suppose A is allowed to

lie a certain number (or fraction) of times. Now what should S do? These results and

many others we hope will be addressed in a subsequent paper.
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[14] Z. Füredi, On maximal intersecting families of finite sets, J. Combin. Theory (A) 52

(1989), 1-9.

the electronic journal of combinatorics 8 (2001), #R13 24



[15] I’ve Got a Secret, a classic ’50’s television gameshow, see

http://www.timvp.ivegotse.html
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