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Abstract

Let D(s) =
∑∞

m=1 amm−s be the Dirichlet series generated by the infinite prod-
uct

∏∞
k=2(1− k−s). The value of am for squarefree integers m with n prime factors

depends only on the number n, and we let f(n) denote this value. We prove an
asymptotic estimate for f(n) which allows us to solve several problems raised in a
recent paper by M. V. Subbarao and A. Verma.

1 Introduction and Statements of Results

Let D(s) =
∑∞

m=1 amm−s be the Dirichlet series generated by the infinite product∏∞
k=2(1 − k−s). The coefficients am denote the excess of the number of (unordered)

representations of m as a product of an even number of distinct integers > 1 over the
number of representation of m as a product of an odd number of distinct integers > 1.
The Dirichlet series D(s) is closely related to the generating Dirichlet series in the “Fac-
torisatio Numerorum” problem of Oppenheim (see [6]). Indeed, if we let bm denote the
number of (unordered) representations of m as a product of integers > 1, not necessarily
distinct, then we have

∑∞
m=1 bmm−s = D(s)−1. Thus, by the Möbius inversion formula,

the numbers am and bm are related by the identity am =
∑

d|m µ(d)bm/d. Oppenheim [6]
showed that

1

x

∑
m≤x

bm ∼ e
√

log x

2
√

π(log x)3/4
.

In [3], E. R. Canfield, P. Erdős and C. Pomerance proved that if m is an integer such that
bn < bm for all n < m, then

bm = m exp {−(1 + o(1)) log m log3 m/ log2 m} ,

where logk denotes the k-times iterated logarithm.
In this paper, we consider the more difficult problem of investigating the asymptotic

behavior of the numbers am. This problem was raised by M. V. Subbarao, who observed
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that am = 0,±1 for all positive integers m with at most four prime factors and asked
whether this is true for all m. It is easy to see that for a positive integer m > 1 the
coefficient am depends only on the exponents r1, . . ., rn in the canonical prime factorization
m = pr1

1 . . . prn
n . In particular, for squarefree m = p1 . . . pn, the value of am is a function

of the number n of prime factors of m. We will denote this function by f(n).
The function f(n) can be interpreted as a set-partition function. Indeed, by identifying

factors of m = p1 . . . pn with subsets of {1, 2, . . . , n}, we see that f(n) is equal to the excess
of the number of ways to partition a set S of n elements into an even number of non-empty
subsets over the number of ways to partition S into an odd number of non-empty subsets.
Therefore, f(n) can also be written as

f(n) =

n∑
k=1

(−1)kS2(n, k), (1)

where the numbers S2(n, k) are the Stirling numbers of the second kind, which denote the
number of partitions of an n-element set into k non-empty subsets (see, e.g., [8, Section
3.6]).

A further motivation for studying the function f(n) is the following observation of D.
Bowman [2]. For each integer n > 0 there exist exactly one integer bn and a polynomial
Pn(x, y) such that

m∑
k=0

(kn−1 + bn)k! = Pn(m!, m)

holds for all integers m. It turns out that this integer bn is equal to f(n). By a simple
proof by induction, we have

∑m
k=0 k · k! = (m + 1)! − 1, and hence f(2) = b2 = 0. The

case n = 2 is the only known case with bn = 0. H. S. Wilf raised the question whether
bn = 0 (or equivalently f(n) = 0) infinitely often.

By (1) we have the trivial upper bound

|f(n)| ≤
n∑

k=1

S2(n, k).

The numbers B(n) =
∑n

k=1 S2(n, k) are known as Bell numbers (see, e.g., [8, Section
1.6]). De Bruijn [4] gave a detailed asymptotic analysis of B(n), using the saddle point
method. In particular, de Bruijn [4, p. 108] showed that

log B(n) = n

(
L − L2 − 1 +

L2 + 1

L
+

L2
2

2L2
+ O

(
L3

2

L3

))
, (2)

where L = log n and L2 = log log n. Therefore we have the upper bound

lim sup
n→∞

log |f(n)|
n log n

≤ 1. (3)

In a recent paper Subbarao and A. Verma [7] showed that in fact

lim sup
n→∞

log |f(n)|
n log n

= 1.
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Thus the coefficients am in the Dirichlet series
∑∞

m=1 amm−s =
∏∞

k=2(1 − k−s) are not
uniformly bounded. This answers the question of Subbarao mentioned earlier. (This
result was also obtained by P. T. Bateman [1].)

In this paper we provide a detailed asymptotic analysis of f(n), which allows us to
answer some open problems mentioned in [7]. Our main result is the following theorem,
which gives an asymptotic estimate for f(n).

Theorem 1 Let zn be the solution to the equation zez = −n−1 with the smallest positive
imaginary part. Let φn(z) = −ez − (n + 1) log z, and let wn be the solution of w2

n =
−2/φ′′

n(zn) with π/2 < arg wn < π. Then we have

f(n) = Im Φ(n) + O

(
log n

n
|Φ(n)|

)
,

where

Φ(n) =
n!e√

π
wn exp {φn(zn)} .

Using estimates for zn and wn (see Lemma 1 below), we obtain the following asymptotic
upper bound for log |f(n)|, which sharpens (3). We recall here the notations

L = log n, L2 = log log n (4)

introduced earlier.

Corollary 1 We have, for n ≥ 3,

log |f(n)| ≤ n

(
L − L2 − 1 +

L2 + 1

L
+

L2
2 − π2

2L2
+ O

(
L3

2

L3

))
.

Comparing this bound with the estimate (2) for the Bell numbers B(n), we obtain
the following corollary, which shows the cancellation effect occuring in the sum f(n) =∑n

k=1(−1)kS2(n, k), when compared to B(n) =
∑n

k=1 S2(n, k).

Corollary 2 We have, for n ≥ 3,

log |f(n)| ≤ log B(n) − π2n

2L2
+ O

(
nL3

2

L3

)
.

By investigating the behavior of the argument of log Φ(n), we can determine how often
f(n) changes signs. This is the content of the following two corollaries.

Corollary 3 Let Φ(n) be defined as in Theorem 1. Then we have

f(n) = |Φ(n)|
(

sin θ(n) + O

(
log n

n

))
,
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where θ(t) is a differentiable function defined on [3,∞) satisfying

θ(t) = − πt

log t
+ O

(
t log log t

(log t)2

)
, (5)

θ′(t) = − π

log t
+ O

(
log log t

(log t)2

)
, (6)

and

θ′′(t) =
π

t(log t)2
+ O

(
log log t

t(log t)3

)
. (7)

This result shows that f(n) changes signs infinitely often and that |f(n)| is not even-
tually monotone. This answers two questions raised by Subbarao and Verma [7].

The following result gives a precise estimate for the locations of the sign changes of
f(n).

Corollary 4 Let n1 < n2 < . . . denote the sequence of integers at which f(n) changes
signs, i.e., at which f(nk) ≤ 0 < f(nk + 1) or f(nk) ≥ 0 > f(nk + 1). Then

nk = k log k + O(k log log k) (8)

and
nk+1 − nk = log k + O(log log k). (9)

Corollary 4 implies that the density of zeros of f(n) is zero. In particular, we have

|{n ≤ x : f(n) = 0}| � x

log x
.

However, by a different approach, we can improve this bound.

Theorem 2 We have
|{n ≤ x : f(n) = 0}| � x2/3.

This result provides a partial answer to the question mentioned above whether f(n) = 0
infinitely often.

To prove Theorem 1, we adapt the approach used by de Bruijn [4] to study the behavior
of B(n). We then use exponential sum estimates to prove Theorem 2.

2 Proof of Theorem 1

In this section we continue to use the notations L, L2 given in (4). We first deduce
some useful estimates for the quantities zn, wn and φn(zn) defined in the statement of
Theorem 1.
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Lemma 1 Let zn, wn and φn(z) be defined as in the statement of Theorem 1. Then we
have

zn = L − L2 + πi +
L2

L
− πi

L
+ O

(
L2

2

L2

)
, (10)

wn =

√
2L

n

(
− π

2L
+ i − iL2

2L
− i

2L
+ O

(
L2

2

L2

))
, (11)

φn(zn) = n

(
−L2 +

L2 + 1

L
− πi

L
+

L2
2 − π2

2L2
− πiL2

L2
+ O

(
L3

2

L3

))
. (12)

Proof. By the definition of zn, we have ezn = −(n + 1)/zn. This implies |zn| � L, and
by iteration we obtain

zn = log(n + 1) − log zn + πi

= L + πi − log (L − log zn + πi) + O

(
1

n

)

= L − L2 + πi +
log zn

L
− πi

L
+ O

(
L2

2

L2

)

= L − L2 + πi +
L2

L
− πi

L
+ O

(
L2

2

L2

)
.

This proves estimate (10).
Similarly, since φ′′

n(z) = −ez + (n + 1)/z2 and thus φ′′
n(zn) = (n + 1)/zn + (n + 1)/z2

n,
we have, by (10),

w2
n = − 2

φ′′
n(zn)

= − 2zn

n + 1

(
1 +

1

zn

)−1

= −2L

n

(
1 − L2

L
+

πi

L
+ O

(
L2

L2

))(
1 − 1

L
+ O

(
L2

L2

))
.

We then recall that, by the definition of wn, π/2 < arg wn < π. Therefore

wn = i

√
2L

n

(
1 − L2

2L
+

πi

2L
+ O

(
L2

2

L2

))(
1 − 1

2L
+ O

(
L2

L2

))

=

√
2L

n

(
− π

2L
+ i − iL2

2L
− i

2L
+ O

(
L2

2

L2

))
,

which is the claimed estimate (11). It remains to prove the estimate (12) for φn(zn).
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By (10) and the definitions of φn(z) and zn, we have

φn(zn) = −ezn − (n + 1) log zn =
n + 1

zn

− (n + 1) log zn

=
n

L − L2 + πi +
L2

L
− πi

L
+ O

(
L2

2

L2

)

− n log

(
L − L2 + πi +

L2

L
− πi

L
+ O

(
L2

2

L2

))
+ O(L2)

= n

(
1

L
+

L2

L2
− πi

L2
+ O

(
L2

2

L3

))

− n

(
L2 − L2

L
+

πi

L
+

L2

L2
− πi

L2
− 1

2L2
(L2 − πi)2 + O

(
L3

2

L3

))

= n

(
−L2 +

L2 + 1

L
− πi

L
+

L2
2 − π2

2L2
− πiL2

L2
+ O

(
L3

2

L3

))
.

This proves (12) and completes the proof of the lemma.

Proof of Theorem 1. By the definition of f(n), we have

f(n) =
∑

0<n1<...<nr
a1,...,ar>0

a1n1+···+arnr=n

(−1)a1+···+arn!

a1! . . . ar!(n1!)a1 . . . (nr!)ar
.

Thus the exponential generating function for f(n) is given by

∞∑
n=0

f(n)

n!
zn =

∑
n1<...<nr
a1,...,ar>0

(−1)a1+···+arza1n1+···+arnr

a1! . . . ar!(n1!)a1 . . . (nr!)ar

=
∞∏

n=1

{ ∞∑
a=0

(−1)a

a!

(
zn

n!

)a
}

= exp(−z) exp

(
−z2

2!

)
exp

(
−z3

3!

)
. . .

= exp {−(ez − 1)} .

(For an alternative derivation of this identity see [7].) Using this generating function and
Cauchy’s formula, we obtain

f(n)

n!e
=

1

2πi

∫
C
exp(−ez)z−n−1 dz,

where C is a simple closed curve encircling the origin. Since exp(−ez) is uniformly bounded
in any half-plane {z : Re z ≤ σ}, the integration path C can be replaced by Γ1∪Γ2, where
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Γ1 = {zn +wnt : −Im zn/Imwn ≤ t < ∞} and Γ2 = {z̄n − w̄nt : −∞ < t < Im zn/Imwn},
i.e., Γ1 is the straight line lying in the upper half-plane that passes through zn in direction
wn, and the path Γ2 is the reflection of Γ1 with respect to the real axis, with direction
−w̄n.

We now estimate the integral along Γ1. Setting z = zn + wnt, we obtain

1

2πi

∫
Γ1

exp(−ez)z−n−1 dz

=
wn

2πi

∫ ∞

−Im zn/Im wn

exp {φn(zn + wnt)} dt

=
wn exp {φn(zn)}

2πi

{∫ −1/|wn|1/3

−Im zn/Im wn

+

∫ 1/|wn|1/3

−1/|wn|1/3

+

∫ |zn/wn|

1/|wn|1/3

+

∫ ∞

|zn/wn|

}

exp {φn(zn + wnt) − φn(zn)} dt

=
wn exp {φn(zn)}

2πi
{I1 + I2 + I3 + I4} .

By estimates (10) and (11) of Lemma 1, we have, for t ≥ |zn/wn|,

Re wnt ≤
(
− π

2L
+ O

(
L2

L2

))
(L + O(L2)) = −π

2
+ O

(
L2

L

)
,

and thus

Re (ezn − ezn+wnt) ≤ −Re

(
n + 1

zn

)
+ eRe (zn+wnt)

≤ −(1 − e−π/2)
n

L

(
1 + O

(
L2

L

))
.

(13)

Furthermore, since, by the same lemma,

arg wn − arg zn =
π

2
+ O

(
L2

L

)
, (14)

we have |zn + wnt| ≥ |wnt| for sufficiently large n and t ≥ |zn/wn|. Using (13), it follows
that

I4 ≤
∫ ∞

|zn/wn|
exp

{
Re

(
ezn − ezn+wnt − (n + 1) log

∣∣∣∣zn + wnt

zn

∣∣∣∣
)}

dt

≤
∫ ∞

|zn/wn|
exp

{
−c1n

L
− n log

( |wn|
|zn| t

)}
dt

=
|zn|

(n − 1)|wn| exp
{
−c1n

L

}
�
√

n

L3
exp

{
−c1n

L

}
(15)

for sufficiently large n, where c1 is a suitable positive constant.
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We next estimate I3. We first show that Re (ezn − ezn+wnt) � t
√

n/L3 uniformly for
all t > 0 and sufficiently large n. By the definition of zn and (10), we have

Re ezn = −Re
n + 1

zn

= −n

L

(
1 + O

(
L2

L

))

and

Im ezn = −Im
n + 1

zn
= −πn

L2

(
1 + O

(
L2

L

))
.

Using the inequality 0 <
√

x2 + y2 − x ≤ y2/(2x), which holds uniformly for all x and y
with 0 < y ≤ x, we obtain

∣∣Re ezn + |ezn|∣∣ ≤ 1

2

∣∣∣∣(Im ezn)2

Re ezn

∣∣∣∣ ≤ c2n

L3
,

where c2 is a positive constant. Therefore if t is a real number satisfying Re wnt <
−2c2/L

2, i.e., t > (4c2/π + o(1))/(|wn|L), then we have by (11)

Re (ezn − ezn+wnt) ≤ (|ezn| + Re ezn) +
(|ezn |eRe wnt − |ezn |)

≤ c2n

L3
− 2c2

L2
|ezn| ≤ 0,

On the other hand, if t is in the range 0 < t ≤ (4c2/π + o(1))/(|wn|L), then, by (10) and
(11),

Re (ezn − ezn+wnt) = Re (−eznwnt) + O(|eznw2
n|t2)

= Re

{
n

L

(
1 +

L2

L
− πi

L
+ O

(
L2

L2

))
√

2L

n

(
− π

2L
+ i +

iL2 − i

L
+ O

(
L2

2

L2

))
t

}
+ O(t2)

=

(
1√
2

+ o(1)

)√
n

L3
t + O(t2) ≤ c3

√
n

L3
t

for sufficiently large n, where c3 is a positive constant. This proves the assertion that
Re ezn − Re ezn+wnt � t

√
n/L3 uniformly for all t > 0 and sufficiently large n.

We now estimate I3. For t in the interval [1/|wn|1/3, |zn|/|wn|], the estimate (14)
implies that

log

∣∣∣∣1 +
wnt

zn

∣∣∣∣ ≥ |wn|
4|zn|t

for sufficiently large n. It follows that, by Lemma 1,

I3 ≤
∫ |zn/wn|

1/|wn|1/3

exp

{
c3

√
n

L3
t − n

4

|wn|
|zn| t

}
dt

≤ |zn|
|wn| exp

{
−
(

1

4
+ o(1)

)√
n

L
|wn|−1/3

}
� exp

{
−c4n

2/3

L2/3

} (16)
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for some suitable positive constant c4. The same bound holds for I1. It remains to
estimate I2.

In the range −1/|wn|1/3 ≤ t ≤ 1/|wn|1/3, we have, by Lemma 1,

φ(3)
n (zn) = −ezn − 2(n + 1)

z3
n

=
n + 1

zn

+ O
( n

L3

)
� n

L
,

φ(4)
n (zn + wnt) = −ezn+wnt +

6(n + 1)

(zn + wn)3
� n

L
e|wn|2/3

+
n

L3
� n

L
,

and thus
φ(3)

n (zn)(wnt)
3 � n

L
|wn|2 � 1,

φn(zn + wnt) − φn(zn) − φ′
n(zn)wnt − φ′′

n(zn)

2
(wnt)

2 − φ
(3)
n (zn)

6
(wnt)3 � n

L
|wnt|4 � 1.

Since, by the definition of zn and wn, φ′
n(zn) = 0 and φ′′

n(zn)w2
n/2 = −1, it follows that

I2 =

∫ 1/|wn|1/3

−1/|wn|1/3

exp

{
−t2 +

φ
(3)
n (zn)

6
(wnt)3 + O

(n

L
|wnt|4

)}
dt

=

∫ 1/|wn|1/3

−1/|wn|1/3

e−t2

(
1 +

φ
(3)
n (zn)w3

n

6
t3 + O

(|φ(3)
n (zn)2w6

n|t6
)

+ O

(
n|wn|4

L
t4
))

dt

=
√

π + O
(
exp

{−|wn|−2/3
})

+ O
(|φ(3)

n (zn)2w6
n|
)

+ O

(
n|wn|4

L

)

=
√

π + O

(
L

n

)
.

Combining this estimate, (15) and (16), we obtain∫
Γ1

exp {φn(z)} dz = wn exp {φn(zn)}
(√

π + O

(
L

n

))
.

Since
∫
Γ2

= −∫
Γ1

, it follows that

f(n) =
n!e

2πi

(∫
Γ1

+

∫
Γ2

)
= Im

n!e√
π

wn exp {φn(zn)} + O

(
L

n
n!|wn exp {φn(zn)} |

)

= Im Φ(n) + O

(
L

n
|Φ(n)|

)
.

This completes the proof of Theorem 1.
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3 Proofs of Corollaries

Throughout this section, L will denote log n or log t, and L2 will denote log log n or
log log t, depending on the context.

Proof of Corollary 1. By Theorem 1, we have

|f(n)| ≤ n!e√
π
|wn exp {φn(zn)}|

(
1 + O

(
L

n

))
.

By Lemma 1 and the Stirling formula for n!, it follows that

log |f(n)| ≤ (n + 1/2) log n − n + Re φn(zn) + O(1)

= n

(
L − L2 − 1 +

L2 + 1

L
+

L2 − π2

2L2
+ O

(
L3

2

L3

))
.

This proves Corollary 1. Corollary 2 is an immediate consequence of Corollary 1.

Proof of Corollary 3. We first note that the domains of the functions zn, wn, φn(z) and
Φ(n) can be extended from the set of positive integers to the set of positive real numbers,
and the asymptotic formulas in Lemma 1 remain valid with n replaced by a positive real
number t. From Theorem 1 we deduce that

f(n) = |Φ(n)|
(

sin θ(n) + O

(
L

n

))
,

where
θ(t) = Im (φt(zt) + log wt) . (17)

By Lemma 1, we have

Im log wt =
π

2
+ O

(
1

L

)
and

Im φt(zt) = −πt

L
+ O

(
tL2

L2

)
.

The claimed estimate (5) for θ(t) follows by inserting these estimates into (17).
We now prove estimate (6). By the definition of zt, we have zte

zt + (t + 1) = 0. Thus,
the chain rule yields

dzt

dt
= − 1

ezt(zt + 1)
=

zt

(t + 1)(zt + 1)
. (18)

Since

w2
t = − 2

φ′′
t (zt)

= − 2

−ezt + (t + 1)/z2
t

= − 2

(t + 1)/zt + (t + 1)/z2
t

,
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by estimate (10) of Lemma 1 and (18), we have

1

wt

dwt

dt
= −1

2

d

dt

(
t + 1

zt
+

t + 1

z2
t

)
(

t + 1

zt
+

t + 1

z2
t

) = − 1

2(t + 1)
+

z−2
t + 2z−3

t

2(z−1
t + z−2

t )

dzt

dt
� 1

t
. (19)

Similarly, we have

dφt(zt)

dt
=

d

dt
(−ezt − (t + 1) log zt)

= − log zt −
(

ezt +
t + 1

zt

)
dzt

dt
= − log zt

(20)

and thus, by (10),

Im
dφt(zt)

dt
= −Im

{
log

(
L − L2 + πi +

L2

L
− πi

L
+ O

(
L2

2

L2

))}

= −π

L
+ O

(
L2

L2

)
.

(21)

Combining this estimate and (19), we obtain

θ′(t) = Im
1

wt

dwt

dt
+ Im

d

dt
φt(zt) = −π

L
+ O

(
L2

L2

)
.

This proves the estimate (6).
The proof of (7) is essentially the same as that of (6). By (18) and (20), we have

d2

dt2
φt(zt) = − d

dt
log zt = − 1

zt

zt

(t + 1)(zt + 1)
= − 1

t (L − L2 + πi + 1 + O(L2/L))

and hence

Im
d2

dt2
φt(zt) =

π

tL2
+ O

(
L2

tL3

)
.

Similarly, we have, by (18) and (19),

d2

dt2
log wt =

1

(t + 1)2
+

1

2

d

dt

{
−z−2

t + 2z−3
t

z−1
t + z−2

t

zt

(t + 1)(zt + 1)

}
� 1

t2
.

Thus we conclude that

θ′′(t) = Im
d2

dt2
φt(zt) + Im

d2

dt2
log wt =

π

tL2
+ O

(
L2

tL3

)
.

This completes the proof of Corollary 3.
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Proof of Corollary 4. Let θ(t) be defined as in Corollary 3. Let k be a positive integer,
and let tk be the solution of θ(t) = −kπ. By Corollary 3, tk satisfies

k =
tk

log tk
+ O

(
tk log log tk
(log tk)2

)
.

Hence, we obtain

tk = k log tk + O

(
tk log log tk

log tk

)
= k log k + O(k log log k). (22)

From this estimate we deduce that nk = tk + O(1), and therefore estimate (8) holds.
To prove the second part of the corollary, we note that, by the mean value theorem,

π = θ(tk) − θ(tk+1) = (tk − tk+1)θ
′(ξk), where ξk is a real number between tk and tk+1.

The estimate (22) implies that

ξk = tk + O(tk+1 − tk) = tk + O(k log log k).

Hence, by (6) in Corollary 3, we have

nk+1 − nk = tk+1 − tk + O(1) = − π

θ′(ξk)

=
π

π

log tk
+ O

(
log log tk
(log tk)2

) = log k + O(log log k),

which is the claimed result.

4 Proof of Theorem 2

We will use the following well-known exponential sum estimate (see, e.g., [5, p. 17]).

Lemma 2 Let a and b be integers with a < b, and let g be twice differentiable on [a, b]
with g′′(x) ≥ ρ > 0 or g′′(x) ≤ −ρ < 0 for some positive real number ρ and all x ∈ [a, b].
Then ∣∣∣∣∣

b∑
n=a

eig(n)

∣∣∣∣∣� (|g′(b) − g′(a)| + 1)(ρ−1/2 + 1).

Proof of Theorem 2. It suffices to show that∣∣{x1/2 < n ≤ x : f(n) = 0
}∣∣� x2/3.

In light of Corollary 3, we have for sufficiently large x

∣∣{x1/2 < n ≤ x : f(n) = 0
}∣∣ ≤ ∣∣∣∣

{
x1/2 < n ≤ x : ‖θ(n)‖ <

c1 log n

n

}∣∣∣∣
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for some positive constant c1, where θ(t) is the function occuring in the statement of
Corollary 3 and ‖θ(n)‖ denotes the distance from θ(n) to the closest integer multiple
of π. On the other hand, if H = H(x) is an integer-valued function satisfying H(x) ≤
(π/(2c1))x

1/2/ log x, then, for x1/2 < n ≤ x, the condition ‖θ(n)‖ < c1 log n/n implies
that (

sin((H + 1)θ(n))

sin θ(n)

)2

≥ (H + 1)2

π2
.

We therefore have∣∣{x1/2 ≤ n ≤ x : f(n) = 0
}∣∣� 1

H2

∑
x1/2<n≤x

(
sin((H + 1)θ(n))

sin θ(n)

)2

. (23)

Using the identity (
sin ((H + 1)t)

sin t

)2

=
H∑

h=−H

(H + 1 − |h|)e2iht,

the right-hand side of (23) becomes

1

H2

H∑
h=−H

(H + 1 − |h|)Sh ≤ x(H + 1)

H2
+

2

H2

H∑
h=1

(H + 1 − h)|Sh|, (24)

where Sh =
∑

x1/2<n≤x e2ihθ(n).
We now estimate the exponential sum Sh. By Corollary 3, we have

|hθ′(bxc) − hθ′(dx1/2e)| � h

log x

and

hθ′′(t) � h

x(log x)2

for x1/2 < t ≤ x. Thus, applying Lemma 2 with g(t) = hθ(t), we obtain

|Sh| �
(

h

log x
+ 1

)(
(log x)

√
x

h
+ 1

)
.

Inserting this estimate in (24), we arrive at

∣∣{x1/2 ≤ n ≤ x : f(n) = 0
}∣∣� x

H
+

1

H

H∑
h=1

(√
hx + (log x)

√
x

h
+

h

log x
+ 1

)

� x

H
+
√

Hx + (log x)

√
x

H
+

H

log x
+ 1.

Taking H = bx1/3c, we finally obtain∣∣{x1/2 ≤ n ≤ x : f(n) = 0
}∣∣� x2/3.

This completes the proof.
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