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Abstract

New combinatorial properties of Catalan trees are established and used
to prove a number of algebraic results related to the Jacobian conjecture.
Let F = (x1 + H1, x2 + H2, . . . , xn + Hn) be a system of n polynomials
in C[x1, x2, . . . , xn], the ring of polynomials in the variables x1, x2, . . . , xn
over the field of complex numbers. Let H = (H1,H2, . . . ,Hn). Our
principal algebraic result is that if the Jacobian of F is equal to 1, the
polynomials Hi are each homogeneous of total degree 2, and ( ∂Hi∂xj

)3 = 0,

then H◦H◦H = 0 and F has an inverse of the form G = (G1, G2, . . . , Gn),
where each Gi is a polynomial of total degree ≤ 6. We prove this by
showing that the sum of weights of Catalan trees over certain equivalence
classes is equal to zero. We also show that if all of the polynomials Hi

are homogeneous of the same total degree d ≥ 2 and ( ∂Hi∂xj
)2 = 0, then

H ◦H = 0 and the inverse of F is G = (x1 −H1, . . . , xn −Hn).

1 Introduction

Let F1, F2, . . . , Fn be polynomials in C[x1, x2, . . . , xn], the ring of polynomials
in the variables x1, x2, . . . , xn over the field of complex numbers. The Jacobian
conjecture states that if the Jacobian of the system F = (F1, F2, . . . , Fn) is equal
to a non-zero scalar number, then there exists an inverse system of polynomials
G = (G1, G2, . . . , Gn) such that

Gi(F1, F2, . . . , Fn) = xi

for each i ≤ n. For example, let n = 2 and consider

F1 = x1 + (x1 + x2)2, F2 = x2 − (x1 + x2)2.

Keywords: Catalan trees, Jacobian conjecture, formal tree expansions
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Since
F1 − (F1 + F2)2 = x1

and
F2 + (F1 + F2)2 = x2,

the inverse to the system F = (F1, F2) is the system G = (G1, G2) defined by

G1 = x1 − (x1 + x2)2, G2 = x2 + (x1 + x2)2.

Note that the Jacobian of F is

det

 ∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

 = det

 1 + 2x1 + 2x2 2x1 + 2x2

−2x1 − 2x2 1− 2x1 − 2x2

 = 1.

There are a number of partial results relating to systems in which Fi =
xi +Hi for all i, where each Hi is homogeneous of the same total degree d. In
this case the matrix of partial derivatives (∂Hi∂xj

) satisfies (∂Hi∂xj
)n = 0. Wang [4]

and Oda [3] have shown that the Jacobian conjecture is true of those systems
for which d = 2. Bass, Connell and Wright [1] have shown that the Jacobian
conjecture is true provided it is true of all systems for which d = 3. A number
of authors have shown (see for example [2]) that the Jacobian conjecture is true
when (∂Hi∂xj

)2 = 0, and in this case the inverse system is given by Gi = xi −Hi

for each i. David Wright [5] gave a combinatorial proof of this result when
n = 2 and d = 3, using the formal tree expansion of the inverse suggested by
Gurjar’s formula (unpublished, but cited in [5]). While Wright’s formal tree
expansion is an elegant combinatorial expression of the inverse, his tree surgery
approach does not easily lend itself to calculating the terms in the differential
ideal generated by (∂Hi∂xj

)n. In this paper we propose a different approach to the
formal tree expansion of the inverse, and our methods give rise to the following
algebraic results:

Theorem 1.1. Let F = (x1 +H1, x2 +H2, . . . , xn +Hn) be a system of poly-
nomials with complex coefficients, where each Hi is homogeneous of total de-
gree d. Let H = (H1,H2, . . . ,Hn). If (∂Hi∂xj

)2 = 0 then the inverse of F is

(x1−H1, x2−H2, . . . , xn−Hn) and H ◦H = 0, regarding H as a function from
polynomial systems to polynomial systems. If (∂Hi∂xj

)3 = 0 and d = 2 then F has

a polynomial inverse of degree ≤ 6 and H ◦H ◦H = 0.

We should remark that Bass, Connell and Wright [1] proved that 2n−1 is
a bound on the degree of the inverse of F when F is a quadratic system of n
polynomials in n variables. Our bound on the degree of the inverse is much
lower than this for large n, given our additional hypothesis that (∂Hi∂xj

)3 = 0.

As an illustration of the property that (∂Hi∂xj
)2 = 0 ⇒ H ◦H = 0, consider

our initial example. In this case we have

H1 = (x1 + x2)2, H2 = −(x1 + x2)2,
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 ∂H1
∂x1

∂H1
∂x2

∂H2
∂x1

∂H2
∂x2

2

=

 2x1 + 2x2 2x1 + 2x2

−2x1 − 2x2 −2x1 − 2x2

2

=

 0 0

0 0

 ,
and

H ◦H = (H1(H1,H2),H2(H1,H2)) = ((H1 +H2)2,−(H1 +H2)2) = (0, 0).

This paper is organized as follows. In Section 2 we show that the formal
power series inverse of a system of polynomials can be expressed as sums of
weights of Catalan trees. In Section 3 we will indicate how a combinatorial
interpretation of (∂Hi∂xj

)n = 0 can be combined with Gaussian elimination to
show that sums of weights over equivalence classes of Catalan trees having
a sufficiently large number of external vertices are zero. In order to obtain
this result we will need to establish new combinatorial properties of Catalan
trees. This is the subject of Section 4. In Section 5 we use our understanding
of Catalan trees to prove Theorem 1.1. Our methods give rise to a number
of difficult questions about these combinatorial objects, which we pose in the
concluding section of this paper.

2 Catalan Tree Expansion of the Inverse

Catalan trees are rooted planar trees whose internal vertices have out-degree
≥ 2. We will denote the set of Catalan trees by C and the set of Catalan
trees having p external vertices by Cp. Internal vertices are vertices which have
successor vertices, and external vertices are those which do not (they are also
known as leaves). For example, C4 consists of the trees

, , , , , , , , , , .

By definition, for p ≥ 2 we have

Cp =
⋃

2 ≤ k ≤ p
p1 + · · ·+ pk = p

{

. . .T TT1 2 k

: T1 ∈ Cp1 , . . . , Tk ∈ Cpk}.

In order to express the inverse of F = x+H as sums of weights of Catalan
trees, we need to introduce the notion of vertex colors. Given the finite set of
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colors {1, 2, . . . , n}, we recursively define for each i ≤ n the set C(i), consisting
of colored Catalan trees with root colored i, by

C(i) =
∞⋃
p=1

C(i)
p ,

where

C(i)
1 = { i}

and

C(i)
p =

⋃
2 ≤ k ≤ p

p1 + · · ·+ pk = p
1 ≤ i1 ≤ · · · ≤ ik ≤ n

{

. . .T TT1 2 k

i : T1 ∈ C(i1)
p1

, . . . , Tk ∈ C(ik)
pk
}.

Figure 2.1 contains an illustration of a colored tree in C(1)
7 .

1

3

1

1 2 2

33

2 2 3

Figure 2.1: A Colored Tree

Given a system of polynomials F = (F1, F2, . . . , Fn), where Fi = xi + Hi

and
Hi =

∑
k ≥ 2

1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n

h
(i)
i1,i2,...,ik

xi1xi2 · · ·xik ,

we define a weight function w on
⋃n
i=1 C(i) in the following way: Let T ∈ C(i).

Let VI(T ) denote the set of internal vertices of T , and let VE(T ) denote the set
of external vertices of T . For each vertex v of T , let c(v) denote the color of v.
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For each internal vertex v of T , let m(v) denote the multiset consisting of the
colors of the immediate successors of v. We then define

w(T ) = (−1)|VI(T )|
∏

v∈VI(T )

h
(c(v))
m(v)

∏
v∈VE(T )

xc(v).

For example, the weight of the colored tree in Figure 2.1 is

h
(1)
1,2,2h

(1)
1,2h

(1)
3,3,3h

(2)
2,3x

3
2x

4
3.

An alternate way to compute the weight function is by means of the recursive
definition

w
(

i
)

= xi,

w
( . . .T TT1 2 k

i
)

= −h(i)
i1,i2,...,ik

k∏
j=1

w(Tj),

where Tj ∈ C(ij) for each j.

We can now express the formal power series inverse of the system F as sums
of weights of Catalan trees. We define Gi ∈ C[[x1, x2, . . . , xn]] for each i by

Gi =
∑
T∈C(i)

w(T ).

This sum is well-defined because the total degree of w(T ) is p for all T ∈ C(i)
p ,

and each of the sets C(i)
p is finite.

Theorem 2.1. With notation as above,

Fi(G1, G2, . . . , Gn) = xi

for each i.
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Proof. Using the definition of C(i) and the recursive definition of the weight
function, we have

Gi =
∑
T∈C(i)

w(T )

= xi +
∑
k ≥ 2

1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n
T1 ∈ C(i1), . . . , Tk ∈ C(ik)

w(

. . .T TT1 2 k

i )

= xi −
∑
k ≥ 2

1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n
T1 ∈ C(i1), . . . , Tk ∈ C(ik)

h
(i)
i1,i2,...,ik

k∏
j=1

w(Tj)

= xi −
∑
k ≥ 2

1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n

h
(i)
i1,i2,...,ik

Gi1Gi2 · · ·Gik

= xi −Hi(G1, G2, . . . , Gn),

hence
Fi(G1, G2, . . . , Gn) = Gi +Hi(G1, G2, . . . , Gn) = xi

for each i.

It will be convenient to ignore the vertex colors of a tree T ∈ C(i) and to
regard only the underlying tree, shape(T ), which resides in C. This leads us to
define the weight function wi on C by

wi(T ) =
∑

S ∈ C(i)

shape(S) = T

w(S).

Using this definition we have

Gi =
∑
T∈C

wi(T ).

The Jacobian conjecture states that if the Jacobian of F = (F1, F2, . . . , Fn)
is a non-zero scalar, then each Gi is a polynomial. This is equivalent to saying
that ∑

T∈Cp

wi(T ) = 0 (2.1)
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for all i and sufficiently large p. In the next section, we will use a combinatorial
argument to prove that if (∂Hi∂xj

)2 = 0 and each Hi is homogeneous of degree 2
then H ◦ H = 0 is true, and we will describe a strategy for proving 2.1. This
will motivate the subsequent combinatorial analysis of Catalan trees.

3 Exploiting (∂Hi

∂xj
)n = 0

If F = (x1 + H1, x2 + H2, . . . , xn + Hn) is a system of polynomials having
Jacobian equal to 1, and if each Hi is homogeneous of the same total degree,
then (∂Hi∂xj

)n = 0. We can translate this fact into a combinatorial property of a
certain class of Catalan trees. We will begin by defining marked Catalan trees
and the formal multiplication of marked trees with other Catalan trees.

A marked Catalan tree is a pair (T, v), where T is a Catalan tree and v is an
external vertex of T . We will denote by (C, ∗) the set of marked Catalan trees.
Marked Catalan trees having p external vertices are denoted by (Cp, ∗), marked
colored Catalan trees with root colored i are denoted by (C(i), ∗), etc. We will
also denote by C(i,j) the set {(T, v) ∈ (C(i), ∗) : c(v) = j}, where c(v) denotes
the color of the vertex v. The shape of a marked Catalan tree is the underlying
marked Catalan tree (minus the vertex colors, but including the same marked
vertex).

Marked Catalan trees can be multiplied together in a natural way. Let (S, u)
and (T, v) be elements of (C, ∗). We set (S, u)(T, v) equal to the marked tree
obtained by replacing the vertex u in S by (T, v). For example, if

(S, u) =

and
(T, v) = ,

then

(S, u)(T, v) = .

Similarly, we can multiply a marked tree (S, u) and an unmarked tree T to
obtain an unmarked tree (S, u)T .

We will extend our weight function to marked Catalan trees as follows:

wi,j(T, v) = (−1)|VI(T )|
∑

(S, v) ∈ C(i,j)

shape(S, v) = (T, v)

∏
u∈VI (S)

h
(c(u))
m(u)

∏
u∈VE(S)−{v}

xc(u)
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=
1
xj

∑
(S, v) ∈ C(i,j)

shape(S, v) = (T, v)

w(S).

Note that with this definition we have

wi,j((S, u)(T, v)) =
n∑
k=1

wi,k(S, u)wk,j(T, v)

and

wi((S, u)T ) =
n∑
j=1

wi,j(S, u)wj(T ).

Of particular interest are those marked trees having height equal to the
number of their internal vertices, which we call chains. For example, the marked
tree

(T, v) =

is a chain of height 3. We will denote the set of all chains in (C, ∗) by CH and
those of height k by CHk. Note that a chain of height k can be viewed as the
formal product of k chains of height 1. With notation as in Section 2, we have∑

(T,v)∈CH1

wi,j(T, v) = −∂Hi

∂xj
.

Therefore we have the matrix identity ∑
(T,v)∈CHk

wi,j(T, v)

 =

 ∑
(T,v)∈CH1

wi,j(T, v)

k

= (−1)k
(
∂Hi

∂xj

)k
for each positive integer k. In particular, we have the following theorem:

Theorem 3.1. With notation as above, if F = (x1+H1, x2+H2, . . . , xn+Hn) is
a system of polynomials with Jacobian equal to 1, and if eachHi is homogeneous
of the same total degree, then ∑

(T,v)∈CHn

wi,j(T, v)

 = (−1)n
(
∂Hi

∂xj

)n
= 0.

In combinatorics, a picture is worth a thousand definitions. Keeping this in
mind, we will give a combinatorial argument that H ◦H = 0, given that H =
(H1,H2, . . . ,Hn) is a system of polynomials such that each Hi is homogeneous
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of degree 2 and that (∂Hi∂xj
)2 = 0. This will motivate the definitions to come

when we make our more general arguments.

Given a Catalan tree T , we will let [T ] denote the equivalence class of all
trees isomorphic to T as a rooted tree. Given a marked Catalan tree (T, v), we
will let [T, v] denote the equivalence class of all trees isomorphic to (T, v) as a
rooted tree, where the isomorphism sends marked vertex to marked vertex. For
example, the trees isomorphic to

are

, , , .

We will denote by wi[T ] and wi,j [T, v] the expressions

wi[T ] =
∑
S∈[T ]

wi(T )

and
wi,j [T, v] =

∑
(S,v)∈[T,v]

wi,j(S, v).

In order to show that H ◦H = 0, we must show that

wi[ ] = 0 (3.1)

for each i. We know thatwi,j [ ]

 =
(
∂Hi

∂xj

)2

= 0.

Let p and q be indeterminants. Regarding

wi,j [ ]

as a function of x1, x2, . . . , xn, we have

wi,j [ ]
(
w1[ ]p+ w1[ ]q, . . . , wn[ ]p+ wn[ ]q

)
= 0

for each i and j. On the other hand,

wi,j [ ]
(
w1[ ]p+ w1[ ]q, . . . , wn[ ]p+ wn[ ]q

)
=
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wi,j [ ]p2 + wi,j [ ]pq + wi,j [ ]pq + wi,j [ ]q2.

Hence, taking the coefficient of pq, we obtain

wi,j [ ] + wi,j [ ] = 0

for each i and j.

Observe that we have the matrix equation

wi,j [ ] + wi,j [ ]

×
 w1[ ]

...
wn[ ]

 =


4w1[ ] + w1[ ]

...

4wn[ ] + wn[ ]


.

The multiplicity 4 arises because there are four ways to produce

by multiplying an element in the class of

and an element in the class of . We can now say that

4wi[ ] + wi[ ] = 0 (3.2)

for each i ≤ n. On the other hand, we also have

 0
...
0

 =
(
∂Hi

∂xj

)2

×


w1[ ]

...

wn[ ]

 =

wi,j [ ]

×

w1[ ]

...

wn[ ]


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=


w1[ ]

...

wn[ ]


=


w1[ ]

...

wn[ ]


,

the last equality holding because we are summing over an equivalence class of
trees. Hence

wi[ ] = 0 (3.3)

for each i. Combining equations 3.2 and 3.3 we arrive at 3.1. The multiplicity
4 encountered in 3.2 illustrates why we need to work in a field of characteristic
zero.

The arguments leading to 3.1 are rather ad hoc. However, our strategy is
clear: in order to prove that wi[T ] = 0 for some Catalan tree T , we must identify
a finite subset of trees {T1, . . . , Tk} which contains T , produce a collection L of
linear combinations of the form ∑

j

αjwi[Tj ],

show that wi[T ] belongs to the span of the elements of L over the rationals by
performing Gaussian elimination, and show that each element of L evaluates
to zero when (∂Hi∂xj

)n = 0. In order to perform Gaussian elimination, one must
impose an ordering on {T1, . . . , Tk} and characterize the leading term of each
element of L. This is the focus of the remainder of this paper.

4 Combinatorial Properties of Catalan Trees

Equivalence Classes of Catalan Trees

We begin by defining carefully the equivalence relation on C. Two trees are
equivalent if and only if they are isomorphic as rooted non-planar graphs. Hence
equivalent trees must have the same number of external vertices. In general, if
S and T are trees with at least two external vertices, and

S =

. . .S S S1 2 j

and

T =

. . .T TT1 2 k

,
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then S is equivalent to T if and only if j = k and there exists a permutation σ
such that Ti ≡ Sσ(i) for all i. We will define an equivalence relation on (C, ∗)
similarly, adding that the graph isomorphism must map a marked vertex to
another marked vertex. No marked tree is equivalent to an unmarked tree.

Branch Words, Multisets, Chains, and Shuffles

In order to exploit (∂Hi∂xj
)n = 0, we must have a language to describe the chains

which occur in each Catalan tree. We define the branch word Bv(T ) of a tree
(T, v) ∈ (C, ∗) recursively as follows. If (T, v) consists of a single marked vertex
then we set Bv(T ) equal to the empty word. Otherwise, write

T =

. . .T TT1 2 k

,

and suppose that v ∈ VE(Ti). Let M represent the multiset of subtrees {Tj :
1 ≤ j ≤ k and j 6= i}. We set Bv(T ) equal to the word Bv(Ti)M . We say that
branch words B1 = M1M2 . . .Mj and B2 = N1N2 . . .Nk are equivalent to each
other if and only if j = k and Mi ≡ Ni for all i, that is if there is a bijection
φi : Mi → Ni for each i such that T ≡ φi(T ) for all T ∈Mi.

The branch multiset Mv(T ) of a marked tree (T, v) is the union of the multi-
sets occuring in the branch word Bv(T ). Mv(T ) contains the subtrees branching
from the unique path in T from the root to v. The subtree of T at a vertex u is
defined to be the induced subgraph of T on the vertex u and all of its successors
in T .

The chain Cv(T ) of a marked tree (T, v) is the marked tree that results by
replacing each of the subtrees of T in Mv(T ) by the tree with a single vertex.

A shuffle of a marked tree (T, v) is any marked tree (T ′, v) that results by
replacing the external vertices of the chain Cv(T ) by the subtrees of T in Mv(T )
in something other than their original positions in T . A shuffle of an unmarked
tree T is any tree T ′ that results by factoring T into (A, u)(B, v)C, shuffling
(B, v) to obtain (B′, v), and setting T ′ equal to (A, u)(B′, v)C.

As an illustration of these ideas, let

(T, v) = .
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Then

Bv(T ) = { }{ , }{ }{ }{ }{ },

Mv(T ) = { , , , , , , },
and

Cv(T ) = .

One possible shuffle of (T, v) is

(T ′, v) = .

The following lemma shows that equivalent marked trees have equivalent
branch words.

Lemma 4.1. Let (S, u), (T, v) ∈ (C, ∗). Then (S, u) ≡ (T, v) if and only if
Bu(S) ≡ Bv(T ).

Proof. Suppose (S, u) ≡ (T, v). Then S, T ∈ Cp for some p. We will prove the
conclusion by induction on p. If p = 1 then Bu(S) and Bv(T ) are both equal to
the empty word. Now consider p > 1. Write

S =

. . .1 2 kS S S

and

T =

. . .T TT1 2 k
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for some k ≥ 2. Suppose u ∈ VE(Si0). Then there exists a permutation σ such
that Si ≡ Tσ(i) for all i 6= i0 and (Si0 , u) ≡ (Tσ(i0), v). Since Si0 and Tσ(i0)

have the same number of vertices, and fewer than p vertices, by the induction
hypothesis we may write Bu(Si0) ≡ Bv(Tσ(i0)). Hence

Bu(S) = Bu(Si0){Si : i 6= i0} ≡ Bv(Tσ(i0)){Ti : i 6= σ(i0)} = Bv(T ).

Conversely, suppose Bu(S) ≡ Bv(T ). Then the length of Bu(S) is equal to
the length of Bv(T ). We will prove the conclusion by induction on this length.
If each word has length 0, then both (S, u) and (T, v) consist of a single vertex,
hence are equivalent. Now consider length ≥ 1. We again write

S =

. . .S S S1 2 j

and

T =

. . .T TT1 2 k

.

We may suppose u ∈ VE(Sa) and v ∈ VE(Tb) some a and b. We have

Bu(Sa){Si : i 6= a} = Bu(S) ≡ Bv(T ) = Bv(Tb){Ti : i 6= b},

hence Bu(Sa) ≡ Bv(Tb) and {Si : i 6= a} ≡ {Ti : i 6= b}. By the induction
hypothesis we have (Sa, u) ≡ (Tb, v). We may therefore conclude that (S, u) ≡
(T, v).

The next result implies that no two distinct shuffles of a tree can appear in
the same equivalence class.

Lemma 4.2. Let (S, u), (T, v) ∈ C be given. If S ≡ T and Mu(S) ≡ Mv(T )
then Bu(S) ≡ Bv(T ).

Proof. By induction on p, where S, T ∈ Cp. If p = 1 then Bu(S) and Bv(T ) are
both equal to the empty word. Now consider p > 1. Write

S =

. . .1 2 kS S S

and

T =

. . .T TT1 2 k

for some k ≥ 2. Then u ∈ VE(Sa) and v ∈ VE(Tb) for some a and b. We wish
to show Sa ≡ Tb. Let x be the number of subtrees Ti which are equivalent to
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Tb. Since S and T are equivalent, x is also the number of subtrees Si which
are equivalent to Tb. Assuming Sa 6≡ Tb, x is the number of trees which are
equivalent to Tb in {Si : i 6= a}. Hence x is a lower bound on the number of trees
equivalent to Tb inMu(S) = Mu(Sa)∪{Si : i 6= a}. SinceMu(S) ≡Mv(T ), x is a
lower bound on the number of trees equivalent to Tb in Mv(T ) = Mv(Tb)∪{Ti :
i 6= b}. Since all the subtrees in Mv(Tb) have fewer vertices than Tb, x is a
lower bound on the number of trees equivalent to Tb in {Ti : i 6= b}. This
contradicts the definition of x. Hence we must have Sa ≡ Tb after all. Therefore
{Si : i 6= a} ≡ {Ti : i 6= b}, which implies Mu(Sa) ≡ Mv(Tb). Since Sa and Tb
have the same number of vertices, and fewer than p vertices, we can say by the
induction hypothesis that Bu(Sa) ≡ Bv(Tb), and this implies

Bu(S) = Bu(Sa){Si : i 6= a} ≡ Bv(Tb){Ti : i 6= b} = Bv(T ).

Symmetry Labels and Symmetry Numbers

Let T be an element of C, and let v be a vertex of T . We define the symmetry
label lT (v) of v as follows: If v is the root of T , then lT (v) = 1. If v is not the
root of T , then the height of v is k > 0 for some k, and there exists a unique
path from the root of T to v. Let pT (v) denote the vertices along this path. Let
v− be the height k − 1 vertex in pT (v). v− can be viewed as the “father” of v.
Let bT (v) denote the set of “brothers” of v, namely those successors of v− at
height k. Let subv(T ) be the multiset of subtrees of T having a root in bT (v).
We define lT (v) as the number of trees in subv(T ) which are equivalent to the
subtree having v as a root. We define the symmetry labels of a marked tree
(T, v) ∈ (C, ∗) in the same way, bearing in mind that one of the subtrees of the
brothers may be marked and that no marked tree is equivalent to an unmarked
tree. Figure 4.1 contains an illustration of the symmetry labels of an unmarked
tree.

We define the symmetry number of a tree in C ∪ (C, ∗) to be the number
of trees in its equivalence class. The notation is sym(T ) for unmarked trees
and sym(T, v) for marked trees. Symmetry labels and symmetry numbers are
useful for keeping track of the multiplicities which arise when we form products
of formal sums of trees.

Products of Classes of Marked and Unmarked Trees

Let T ∈ C ∪ (C, ∗). We will denote by sum(T ) the formal sum

sum(T ) =
∑
T ′≡T

T ′.
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Figure 4.1: Symmetry Labels

We will multiply formal sums of trees as follows: if (S, v) ∈ (C, ∗) and T ∈
C ∪ (C, ∗), we set

sum(S, v)sum(T ) =
∑

(S′, v′) ≡ (S, v)
T ′ ≡ T

(S′, v′)T ′.

We will now work out the product rules for pairs of formal sums over equivalence
classes.

Lemma 4.3. Let (R, u) and (S, v) be marked Catalan trees, and write

(R, u)(S, v) = (T, v).

Then
sum(R, u)sum(S, v) = sum(T, v).

Proof. We need to verify that every term in the product is equivalent to (T, v),
and that each marked tree in the class of (T, v) has a unique decomposition into
a product of trees, one from the class of (R, u) and one from the class of (S, v).

Every term in the product is equivalent to (T, v): Let (R′, u′) ≡ (R, u)
and (S′, v′) ≡ (S, v) be given. By Lemma 4.1, we have Bu′(R′) ≡ Bu(R) and
Bv′(S′) ≡ Bv(S). Hence if we write (R′, u′)(S′, v′) = (T ′, v′), then

Bv′(T ′) = Bv′(S′)Bu′(R′) ≡ Bv(S)Bu(R) = Bv(T ).
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By Lemma 4.1 we therefore have (T ′, v′) ≡ (T, v).

Decompositions exist and are unique: Let (T ′, v′) ≡ (T, v) be given.
Clearly height(v′) = height(v). There is a unique path in T ′ from the root to v′,
hence a unique factorization of (T ′, v′) into (R′, u′)(S′, v′) such that u′ occcurs
along this path and that height(u′) = height(u). Since

Bv′(S′)Bu′(R′) = Bv′(T ′) ≡ Bv(T ) = Bv(S)Bu(R),

we must have Bu′(R′) ≡ Bu(R) and Bv′(S′) ≡ Bv(S). By Lemma 4.1 we must
have (R′, u′) ≡ (R, u) and (S′, v′) ≡ (S, v).

The next lemma characterizes the product of classes of marked and un-
marked trees in terms of symmetry labels.

Lemma 4.4. Let (R, v) ∈ (C, ∗) and S ∈ C be given, and write (R, v)S = T .
Then

sum(R, v)sum(S) =

 ∏
u∈pT (v)

lT (u)

 sum(T ).

Proof. By induction on height(v). If height(v) = 0, then the conclusion is
trivially true since the symmetry label of the root of a tree is equal to one. If
height(v) = 1, then S is a height 1 subtree of T , and the root of S as a subtree
of T is v. Write

T =

. . .T TT1 2 n

.

By definition of symmetry labels there are exactly lT (v) subtrees Ti which are
equivalent to S. Hence any tree T ′ equivalent to T has exactly lT (v) height one
subtrees which are equivalent to S. This implies that every T ′ ≡ T arises in
lT (v) ways as a product of (R′, v′) ≡ (R, v) and S′ ≡ S. Therefore

sum(R, v)sum(S) = lT (v)sum(T ) =

 ∏
u∈pT (v)

lT (u)

 sum(T ).

Now consider height(v) > 1. Then we can decompose (R, v) into the product
(R′, v′)(R′′, v), where height(v′) = 1. By Lemma 4.3, we can say that

sum(R, v) = sum(R′, v′)sum(R′′, v).

We will write T ′ = (R′′, v)S. We then have T = (R′, v′)T ′. Since the height of v
in R′′ is one less than the height of v in R, we have by the induction hypothesis
that

sum(R′′, v)sum(S) =

 ∏
u∈pT ′(v)

lT ′(u)

 sum(T ′).
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Hence by our height 1 result we have

sum(R, v)sum(S) = sum(R, v′)sum(R′′, v)sum(S)

= sum(R, v′)

 ∏
u∈pT ′(v)

lT ′(u)

 sum(T ′)

= lT (v′) ·

 ∏
u∈pT ′ (v)

lT ′(u)

 sum(T )

=

 ∏
u∈pT (v)

lT (u)

 sum(T ),

the last equality holding because lT ′(u) = lT (u) for u ∈ pT ′(v) − {v′} and
lT ′(v′) = 1, v′ being the root of T ′.

We can use symmetry numbers to conveniently summarize the contents of
the last two lemmas as follows:

Proposition 4.5. Let (R, v) ∈ (C, ∗) and S ∈ C ∪ (C, ∗) be given, and write
T = (R, v)S. Then

sum(R, v)sum(S) =
sym(R, v)sym(S)

sym(T )
sum(T ).

Proof. The upshot of the last two lemmas is that

sum(R, v)sum(S) = α · sum(T )

for some integer α, and clearly α must satisfy

sym(R, v)sym(S) = α · sym(T ).

Total Ordering of Catalan Trees

We will define a total ordering < of C ∪ (C, ∗) as follows. We first require that
S < T whenever S has fewer external vertices than T . We also require that
the unmarked tree consisting of a single vertex be smaller than the marked tree
having a single vertex. In general we define < recursively as follows: if S and
T have the same number of vertices,

S =

. . .S S S1 2 j
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and

T =

. . .T TT1 2 k

,

then S < T if and only if the word S1S2 . . . Sj is less than the word T1T2 . . . Tk
in lexicographic order. For example, the trees in C4 listed in increasing order
are

, , , , , , , , , , .

We will refer to those trees which are largest in their equivalence class as
standard trees, and use them as equivalence class representatives. We will de-
note the set of standard Catalan trees by standard(C) and the set of standard
marked Catalan trees by standard(C, ∗). The standard trees in C4 are

, , , , .

One of the standard trees in CH3 is

.

The standard tree representing the class [T ] is T . We will also say that [S] < [T ]
if and only if S < T .

It is not difficult to verify the following property of standard trees:

Lemma 4.6. All of the subtrees of a standard tree are standard.

Chain Compositions

We have already defined the set CHk of chains of height k. We will refine this
definition by setting CH(i1,...,ik) equal to the the equivalence class of height k
chains having branch word M1M2 . . .Mk, where Mj consists of ij trees of height
zero for each j. For example, we have

CH(2,1,3) = {(C, v) ∈ CH3 : (C, v) ≡ }.
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Let M = {T1, . . . , Tr} be a multiset of standard Catalan trees. Then Ti ≡ Tj
if and only if Ti = Tj . Let i1, . . . , ik be a collection of positive integers which sum
to r. We will denote by CH(i1,...,ik) ◦M the multiset of marked trees formed in
the following way: choose a chain (C, v) from CH(i1,...,ik), for each i ≤ r choose a
tree T ′i equivalent to Ti, choose a permutation σ of {1, . . . , r}, and replace the ith

unmarked external vertex of (C, v) (in depth-first order) by the tree T ′σ(i). It is
not difficult to see that the multiplicity of any particular tree in CH(i1,...,ik) ◦M
is r!/α, where α is the number of distinct rearrangements of the list T1, . . . , Tr,
and that (T, v) ∈ CH(i1,...,ik) ◦M implies [(T, v)] ⊂ CH(i1,...,ik) ◦M .

We will set B(i1,...,ik)(M) equal to the set of branch words M1 . . .Mk which
are multiset partitions of M with |Mj| = ij for all j. Every standard (T, v) ∈
CH(i1,...,ik) ◦M satisfies Bv(T ) ∈ B(i1,...,ik)(M) . By Lemma 4.1 we can say
that if the marked trees (S, u) and (T, v) have distinct branch words Bu(S) and
Bv(T ), then (S, u) 6≡ (T, v). Putting this all together we have the following
result:

Proposition 4.7. With notation as above,∑
(T,v)∈CH(i1,...,ik)◦M

(T, v) =
r!
α

∑
(T, v) ∈ standard(C, ∗)
Bv(T ) ∈ B(i1,...,ik)(M)

sum(T, v).

Linear Combinations of Formal Sums of Catalan Trees

We can now state a theorem which is based on all the preceeding results of this
section. Its purpose is to describe the multiplicities which arise when we create
a formal linear combination of equivalence classes of trees by shuffling a given
tree.

Let M be a multiset of r standard Catalan trees. Let α be the number of
distinct rearrangements of the contents of M . Let (i1, . . . , ik) be a sequence of
positive integers which sum to r. Let B(i1,...,ik)(M) be the set of branch words
M1 . . .Mk which are multiset partitions of M such that |Mj | = ij for all j. Let
(R, v) be a marked Catalan tree. Let T be a Catalan tree. Then

Theorem 4.8. With notation as above,

sum(R, u)

 ∑
(S,v)∈CH(i1,...,ik)◦M

(S, v)

 sum(T ) =

r!
α

∑
(S, v) ∈ standard(C, ∗)
Bv(S) ∈ B(i1,...,ik)(M)

sym(R, u)sym(S, v)sym(T )
sym((R, u)(S, v)T )

sum((R, u)(S, v)T ).
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The multiplicity of each tree in [(R, u)(S, v)T ] which occurs in the right hand
side of this identity is precisely

r!
α

sym(R, u)sym(S, v)sym(T )
sym((R, u)(S, v)T )

.

Proof. The first statement follows from Proposition 4.7 and Proposition 4.5. To
prove the second statement, let

P = (R′, u′)(S′, v′)T ′

and
Q = (R′′, u′′)(S′′, v′′)T ′′

be two of the terms above. We must show that

P ≡ Q⇒ (S′, v′) ≡ (S′′, v′′).

Assume P ≡ Q. Choose any vertex w′ ∈ VE(T ′). Since T ′ ≡ T ′′, there must
exist a corresponding vertex w′′ ∈ VE(T ′′) such that (T ′, w′) ≡ (T ′′, w′′). This
implies by Lemma 4.1 that Bw′(T ′) ≡ Bw′′(T ′′). Since (R′, u′) ≡ (R′′, u′′), we
also have Bu′(R′) ≡ Bu′′(R′′). Finally, we are assuming that the union of the
multisets making up the branch word of (S′, v′) is equivalent to the union of
the multisets making up the branch word of (S′′, v′′), i.e. that they are both
equivalent to M . Hence

Mw′(P ) = Mw′(T ′) ∪Mv′(S′) ∪Mu′(R′) ≡

Mw′′(T ′′) ∪Mv′′(S′′) ∪Mu′′(R′′) = Mw′′(Q).

By Lemma 4.2 we must conclude that

Bw′(P ) ≡ Bw′′(Q).

Therefore

Bw′(T ′)Bv′(S′)Bu′(R′) ≡ Bw′′(T ′′)Bv′′(S′′)Bu′′(R′′).

This forces
Bv′(S′) ≡ Bv′′(S′′).

By Lemma 4.1 again we therefore have (S′, v′) ≡ (S′′, v′′).

As an immediate application of this theorem we can carry out the compu-
tations in Section 3 in a more general setting. Let

C
(k)
a,b (x1, . . . , xn) =

∑
X∈CHk

wa,b(X) = (a, b)-entry of (−1)k
(
∂Hi

∂xj

)k
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and
Ai(x1, . . . , xn, q1, . . . , qr) =

∑
Tj∈M

wi[Tj ]qj ,

where the qj are indeterminants.

Theorem 4.9. With notation as above, the coefficient of q1q2 · · · qr in the ex-
pression ∑

1≤a,b≤n
wi,a[R, v]C(k)

a,b (A1, . . . , An)wb[T ]

is

r!
α

∑
i1 + · · ·+ ik = r

(S, v) ∈ standard(C, ∗)
Bv(S) ∈ B(i1,...,ik)(M)

sym(R, u)sym(S, v)sym(T )
sym((R, u)(S, v)T )

wi[(R, u)(S, v)T ].

Corollary 4.10. With notation as above, if Hi is homogeneous of total degree
d+ 1 for each i and (∂H)k = 0 then∑

(S, v) ∈ standard(C, ∗)
Bv(S) ∈ Bdk(M)

sym(S, v)
sym((R, u)(S, v)T )

wi[(R, u)(S, v)T ] = 0.

In order to perform Gaussian elimination on such expressions, we need to
identify the smallest term of the form [(R, u)(S, v)T ]. This is the goal of the
next section.

The Smallest Shuffle of a Tree

We will define two partial orders on multisets of standard trees as follows: M1 ≤
M2 if and only if there is an injection φ : M1 →M2 such that T ≤ φ(T ) for all
T ∈M1, and M1 �M2 if and only if S ≤ T for all S ∈M1 and T ∈M2. Given
a multiset M of r standard trees, and given a partition (i1, . . . , ik) of r, there
is a unique multiset partition M1, . . . ,Mk of M such that |Mj| = ij for all j
and M1 � · · · � Mk: place the i1 smallest trees of M in M1, place the next i2
smallest trees in M2, and so on. Our goal in this section is to prove Theorem
4.11 below. Recall our notation that T is the largest tree in the class of T . We
will also represent the tree

. . .T TT1 2 k

by the vector (T1, T2, . . . , Tk).
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Theorem 4.11. Let i1, . . . , ik be a collection of positive integers. Let M be a
multiset of standard trees of cardinality i1 + · · ·+ ik. Let (S, v) be any marked
tree with Bv(S) = M1 . . .Mk ∈ B(i1,...,ik)(M), where M1 � · · · � Mk. Let
(R, u) and T be given trees. Then

(R, u)(S, v)T

is the smallest tree in

{(R, u)(S′, v′)T : Bv′(S′) ∈ B(i1,...,ik)(M)}.

In order to prove this theorem we will need the following lemmas.

Lemma 4.12. Let X be a totally ordered set. For each word w in X∗, let w
denote the largest rearrangement of w in lexicographic order. If w and w′ are
two words in X∗ of the same length, x ∈ X , and w ≥ w′, then wx ≥ w′x.

Proof. By induction on length(w). The case length(w) = 0 is trivially true.
Consider length(w) ≥ 1. Write w = a1 · · · ak and w′ = b1 · · · bk. Then a1 ≥
· · ·ak and b1 ≥ · · · ≥ bk. There are three cases to consider. If x ≥ a1 ≥ b1
then wx = xa1 · · · ak ≥ xb1 · · · bk = w′x. If a1 > x ≥ b1 then wx ≥ a1 · · ·akx >
xb1 · · · bk = w′x. If a1 ≥ b1 > x then write w = a1W and w′ = b1W

′. Then
wx = a1Wx and w′x = b1W ′x. If a1 > b1 then clearly wx > w′x. On the other
hand, if a1 = b1 then W ≥W ′, hence by the induction hypothesis Wx ≥W ′x,
and this implies wx ≥ w′x.

Corollary 4.13. Let M and N be multisets of standard trees of equal cardi-
nality ≥ 2. Assume the standard tree whose height one subtrees make up M is
greater than or equal to the standard tree whose height one subtrees make up
N . Let T be a standard tree. Then the standard tree whose height one subtrees
make up M ∪ {T} is greater than or equal to the standard tree whose height
one subtrees make up N ∪ {T}.

Proof. In general, if the standard trees in a multiset X are T1 ≥ T2 ≥ · · · ≥ Tk,
then the standard tree having these height one subtrees is (T1, T2, · · · , Tk), which
is the largest rearrangement of the word T1T2 · · ·Tk in lexicographic order.

Lemma 4.14. Let M and N be multisets of standard trees of equal cardinality
≥ 2 such that M ≤ N . Let S be the standard tree whose height one subtrees
make up the multiset M , and let T be the standard tree whose height one subtrees
make up the multiset N . Then S ≤ T .
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Proof. Since M ≤ N , there is an injection φ : M → N such that S ≤ φ(S) for all
S ∈ M . Let S1 ≥ S2 ≥ · · · ≥ Sk be the trees in M , and let T1 ≥ T2 ≥ · · · ≥ Tk
be the trees in N . As words in standard(C)∗ we have

S1S2 · · ·Sk ≤ φ(S1)φ(S2) · · ·φ(Sk) ≤ T1T2 · · ·Tn,

hence
S = (S1, S2, . . . , Sk) ≤ (T1, T2, . . . , Tk) = T.

Lemma 4.15. Let (R, u) and (S, v) be marked trees whose branch multisets
Mu(R) and Mv(S) consist of standard trees, assume

height(u) = height(v) = p,

write Bu(R) = M1M2 . . .Mp and Bv(S) = N1N2 . . .Np, and assume Mi ≤ Ni
for all i. Then for all T1 ≤ T2 ∈ standard(C) we have

(R, u)T1 ≤ (S, v)T2.

Proof. By induction on p. If p = 1 then we appeal to Lemma 4.14. If p > 1,
write

R =

. . .R R R1 2 j

and

S =

. . .1 2 kS S S
.

Let Ra be the subtree which contains u. Then Bu(Ra) = M1 . . .Mp−1 and
Mp = {Ri : i 6= a}. Let Sb be the subtree which contains v. Then Bv(Sb) =
N1 . . .Np−1 and Np = {Si : i 6= b}. By the induction hypothesis, we have
(Ra, u)T1 ≤ (Sb, v)T2. Since Mp ≤ Np, there is an injection

φ : {Ri : i 6= a} → {Si : i 6= b}

which satisfies x ≤ φ(x) for all x ∈ Mp. We can extend φ to an injection from
{Ri : i 6= a} ∪ {(Ra, u)T1} to {Si : i 6= b} ∪ {(Sb, v)T2} by setting

φ((Ra, u)T1) = (Sb, v)T2.

This is an injection from the height one subtrees of (R, u)T1 to the height one
subtrees of (S, v)T2. Hence by Lemma 4.14 we can say (R, u)T1 ≤ (S, v)T2.
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Proof of Theorem 4.11. There is no harm in assuming that (R, u) and T are
standard, because the result we are proving is a statement about equivalence
classes. Having made this assumption, by Lemma 4.15 if will suffice to show
that

(S, v)T

is the smallest tree in

{(S′, v′)T : Bv′(S′) ∈ B(i1,...,ik)(M)}.

We will prove this by induction on q = i1 + · · ·+ ik.

If k = 1 then the only tree in

{(S′, v′)T : (S′, v′) ∈ B(i1,...,ik)(M)}

is (T, T1, . . . , Ti1), where M = {T1, . . . , Ti1}, and the conclusion follows. This
includes the base case q = 1.

We now assume k ≥ 2. We will say that Z is the largest tree in M . By
definition of (S, v), Bv(S) = M1M2 · · ·Mk ∈ B(i1,...,ik)(M), where M1 � M2 �
· · · � Mk. Hence Z ∈ Mk. Let (S′, v′) ∈ (C, ∗), Bv′(S′) ∈ B(i1,...,ik)(M) be
given. Write Bv′(S′) = N1N2 · · ·Nk. Let S1 be the height 1 subtree of S which
contains the vertex v. Let S′1 be the height 1 subtree of S′ which contains the
vertex v′. Then we have Bv(S1) = M1 · · ·Mk−1 and Bv′(S′1) = N1 · · ·Nk−1.
There are two cases to consider, Z ∈ Nk and Z 6∈ Nk.

Case 1. Suppose Z ∈ Nk. If ik = 1, then
⋃k−1
j=1 Mj =

⋃k−1
j=1 Nj , hence by

the induction hypothesis (S′1, v′)T ≥ (S1, v)T . Since (S′, v′)T has height one
subtrees consisting of (S′1, v′)T and Z, and (S, v)T has height one subtrees
consisting of (S1, v)T and Z, we have by Lemma 4.14 that (S′, v′)T ≥ (S, v)T .

Now consider ik > 1. We will apply the induction hypothesis to the situation
in which ik is replaced by ik−1. Let M ′k and N ′k be the multisets obtained from
Mk and Nk respectively by removing one copy of Z from each. Let P be the
standard tree whose height one subtrees make up the multiset M ′k ∪ {(S1, v)T}
and let Q be the standard tree whose height one subtrees make up the multiset
N ′k ∪ {(S′1, v′)T}. By the induction hypothesis, Q ≥ P . Since the height one
subtrees of (S, v)T make up Mk ∪ {(S1, v)T}, and the height one subtrees of
(S′, v′)T make up Nk ∪ {(S′1, v′)T}, we have by Corollary 4.13 (with the tree Z
playing the role of the inserted tree) that (S′, v′)T ≥ (S, v)T .

Case 2. Next consider Z 6∈ Nk. Then Z lives somewhere in S′1, and this will
lead us to our conclusion after we make a reduction which brings us back to
Case 1. There is some Y < Z which lies in Nk, and there is a copy of Z in some
Ni, i < k. Let (S′′, v′) be the tree obtained from (S′, v′) obtained by exchanging
the positions of these copies of Z and Y as they occur on the chain Cv′(S′) of
(S′, v′). Let S′′1 be the height 1 one subtree of S′′ which contains v′. We will
show that (S′, v′)T ≥ (S′′, v′)T and (S′′, v′)T ≥ (S, v)T .
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The tree (S′′1 , v
′) can be obtained from (S′1, v

′) by replacing one copy of
Z with Y along Cv′(S′′1 ), and by Lemma 4.15, we can say that (S′1, v′)T ≥
(S′′1 , v′)T . Moreover, since (S′1, v′)T contains Z as a proper subtree and Z is
the largest tree in M , (S′1, v′)T is larger than any tree in M . Hence (S′1, v′)T is
a height one subtree of (S′, v′)T which is at least as large (in fact it is strictly
larger) than any height one subtree of (S′′, v′)T . Hence (S′, v′)T ≥ (S′′, v′)T ,
because the word consisting of the height 1 subtrees of (S′, v′)T is at least as
large as the word consisting of the height 1 subtrees of (S′′, v′)T in lexicographic
order. If we write Bv′(S′′) = N ′1N

′
2 · · ·N ′k, then we have Z ∈ N ′k by construction.

By Case 1 considered above, we have (S′′, v′)T ≥ (S, v)T . Hence (S′, v′)T ≥
(S, v)T . This completes the proof.

Let X be a finite set of standard Catalan trees. Let L be a linear combination
of the form

L =
∑
T∈X

α(T )sum(T ),

where each α(T ) is a non-zero scalar. We will say that the leading term of L
is the smallest tree in X . We can combine Theorem 4.8 with Theorem 4.11 to
obtain the following result:

Theorem 4.16. Let M be a multiset of standard Catalan trees of cardinality
r, let (i1, . . . , ik) be a partition of r, let (R, u) be a marked Catalan tree and T
an unmarked Catalan tree. Then

sum(R, u)

 ∑
(S,v)∈CH(i1,...,ik)◦M

(S, v)

 sum(T )

is a linear combination over equivalence classes of Catalan trees with leading
term

(R, u)(S, v)T ,

where (S, v) is that unique standard tree which satisfies

Bv(S) = M1 · · ·Mk ∈ B(i1,...,ik)(M)

and M1 � · · · �Mk.

Having established the basic vocabulary and combinatorial properties of
Catalan trees, we move on to identify those properties of Catalan trees which
enable us to prove Theorem 1.1.

5 Applications to the Jacobian Conjecture

We will refer to any unmarked standard tree T for which there exists a vertex
v ∈ VE(T ) such that Bv(T ) = M1 · · ·Mj and Ma � · · · � Ma+k−1 for some a
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as being k-good. Any standard tree which is not k-good is termed k-bad. If
(T, v) is a marked tree such that Mv(T ) consists of standard trees and Bv(T ) =
M1 · · ·Mk and M1 � · · · � Mk, we will refer to (T, v) as being especially k-
good. Every k-good tree T can be factored as T = (Q, u)(R, v)S, where (R, v)
is especially k-good. Theorem 4.16 tells us that given this decomposition of T ,
the leading term of

sum(Q, u)

 ∑
(R′,v′)∈CH(i1,...,ik)◦M

(R′, v′)

 sum(S) (5.1)

is T , where M = Mv(R), Bv(R) = M1 · · ·Mk, and |Mj| = ij for all j.

Every standard tree T with height ≥ 2 is 2-good: let v ∈ VE(T ) be such
that height(v) = height(T ). Write Bv(T ) = M1M2 · · ·Mk. Then M1 consists
of height 0 trees, hence M1 � M2. Hence every standard tree T of height ≥ 2
occurs as the leading term of some linear combination of the type found in
equation 5.1. Hence by Gaussian elimination we have

Theorem 5.1. The set of linear combinations of the form

sum(Q, u)


∑

(R, v) ∈ CH(i1,i2) ◦M
(Q, u)(R, v)S ∈ Cp

(R, v)

 sum(S)

spans the set
{sum(T ) : T ∈ Cp & height(T ) ≥ 2}.

Note that if the polynomial system H = (H1,H2, . . . ,Hn) is homogeneous
of total degree d, then wi(T ) = 0 for any tree T which has an internal vertex
with out-degree other than d. Moreover, the weight of the tree

T1 =

. . .

∈ Cd
is

wi(T1) = −Hi,

the weight of the tree T2 = (T1, T1, . . . , T1) is

wi(T2) = (−1)d+1Hi ◦H,

the weight of the tree T3 = (T2, T2, . . . , T2) is

w3(T3) = (−1)d
2+d+1Hi ◦H ◦H,

and so on. If we combine Theorem 5.1 with Theorem 4.8 and Corollary 4.10,
we obtain
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Theorem 5.2. If Hi is homogeneous of degree d for each i and (∂Hi∂xj
)2 = 0,

then wi[T ] = 0 for all T ∈ C such that height(T ) ≥ 2. Hence the inverse of
F = (x1 + H1, x2 + H2, . . . , xn + Hn) is G = (x1 −H1, x2 −H2, . . . , xn −Hn)
and H ◦H = 0.

We will define the set B of binary Catalan trees as those Catalan trees all of
whose internal vertices have out-degree equal to two. Our remaining task is to
prove the following result about binary Catalan trees:

Theorem 5.3. The set of linear combinations of the form

sum(Q, u)


∑

(R, v) ∈ CH(1,1,1) ◦M
(Q, u)(R, v)S ∈ Bp

(R, v)

 sum(S) (5.2)

spans the set
{sum(T ) : T ∈ Bp}

whenever p ≥ 7.

If we combine Theorem 5.3 with Theorem 4.8 and Corollary 4.10, we obtain

Theorem 5.4. If Hi is homogeneous of total degree 2 for each i and (∂Hi∂xj
)3 = 0

then wi[T ] = 0 for all T ∈
⋃∞
p=7 Bp. Hence the inverse of F = (x1 + H1, x2 +

H2, . . . , xn +Hn) is a polynomial system of degree ≤ 6 and H ◦H ◦H = 0.

In order to prove Theorem 5.3, we will first list a few easily verified facts
about standard binary Catalan trees. We will omit the proof of Lemmas 5.5
through 5.7.

Lemma 5.5. The binary tree

...

T

Tn-1

n

T1
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is standard if and only if T1 = , each Ti is standard, and

...

T

T

T1

k

k-1

≥ Tk+1

for all 1 ≤ k < n.

Lemma 5.6. If the binary tree

...

T

Tn-1

n

T1

is standard and has greater than 2k external vertices, then n > k.

Lemma 5.7. Every subtree of a k-bad tree is k-bad.

Lemma 5.8. Let T be a 3-bad standard binary tree with ≥ 7 external vertices.
Then

T =

T4
... Tn

,

where

T4 ∈ { , }.
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Proof. By Lemma 5.6, we know that

T =

...

T

Tn-1

n

T1

for some n ≥ 3. By Lemma 5.5, T1 = . Since T is 3-bad, T2 cannot be equal
to . By Lemma 5.5,

T1

≥ T2.

Hence

T2 = .

Since T is 3-bad, the only choice for T3 is T3 = . Since T has at least seven
vertices, n ≥ 4. We now have

T =

T4
... Tn

.

By Lemma 5.5,

T4 ≤ .

That leaves us with

T4 ∈ { , , , , , , }.

By Lemma 5.7, T4 is 3-bad Hence

T4 ∈ { , , , , }.

Since T is 3-bad, we can rule out T4 = , , and .
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Proof of Theorem 5.3. Every standard 3-good binary tree T has a factorization
of the form T = (Q, u)(R, v)S, where (R, v) is especially 3-good. Therefore T
occurs as the leading term in a linear combination of the type found in 5.2.
We will call such linear combinations 3-good combinations. Hence we only
need to show that every standard 3-bad binary tree having ≥ 7 vertices occurs
as the leading term of some linear combination of 3-good combinations. By
Gaussian elimination this will imply that every expression of the form sum(T ),
T ∈

⋃∞
p=7 Bp, lies in the span of all 3-good combinations.

By Lemma 5.8, every 3-bad standard binary tree having ≥ 7 vertices factors
as either (R, v)T1 or (R, v)T2 for some marked tree (R, v), where

T1 =

and

T2 = .

If we can show that T1 is the leading term of a linear combination of 3-good
combinations of the form ∑

i

αiLi

and that T2 is the leading term of a linear combination of 3-good combinations
of the form ∑

i

βiLi,

then every 3-bad standard binary tree with ≥ 7 vertices will appear as the
leading term in an expression of the form∑

i

αi · sum(R, v)Li

or ∑
i

βi · sum(R, v)Li,

both of which are linear combinations of 3-good combinations. Note that we
are using Lemma 4.15 to say that if the leading term of

∑
i γiLi is T , then the

leading term of
∑
i γi · sum(R, v)Li is (R, v)T .

The next smallest standard binary tree before T1 is

T ′1 = ,
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which is 3-good. T ′1 can be factored in two ways:

T ′1 = ( )( )( )

and

T ′1 = ( )( )( ).

Hence T ′1 is the leading term of both

L1 = sum( )

 ∑
(R,v)∈CH(1,1,1)◦{ , , }

(R, v)

 sum( )

and

L2 = sum( )

 ∑
(R,v)∈CH(1,1,1)◦{ , , }

(R, v)

 sum( ).

By Theorem 4.8, we can compute

L1 =
3!
3

(4 · sum(T ′1) + 2 · sum(T1) + sum( ))

and
L2 =

3!
1

sum(T ′1).

Hence

6L1 − 8L2 = 24 · sum(T1) + 12 · sum( ))

is a linear combination with leading term T1 and is in the span of all 3-good
combinations.

The next smallest standard binary Catalan tree before T2 is

T ′2 = ,
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which is 3-good. T ′2 can be factored in two ways:

T ′2 = ( )( )( )

and

T ′2 = ( )( )( ).

Hence T ′2 is the leading term of both

L3 = sum( )

 ∑
(R,v)∈CH(1,1,1)◦{ , , }

(R, v)

 sum( )

and

L4 = sum( )


∑

(R,v)∈CH(1,1,1)◦{ , , }

(R, v)


sum( ).

By Theorem 4.8, we can compute

L3 =
3!
3

(2 · sum(T ′2) + 4 · sum(T2) + sum( ))

and

L4 =
3!
3!

(sum(T ′2) + sum( ) + sum( )

+sum( ) + sum( ) + sum( )).
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Hence

L3 − 4L4 = 8 · sum(T2)− 2 · sum( )− 4 · sum( )

−4 · sum( )− 4 · sum( )− 4 · sum( )

is a linear combination with leading term T2 and is in the span of all 3-good
combinations. This completes the proof of Theorem 5.3.

6 Conclusion

We have seen that combinatorial properties of Catalan trees translate into alge-
braic properties of the formal power series inverse of a system of polynomials.
In particular, formal sums over equivalence classes of binary trees having a suf-
ficiently large number of vertices can be expressed in terms of 3-good combina-
tions, and this gives rise to the conclusion that weighted sums over equivalence
classes of trees are equal to zero when certain algebraic conditions on the weight
function are met. An advantage to working with trees is that we can ignore the
nature of the weights. On the other hand, perhaps we omit vital information
when we do so.

Since the Jacobian conjecture is true for quadratic systems of polynomials,
it seems worthwhile to pursue a combinatorial proof of this fact using binary
Catalan trees. One conjecture we can make is

Conjecture 6.1. The set of linear combinations of the form

sum(Q, u)


∑

(R, v) ∈ CH1k ◦M
(Q, u)(R, v)S ∈ Bp

(R, v)

 sum(S) (6.1)

spans the set
{sum(T ) : T ∈ Bp}

whenever p ≥ f(k) (f(k) to be determined).

We have numerical evidence to suggest that the ratio of the number of k-bad
standard binary trees in Bp to the total number of standard trees in Bp decreases
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rapidly for fixed k as p increases. Perhaps there is a way to characterize all k-
bad trees as we have in Lemma 5.8, and to prove the conjecture along the lines
of Theorem 5.3.

Another way to proceed is as follows: assume the set L(k)
p of linear combi-

nations generated by binary k-good trees having p external vertices spans the
set {sum(T ) : T ∈ Bp} when p ≥ f(k). Since it is easily verified that the span
of the set L(k)

p contains the set L(k+1)
p , in order to show that L(k+1)

p spans the
set {sum(T ) : T ∈ Bp} when p ≥ f(k+ 1), one need only show that the span of
the set L(k+1)

p contains the set L(k)
p .

A third approach is to obtain a complete characterization of sets of unmarked
binary trees whose marked counterparts share a given set of branch multisets.
This would give us information we could use in order to perform Gaussian
elimination on k-good combinations of trees, without having to resort to ad hoc
arguments. We have made progress along these lines, and have discovered some
interesting combinatorial algorithms along the way.

However one may choose to proceed, the investigation is bound to generate
further insights into Catalan trees and, perhaps, the limits of purely combina-
torial reasoning with respect to the Jacobian conjecture.
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