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“Oh what a tangled web we weave...”
Sir Walter Scott

Abstract

The rectilinear crossing number of a graph G is the minimum number of edge
crossings that can occur in any drawing of G in which the edges are straight line
segments and no three vertices are collinear. This number has been known for
G = Kn if n ≤ 9. Using a combinatorial argument we show that for n = 10 the
number is 62.

1 Introduction and History

Mathematicians and Computer Scientists are well acquainted with the vast sea of
crossing number problems, whose 1944 origin lies in a scene described by Paul
Turán. The following excerpt, taken from [Guy69], has appeared numerous times in
the literature over the years, and is now known as “Turán’s brick factory problem.”

[sic.]In 1944 our labor cambattation had the extreme luck to work—thanks
to some very rich comrades—in a brick factory near Budapest. Our work
was to bring out bricks from the ovens where they were made and carry
them on small vehicles which run on rails in some of several open stores
which happened to be empty. Since one could never be sure which store
will be available, each oven was connected by rail with each store. Since
we had to settle a fixed amount of loaded cars daily it was our interest to
finish it as soon as possible. After being loaded in the (rather warm) ovens
the vehicles run smoothly with not much effort; the only trouble arose at
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the crossing of two rails. Here the cars jumped out, the bricks fell down; a
lot of extra work and loss of time arose. Having this experience a number
of times it occurred to me why on earth did they build the rail system so
uneconomically; minimizing the number of crossings the production could
be made much more economical.

And thus the crossing number of a graph was born. The original concept of the
crossing number of the complete bipartite graph Km,n, as inspired by the previous
quotation, was addressed by Kővári, Sós, and Turán in [KST54]. Following suit,
Guy [Guy60] initiated the hunt for the crossing number of Kn.

Precisely,

Definition 1.1 Let G be a graph drawn in the plane such that the edges of G are
Jordan curves, no three vertices are collinear, no vertex is contained in the interior
of any edge, and no three edges may intersect in a point, unless the point is a
vertex. The crossing number of G, denoted ν(G), is the minimum number of
edge crossings attainable over all drawings of G in the plane. A drawing of G that
achieves the minimum number of edges crossings is called optimal.

In this paper we are interested in drawings of graphs in the plane in which the
edges are line segments.

Definition 1.2 Let G be a graph drawn in the plane with the requirement that the
edges are line segments, no three vertices are collinear, and no three edges may
intersect in a point, unless the point is a vertex. Such a drawing is said to be a
rectilinear drawing of G. The rectilinear crossing number of G, denoted
ν(G), is the fewest number of edge crossings attainable over all rectilinear drawings
of G. Any such a drawing is called optimal.

1.1 A Few General Results

We mention a small variety of papers on crossing numbers problems for graphs drawn
in the plane that merely hint at the proliferation of available (and unavailable!)
results. Other important results will be highlighted in Section 6.

Garey and Johnson [GJ83] showed that the problem of determining the crossing
number of an arbitrary graph is NP-complete. Leighton [Lei84] gave an application
to VLSI design by demonstrating a relationship between the area required to design
a chip whose circuit is given by the graph G and the rectilinear crossing number of
G. Bienstock and Dean [BD93] produced an infinite family of graphs {Gm} with
ν(Gm) = 4 for every m but for which supm{ν(Gm)} = ∞. Kleitman [Kle70, Kle76]
completed the very difficult task of determining the exact value of ν(K5,n) for any
n ∈ Z

+. Finally, a crucial method of attack for both rectilinear crossing number
and crossing number problems has been that of determining the parity (i.e., whether
the crossing number is even or odd). See, for example, [Har76, Kle70, Kle76, AR88,
HT96].
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Crossing number problems are inherently rich and numerous, and have captured
the attention of a diverse community of researchers. For a nice exposition of current
open questions as well as a plethora of references, see the recent paper of Pach and
Tóth [PT00].

1.2 Closer to Home: ν(Kn)

Many papers, dating back as far as 1954 [KST54], have addressed the specific
problem of determining ν(Km,n) and ν(Kn). For a nice overview see Richter and
Thomassen [RT97]. For those who are tempted by some of the problems mentioned
in this paper, it is imperative to read [Guy69] for corrections and retractions in the
literature.

Our present interest is that of finding ν(Kn) whose notion was first introduced
by Harary and Hill [HH63]. As promised in the abstract, the small values of ν(Kn)
are known through n = 9, which can be found in [Guy72, WB78, Fin00] and [Slo00,
sequence A014540]; see Table 1. Ultimately, the n = 10 entry [Sin71, Gar86] will
be the focus of this paper.

Kn ν(Kn)
K3 0
K4 0
K5 1
K6 3
K7 9
K8 19
K9 36
K10 61 or 62

Table 1: ν(Kn)

The problem of determining ν(K10) and ν(K11) has been attacked computa-
tionally by Geoff Exoo [Exo01]. Recently, Aichholzer et al [AAK01] enumerated all
point configurations of up to ten points; one application of the resulting database
is that the rectilinear crossing number of K10 can be determined computationally.

Asymptotics have played an important role in deciphering some of the mysteries
of ν(Kn). To this end, it is well known (see for example [SW94]) that limn→∞

ν(Kn)

(n
4)

exists and is finite; let

ν∗ = lim
n→∞

ν(Kn)(n
4

) . (1)

H.F. Jensen [Jen71] produced a specific rectilinear drawing of Kn for each n,
which availed itself of a formula, denoted j(n), for the exact number of edge cross-
ings. In particular,
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j(n) =

⌊
7n4 − 56n3 + 128n2 + 48n

⌊
n−7

3

⌋
+ 108

432

⌋
, (2)

from which it follows that ν(Kn) ≤ j(n) and that ν∗ ≤ .38. Moreover, it follows
from work in [Sin71] as communicated in [Wil97, BDG00] that

61
210

= .290476 ≤ ν∗ ≤ .3846. (3)

In Section 4.1, for completeness of exposition we reproduce the argument in [Sin71]
that ν(K10) > 60, which is required to obtain the lower bound in equation (3).

In the recent past, Scheinerman and Wilf [SW94, Wil97, Fin00] have made an
elegant connection between ν∗ and a variation on Sylvester’s four point problem.
In particular, let R be any open set in the plane with finite Lebesgue measure, and
let q(R) be the probability of choosing four points uniformly and independently
at random in R such that all four points are on a convex hull. Finally, let q∗ =
infR{q(R)}. Then it is shown that q∗ = ν∗.

Most recently, Brodsky, Durocher, and Gethner [BDG00] have reduced the up-
per bound in equation (3) to .3838. In the present paper, as a corollary to our
main result, that ν(K10) = 62, we increase the lower bound in equation (3) to
approximately .30.

2 Outline of the proof that ν(K10) = 62

As mentioned in the abstract, the main purpose of this paper is to settle the question
of whether ν(K10) = 61 or 62. Our conclusion, based on a combinatorial proof, is
that ν(K10) = 62. The following statements, which will be verified in the next
sections, constitute an outline of the proof. As might be expected, given the long
history of the problem and its variants, there are many details of which we must
keep careful track.

Figure 1: We invite the reader to count the edge crossings in this optimal drawing of K10.
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1. Any optimal rectilinear drawing of K9 consists of three nested triangles: an
outer, middle, and inner triangle. For purposes of both mnemonic and combi-
natorial considerations, we colour the vertices of the outer triangle red. Simi-
larly, the vertices of the middle triangle will be coloured green and the vertices
of the inner triangle will be coloured blue. For those who are accustomed
to working with computers, the mnemonic is that the vertices of the outer,
middle, and inner triangles correspond to RGB.
Continuing in this vein, each of the edges of the K9 drawing are coloured
by way of the colour(s) of the two vertices on which they are incident. For
example, an edge incident on a red vertex and a green vertex will naturally
be coloured yellow. An edge incident on two red vertices (i.e., an edge of the
outer triangle) will be coloured red, and so on. This step is done purely for
purposes of visualization. For examples, see Figures 22, 23, and 24.
Combinatorially, an edge crossing has a label identified by the four (not nec-
essarily distinct) colours of the two associated edges, wx×yz, where w,x,y,z∈
{r, g, b}.

2. A drawing of K10 with 61 crossings must contain a drawing of K9 with 36
crossings and must have a convex hull that is a triangle.

3. In any pair of nested triangles with all of the accompanying edges (i.e., a K6),
we exploit a combinatorial invariant: the subgraph induced by a single outer
vertex together with the three vertices of the inner triangle is a K4. There are
exactly two rectilinear drawings of K4. That is, the convex hull of rectilinear
drawing of K4 is either a triangle or a quadrilateral. If the former, since the
drawing is rectilinear, there are no edge crossings. If the latter, there is exactly
one edge crossing, namely that of the two inner diagonals.

4. With the above machinery in place, we enumerate the finitely many cases that
naturally arise. In each case we find a lower bound for the number of edge
crossings. In all cases, the result is at least 62.

5. Singer [Sin71] produced a rectilinear drawing of K10 with 62 edge crossings,
which is exhibited in [Gar86, p. 142]. This together with the work in step 4
implies that ν(K10) = 62; see Figure 1.

The remainder of this paper is devoted to the details of the outline just given, the
improvement of the lower bound in equation (3), and finally, a list of open problems
and future work.

3 Edge Crossing Toolbox

3.1 Definitions

We assume that all drawings are in general position, i.e., no three vertices are
collinear. A rectilinear drawing of a graph is decomposable into a set of convex
hulls. The first hull of a drawing is the convex hull. The ith hull is the convex
hull of the drawing of the subgraph strictly contained within the (i − 1)st hull.
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Figure 2: Convex hulls

The responsibility of a vertex in a rectilinear drawing, defined in [Guy72], is
the total number of crossings on all edges incident on the vertex.

A polygon of size k is a rectilinear drawing of a non-crossing cycle on k vertices.
A polygon is contained within another polygon if all the vertices of the former are
strictly contained within the boundaries of the latter; the former is termed the inner
polygon and the latter, the outer polygon. We say that n polygons are nested
if the (i + 1)st polygon is contained within the ith polygon for all 1 ≤ i < n. A
triangle is a polygon of size three and every hull is a convex polygon.

23

1

Figure 3: Nested hulls

A rectilinear drawing of Kn is called a nested triangle drawing if any pair of
hulls of the drawing are nested triangles.

Two polygons are concentric if one polygon contains the other polygon and any
edge between the two polygons intersects neither the inner nor the outer polygon.
Given two nested polygons, if the inner polygon is not a triangle then the two
polygons a priori cannot be concentric. A crossing of two edges is called a non-
concentric crossing if one of its edges is on the inner hull and the other has
endpoints on the inner and outer hulls.

concentri c non−concentri c

Figure 4: Examples of concentric and non-concentric hulls

We know that the first hull of an optimal rectilinear drawing of K9 must be a
triangle [Guy72]. Furthermore, in Subsection 4.2 we will reproduce a theorem from
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[Sin71], that the outer two hulls of a rectilinear drawing of K9 must be triangles.
For clarity, we colour the outer triangle red, the second triangle green, and the

inner triangle blue. The vertices of a triangle take on the same colour as the triangle,
and an edge between two vertices is labeled by a colour pair, e.g., red-blue (rb). A
crossing of two edges is labeled by the colours of the comprising edges, e.g., red-
blue×red-green (rb×rg). A crossing is called 2-coloured if only two colours are
involved in the crossing. This occurs when both edges are incident on the same
two triangles, e.g., rg×rg, or when one of the edges belongs to the triangle that
the other edge is incident on, e.g., rg×gg. A 3-coloured crossing is one where the
two edges that are involved are incident on three different triangles, e.g., rb×rg. A
4-coloured crossing is defined similarly.

blue

green

red
redred

blue green

rg x rb

Figure 5: Colourings of hulls and crossings

Crossings may be referred to by their full colour specification, the colours of
an edge comprising the crossing, or the colour of a vertex comprising the crossing.
For example, an rg×rb crossing is fully specified by the four colours, two per edge;
the crossing is also a red-blue crossing and a red-green crossing because one of the
edges is coloured red-blue and the other is coloured red-green. Since the edges of
the crossing are incident on the red, green and blue vertices, the crossing may also
be called red, green or blue; a rg×rg crossing is neither red-blue nor blue.

3.2 Configurations

Given a nested triangle drawing of K6, a kite is a set of three edges radiating from a
single vertex of the outer triangle to each of the vertices of the inner triangle. A kite
comprises four vertices: the origin vertex, labeled o, from which the kite originates,
and three internal vertices. The internal vertices are labeled in a clockwise order,
with respect to the origin vertex, by the labels left (l), middle (m), and right (r);
the angle <lor must be acute. The kite also has three edges, two outer edges, (o, l)
and (o, r), and the inner edge (o,m). The origin vertex corresponds to the vertex
on the outer triangle and the middle vertex is located within the sector defined by
<lor; see Figure 6. A kite is called concave if m is contained within the triangle
∆lor, see Figure 6, and is called convex if m is not contained in the triangle ∆lor,
see Figure 7. We shall denote a convex kite by V and a concave kite by C. A vertex
is said to be inside a kite if it is within the convex hull of that kite, otherwise the
vertex is said to be outside the kite.
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Figure 7: VVV

A configuration of kites is a set of three kites in a nested triangle drawing of
K6. Each kite originates from a different vertex of the outer triangle and is incident
on the same inner triangle. There are four different configurations: CCC, CCV,
CVV, and VVV, corresponding to the number of concave and convex kites in the
drawing.

A configuration determines how many non-concentric crossings there are, i.e., the
number of edges intersecting the inner triangle; CCC has zero, CCV has one, CVV
has two, and VVV has three non-concentric edge crossings. A sub-configuration
corresponds to the number of distinct middle vertices of concave kites; this can vary
depending on whether the concave kites share the middle vertex.

Figure 8: CVV

middle

Figure 9: Unary CCV

Remark 3.1 A CCV configuration is the only one that has more than one sub-
configuration. A VVV configuration has no concave kites, a CVV configuration has
only one concave kite, and in a CCC configuration no two kites share a middle
vertex.

In configuration CCC, Figure 6, there are three distinct middle vertices of con-
cave kites, and in configuration VVV, Figure 7, there are zero because there are
no concave kites. Configuration CVV, Figure 8, has only one middle vertex that
belongs to a concave kite because it has only one concave kite.
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The configuration CCV has two sub-configurations; the first, termed unary, has
one middle vertex that is shared by both concave kites; see Figure 9. The second,
termed binary, has two distinct middle vertices belonging to each of the concave
kites; see Figure 10.

middle

Figure 10: Binary CCV

Theorem 3.2 A nested triangle drawing of K6 belongs to one of the four configu-
rations: CCC, CCV, CVV or VVV.
Proof: According to [Ros00] there are exactly two different rectilinear drawings of
K4, of which the convex hull is either a triangle or a quadrilateral. The former has
no crossings and corresponds to the concave kite. The latter has one crossing and
corresponds to the convex kite.

Since the drawing is comprised of nested triangles, a kite originates at each of the
three outer vertices. Since no three vertices are collinear, each of the kites is either
convex or concave. The drawing can have, zero (CCC), one (CCV), two (CVV), or
three (VVV) convex kites, with the rest being concave.

Lemma 3.3 If m is a middle vertex of a concave kite in a nested triangle drawing
of K6, then m is contained within a quadrilateral composed of kite edges.
Proof: Let κ be a concave kite in a nested triangle drawing with the standard
vertex labels o, l, m, and r (see Figure 11). Since κ is concave, the middle vertex
m is within the triangle ∆lor. The vertices l and r determine a line that defines a
half-plane p that does not contain κ. Since the vertices l, m, and r comprise the
inner triangle of the drawing and must be contained within the outer triangle, there
must be an outer triangle vertex located in the half-plane p. Denote this vertex
by o′ and note that a kite originates from it; hence, there are kite edges (o′, l) and
(o′, r). Thus, m is contained within the quadrilateral (o, l, o′, r).

Corollary 3.4 If m is a middle vertex of a concave kite in a nested triangle drawing
of K6 and an edge (v,m), originating outside the drawing, is incident on m, then
the edge (v,m) must cross one of the kite edges.

Remark 3.5 (Containment Argument) Lemma 3.3 uses what will henceforth
be referred to as the containment argument. Consider two vertices contained in
a polygon. These vertices define a line that bisects the plane. In order for these
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r
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Figure 11: Vertex m is contained within (l, o, r)

vertices to be contained within the polygon, the two half-planes must each contain at
least one vertex of the polygon. Similarly, if a vertex is contained inside two nested
polygons and has edges incident on all vertices of the outer polygon, then at least
two distinct edges of the inner polygon must be crossed by edges incident on the
contained vertex.

Lemma 3.6 (Barrier Lemma) Let o1, o2, and o3 be the outer vertices of a nested
triangle drawing of K6, let w be an inner vertex of the drawing, and let u and v be two
additional vertices located outside the outer triangle of the drawing (see Figure 12).
If the edge (u,w) crosses (o1, o2) and the edge (v,w) crosses (o2, o3), then the total
number of kite edge crossings contributed by (u,w) and (v,w) is at least two.
Proof: If both edges (u,w) and (v,w) each cross at least one kite edge, then we are

o1

1w
w

2w

3

o

v

o

u

2

Figure 12: Nested triangle K6

o

u

w

2

3

o
v

o

w1

1

Figure 13: Paths from o1 to o2

done. Without loss of generality, assume that (u,w) does not cross any kite edges.
Let w1 and w2 be the other two inner vertices, and consider the path (o1, w1, o2)
(see Figure 13). Since edge (u,w) does not intersect the path, (o1, w1, o2) creates a
barrier on the other side of path (o1, w, o2). The same argument with edge (u,w)
applies to path (o1, w2, o2), hence two barriers are present, forcing two crossings.

To deal with the unary CCV configuration, see Figures 9 and 14, we need to say
something about the orientation of the kites. In a unary CCV configuration, the
labels of the internal vertices of the two concave kites must match; given a label,
left, middle, or right, and a vertex, it is impossible to distinguish one concave kite

the electronic journal of combinatorics 8 (2001), #R23 10



l  r

 m

Figure 14: Inside the unary CCV

from the other. For example, the left vertex of one concave kite is also the left
vertex of the other concave kite.

Lemma 3.7 If a nested triangle drawing of K6 is in a unary CCV configuration,
then all three internal vertices of the two concave kites share the same labels.
Proof: Since the two concave kites share the same middle vertex, there are two
possible cases. Either the labels of the internal vertices match, in which case we are
done. Otherwise, the left and right labels are interchanged. By way of contradiction,
assume that they are interchanged; this implies that the kites are disjoint, i.e. do
not overlap. Consequently, they cannot share the middle vertex that is inside both
of the kites; this is contradiction.

Lemma 3.7 implies that both concave kites are in the half-plane defined by their
left and right vertices, which contains the shared middle vertex. Moreover, by the
containment argument (Remark 3.5), the convex kite must be in the other half-
plane. Furthermore, no two kites in a CCC configuration share a middle vertex.

Just like the Barrier Lemma, the Kite Lemma, CCC Lemma, and K5 Principle
Lemma, are general lemmas that are used to derive properties of specific drawings.

Lemma 3.8 (Kite Lemma) Let κ1 = (o1, l,m, r) and κ2 = (o2, l,m, r) be two
concave kites such that they share the same internal vertices, the internal vertices are
labeled identically, and kite κ2 does not contain vertex o1 within it (see Figure 15).
Let A be the intersection of the sectors give by <lo1r and <lmr. If p is a vertex
located in region A and is noncollinear with any other pair vertices, then the edge
(o1, p) must cross edge (o2, l) or edge (o2, r).
Proof: Either vertex o2 is contained in kite κ1 or not. If o2 is inside κ1, then,
because kite κ2 is concave, a barrier path (l, o2, r) is created between vertex o1 and
vertex p. Hence, edge (o1, p) must cross the path (l, o2, r), intersecting one of the
path’s two edges.

If vertex o2 is not contained in kite κ1, then assume, that vertex o2 is on the left
side of kite κ1 (clockwise with respect to o1). The edge (o2, r) defines a half-plane
that separates vertex p from vertex o1. Furthermore, the segment defining the half-
plane located within the sector <lo1r corresponds to part of the edge (o2, r). Since
the edge (o1, p) must be within the sector <lo1r, it must cross edge (o2, r).

If vertex o2 is on the right, by a similar argument, the edge (o1, p) will cross edge
(o2, l).
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Figure 15: Intersection of two kites

1o

plane
half

o2

l

m r

p

Figure 16: Edge (o1, p) must cross edge (o2, r).

Lemma 3.9 (CCC Lemma) Given three kites in a CCC configuration (see Fig-
ure 17), denote the internal vertices i1, i2, i3, and outer vertices o1, o2, o3 such that
the middle vertex of a kite originating at oj is ij . Let A be the region defined by the
intersection of sectors <i1o2i3, <i2o3i1, and <i3o1i2. Let vertex u not be contained
in any kite, let vertex v be located in region A, and assume that no three vertices
are collinear. The edge (u, v) must cross at least two kite edges.
Proof: Using the kite edges we construct two polygons (o3, i2, o1, i1, o3) and
(o2, i3, o1, i1, o2) (see Figure 18). Since both polygons contain region A and since
the only shared edge, is a middle edge, edge (u, v) must cross into both polygons,
contributing at least one kite edge crossing from each.

Lemma 3.10 (K5 Principle) Let a drawing of Kn have a triangular convex hull
with the hull coloured red and n− 3 vertices contained within it coloured green. The
drawing has exactly

(
n−3

2

)
rg×rg edge crossings.

Proof: Select a pair of green vertices and remove all other green vertices from
the drawing (see Figure 19). This forms a K5 with exactly one rg×rg edge crossing
that is uniquely identified by the two green vertices. Since there are

(n−3
2

)
pairs of

green vertices, there must be
(
n−3

2

)
rg×rg edge crossings.

the electronic journal of combinatorics 8 (2001), #R23 12



Region A

  3oo

  1   3ii

i  2

  1

o  2

u

 v

Figure 17: Responsibility of the
edge (u, v)
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Figure 18: Two polygons con-
taining region A.

Figure 19: K5 principle

4 The Proof

Using configurations to abstract the vertex positions in drawings we are now ready
to combinatorially compute ν(K9) and ν(K10). We first reproduce the results from
[Sin71] and [Guy72] proving that ν(K9) = 36 and use these results to show that
ν(K10) = 62.

The argument is as follows:

1. Since ν(K10) ≥ 61, assume ν(K10) = 61.

2. If ν(K10) = 61 then the convex hull of an optimal of K10 must be a triangle.

3. If the convex hull of a drawing of K10 is triangular then that drawing has 62
or more crossings, contradiction.

4. Therefore, ν(K10) ≥ 62

4.1 The Rectilinear Crossing Number of K9

We know from [Sin71] and [Guy72] that the convex hull of an optimal rectilinear
drawing of K9 must be a triangle. By a counting argument in [Sin71], the drawing
must be composed of three nested triangles, which we colour red, green, and blue.
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Furthermore, the same paper argues that the red and green triangles are pairwise
concentric. We derive these results for completeness.

As mentioned in the introduction, the rectilinear crossing numbers of K6 and
K9 are 3 and 36 respectively (see Table 1); we make use of these facts throughout
the following proofs. We first reproduce a result from [Sin71] that states that an
optimal rectilinear drawing of K9 must comprise of three nested triangles.

Lemma 4.1 (Singer, [Sin71]) An optimal rectilinear drawing of K9 consists of
three nested triangles.
Proof: That the convex hull of an optimal rectilinear drawing of K9 is a triangle has
been shown in [Guy72] and [Sin71]. Using a counting technique similar to [Sin71],
consider a drawing composed of a red triangle that contains a green convex quadri-
lateral that contains two blue vertices. By the K5 principle there are

(4
2

)
= 6 rg×rg

crossings. At least two rg×gg crossings are present because a convex quadrilateral
cannot be concentric with a triangle. Selecting one green and one blue vertex at
a time and applying the K5 principle yields, 4 · 2 = 8 rb×rg crossings. Six rb×gg
crossings are due to the red-blue edges entering the green quadrilateral. Applying
the K5 principle to the blue vertices yields one rb×rb crossing. There are 2 + 4 = 6
gb×gb and gb×gg crossings; the green quadrilateral is initially partitioned into four
parts by one gg×gg crossing, adding the first blue vertex creates two gb×gg and
adding the second vertex creates two more gb×gg crossings and two gb×gb cross-
ings. This totals 30 crossings. An additional eight rb×gb and rb×gg crossings occur
inside the green quadrilateral, four per blue vertex, totaling 38 crossings, which is
greater than the optimal 36 (see Table 2).

Crossing Count
rg×rg 6
rg×gg 2
rb×rg 8
rb×gg 6
rb×rb 1
gg×gg 1
gb×gg 4
gb×gb 2
rb×gb/gg 8
Total 38

Table 2: Crossing contributions

By a similar argument any drawing whose second hull is not a triangle will also
be non-optimal; see Appendix A.

Lemmas 4.2, 4.3, 4.4, 4.5, and 4.6, count the number of different crossings in an
optimal drawing of K9, making use of the nested triangle property of Lemma 4.1.
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Lemma 4.2 A rectilinear drawing of K9 comprising of nested triangles has a min-
imum of three 2-coloured crossings of red-green, red-blue, and green-blue.
Proof: Select two of the three red, green, and blue triangles. These two triangles
form a nested triangle drawing of K6 with three 2-colour crossings. Hence, there
are three 2-colour edges of each type.

Lemma 4.3 A rectilinear drawing of K6 comprising of nested non-concentric tri-
angles has more than three crossings.
Proof: Let the outer triangle be red and the inner green. By the K5 Principle
(Lemma 3.10) there are three rg×rg edge crossings. If the two triangles are non-
concentric then there is at least one rg×gg crossing.

Lemma 4.4 A rectilinear drawing of K9 comprising of nested triangles has exactly
nine rb×gg crossings.
Proof: The red triangle contains the green triangle and the green triangle contains
the blue triangle. Therefore, every red-blue edge must cross into the green triangle.
Since there are nine red-blue edges, there are nine rb×gg crossings.

Lemma 4.5 A rectilinear drawing of K9 comprising of nested triangles has at least
nine rb×rg crossings.
Proof: There are three green and three blue vertices; thus there are nine unique
green-blue pairs of vertices. By the K5 principle, each pair contributes exactly one
rg×rb crossing. Hence, a nested triangle drawing of K9 has exactly nine rg×rb
crossings.

We call a crossing internal if it is coloured either rb×gb or gb×bb. The set
of internal crossings consists of all internal crossings in a drawing. Intuitively, all
internal crossings take place within the green triangle. We call a red-blue kite full
if it contains a green vertex; otherwise we call it empty. Intuitively a full red-blue
kite contains a green-blue kite.

Lemma 4.6 The number of internal crossings in a nested triangle drawing of K9

is at least nine.
Proof: We make use of the fact that the green and blue triangles form a K6 and that
any rectilinear drawing of K6 falls into one of the five configurations: CCC, VVV,
CVV, binary CCV, and unary CCV. The proof is by case analysis on the green-blue
K6 sub-drawing. The green-blue K6 is drawn in one of the five configurations:
CCC configuration: Since each of the blue vertices is a middle vertex of a concave
kite, and all middle labels are distinct, by Corollary 3.4 each of the nine red-blue
edge crosses one green-blue edge, hence there are nine rb×gb crossings.
VVV or CVV configuration: If the drawing is in a VVV configuration, by the
Barrier Lemma (Lemma 3.6) there are two rb×gb crossings per blue vertex. Adding
the three gb×bb crossings yields nine. In the CVV configuration one of the blue
vertices is responsible for at least three rb×gb crossings rather than two; adding the
two gb×bb crossings yields the required result.
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Binary CCV configuration: Note that two of the blue vertices are responsible
for three rb×gb crossings, and the third vertex is responsible for two. Adding the
single gb×bb crossing yields nine.
Unary CCV configuration: In the case of the unary CCV configuration, the
drawing is partitioned into a heavy and light part by extending the blue edges
incident on the middle vertex of the convex kite; see Figure 20. A red-blue kite
whose origin vertex is in the heavy side of the drawing is responsible for four or six
rb×gb crossings while a red-blue kite originating in the light side of the partition
is responsible for three crossings if it is empty, and one crossing if it is full; the
six edge crossings occur if there is an empty red-blue kite between the two concave
kites. In order for the green triangle to be nested within the red, by the containment
argument, at least one of the red-blue kites must originate in the heavy partition.
This implies that in order to get fewer than eight rb×gb crossings, two of the red-
blue kites must be full and contain the green-blue kite in the light partition (see
Figure 21). This implies that the third red-blue kite must be an empty kite between
the two concave red-green kites. Since this kite is responsible for six crossings, it
follows that there are at least eight rb×gb crossings and therefore at least nine
internal crossings.

Heavy

Light

Figure 20: Partition of drawing
into light and heavy regions

Full Kites

contained
vertex

Figure 21: Two kites in the
light region

Singer’s Theorem [Sin71] follows from the previous lemmas. A stronger version
of the theorem is given next.

Theorem 4.7 An optimal rectilinear drawing of K9 consists of three nested trian-
gles. Furthermore, the red and green triangles, and the red and blue triangles are
concentric.
Proof: The first part of the statement is proven in [Guy72] and the counting
argument in Lemma 4.1.

Putting Corollary 4.2, Lemma 4.4, and Lemma 4.5 together accounts for 27 of
the 36 crossings in an optimal drawing. Lemma 4.6 states that there are at least
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Contribution Count
Lemma 4.2 ≥ 9
Lemma 4.4 9
Lemma 4.5 9
Lemma 4.6 ≥ 9
Total ≥ 36

Table 3: Lower bound

nine internal crossings. Since ν(K9) = 36, the number of rg×gg and rb×bb crossings
must be zero; this implies concentricity.

Corollary 4.8 An optimal rectilinear drawing of K9 has at most nine rb×gb cross-
ings, at most two gb×bb crossings and the total number of internal crossings is
exactly nine.
Proof: By Theorem 4.7, an optimal drawing of a K9 has 36 crossings. Referring
to Table 3, an optimal drawing has at least 27 non-internal edge crossings (Lemmas
4.2, 4.4, and 4.5). By Lemma 4.6, there are at least nine internal edge crossings and
hence, an optimal drawing has exactly nine internal edge crossings.

Three gb×bb crossing occur if the green-blue K6 part of the drawing has configu-
ration VVV. However by a Barrier argument similar to Lemma 3.6 the configuration
VVV creates nine rb×gb crossings plus three gb×bb crossings, which totals 12 in-
ternal crossings and cannot occur in an optimal drawing of K9. Consequently at
most two gb×bb crossings may occur.

4.1.1 Optimal K9 Drawings

One is tempted to believe that an optimal drawing of K9 is necessarily comprised of
three nested triangles that are pairwise concentric. However, this belief is fallacious,
as is shown in Figures 23 and 24.

Figure 22: Blue-Green CCC drawing
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Figure 23: Blue-Green CCV
drawing

Figure 24: Blue-Green CVV
drawing

4.2 The Rectilinear Crossing Number of K10

We begin by reproducing a proof from [Sin71] that ν(K10) > 60. Since Singer [Sin71,
Gar86] exhibited a 62 crossing rectilinear drawing of K10, it follows that 61 ≤
ν(K10) ≤ 62.

Theorem 4.9 (Singer, [Sin71]) ν(K10) > 60.
Proof: By way of contradiction, assume that there exists a rectilinear drawing of
K10 with 60 crossings. Since each edge crossing comprises of four vertices, the sum
of responsibilities of each vertex totals 4 · 60. Therefore, the average responsibility
of each vertex is 4·60

10 = 24. Furthermore, each vertex in the drawing is responsible
for exactly 24 edge crossings. For if a vertex is responsible for more than 24 edge
crossings, then removing the vertex from the drawing yields a drawing of K9 with
fewer than 36 edge crossings, which contradicts ν(K9) = 36. Similarly, if the drawing
has a vertex that is responsible for fewer than 24 crossings, then by the averaging
argument, there must be a vertex that is responsible for more than 24 crossings,
leading to the same contradiction. Therefore, each vertex is responsible for 24
crossings. Thus, any drawing of K10 with 60 crossings contains an optimal drawing
of K9.

Starting with an optimal drawing of K9 we try to place the tenth vertex. We
have two choices; either place it such that one of the hulls of the K10 drawing is a
convex quadrilateral or the drawing comprises of nested triangles with a vertex in
the inner triangle. In the latter case, the edge connecting the tenth vertex to one
of the outer triangle vertices must intersect an inner triangle edge. Removing the
inner triangle vertex that is opposite the intersected edge creates a drawing of K9

that fails the concentricity condition. Hence, the latter drawing will not be optimal.
If the former situation arises there are two subcases. If the quadrilateral is the
outer or the second hull, then removing an inner vertex creates a non-optimal K9

drawing, which is a contradiction. If the innermost hull is a convex quadrilateral,
then a priori it is not concentric with the outer triangle. Let b be the vertex such
that there is an edge from it to a vertex in the outer triangle that intersects the
quadrilateral. Remove a vertex from the quadrilateral that is antipodal to b. This
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creates a non-optimal K9 drawing. The result follows. By an identical argument
any rectilinear drawing of K10 cannot have fewer than 60 crossings.

Next, we study drawings of K10 that have a nested triangle sub-drawing of K9

coloured in the standard way. Let the tenth vertex be coloured white; the respon-
sibility of the tenth vertex is the number of white crossings in the corresponding
drawing of K10. The following technical Lemma is needed in the proof of Theorem
4.14. This Lemma gives a lower bound on some of the white crossings that occur
within the green triangle.

Lemma 4.10 If a white vertex is added to a nested triangle drawing of K9 such
that it is contained in the green triangle, then at least six crossings must exist of the
types rw×gb, rb×bw, gb×bw, and rg×gg.
Proof: At least two of the red-white edges must cross into the green triangle
on distinct green-green edges as a consequence of the nested triangle requirement
and the containment argument. Select two of the three red-white edges such that
they cross into the green triangle on distinct green-green edges and such that the
total number of rw×gb crossings is minimized. Let c1 and c2 be the number of
rw×gb crossings for which each of the two red-white edges is responsible and assume,
without loss of generality, that c1 ≤ c2. The lower bound on the total number of
rw×gb crossings is 2c1 + c2. We say that the red-white edge of lesser responsibility
(c1) has weight two, and we say that the other red-white edge, of responsibility
c2, has weight one.

Upon examining rw×gb crossings the proof falls into three main cases corre-
sponding to the numbers of rw×gb crossings; if there are six or more rw×gb cross-
ings then we are done. We consider the cases when the number of rw×gb crossings
is {0, 1, 2}, {3}, and {4, 5}, the latter being the most challenging.
Case 1: 0, 1, or 2 rw×gb crossings
By the Barrier Lemma, every blue vertex forces at least one rw×gb crossing. Hence,
there must be at least three rw×gb crossings.
Case 2: 3 rw×gb crossings
Considering only the rw×gb crossings, the configuration that minimizes the number
of rw×gb crossings occurs when the red-white edge of weight two crosses zero green-
blue edges and the red-white edge of weight one crosses three (see Figure 25).
However, we must consider blue-white edges also; by the Barrier principle one of
the blue-white edges must cross at least two green-blue edges, and the other must
cross at least one. This brings the total up to at least six.
Case 3: 4 or 5 rw×gb crossings
Assume there are at least four rw×gb crossings. If there are two or more gb×bw
crossings then we are done. It remains to consider two subcases: that of zero or one
gb×bw crossings.
Subcase 3.1: 0 gb×bw crossings
Assume there are zero gb×bw crossings. This case can only occur when no green-
blue edge intersects the blue triangle, i.e., the green-blue kites are in a CCC config-
uration because there are no gb×bb crossings. The white vertex is in the green-blue
free zone; a free zone consists of all regions of a nested triangle drawing of K6
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weight one edge

weight two edge

Figure 25: Three rw×gb cross-
ings

free
zone

Figure 26: The free zone

where a seventh vertex can be placed such that no kite edge blocks visibility of any
inner vertices (see Figure 26). Note that removal of the inner edges of all convex
kites in a configuration creates a free zone. A free zone occurs naturally in a CCC
configuration.

If there is a green-blue edge intersecting the blue triangle, then there exists
a green-blue-green path between two of the blue vertices that forces at least one
gb×bw crossing (see Figure 27). Since the white vertex must be in the naturally
occurring green-blue free zone, i.e., a green-blue CCC configuration, by the CCC
Lemma (Lemma 3.9, this forces every red-white edge to generate at least two rw×gb
crossings. This yields a total of at least six crossings.

gb x bw

Figure 27: The green-blue-green path

Remark 4.11 We reach a count of five crossings of the required type. The remain-
der of the proof is devoted to producing one more edge crossing of one of the required
types.

Subcase 3.2: 1 gb×bw crossing
We now consider the rb×bw crossings. Consider the red-blue kite configuration.
Either the configuration is a CCC or not.
Subcase 3.2.1: Non-CCC red-blue configuration
Assume that the red-blue kite configuration is not in a CCC configuration. By the
converse of the argument used in Subcase 3.1 there is at least one rb×bw crossing.
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Adding to the existing five yields at least six distinct crossings of the required type.
This leaves only one case: the CCC red-blue configuration.
Subcase 3.2.2: CCC red-blue configuration
We now consider the five subcases corresponding to the distinct green-blue config-
urations within the red-blue CCC configuration.
Subcase 3.2.2.1: CCC green-blue configuration
If the green-blue kites are in a CCC configuration, then this case is covered by
subcase 3.1.
Subcase 3.2.2.2: CVV and VVV green-blue configurations
For every green-blue edge that intersects the blue triangle, there is at least one
gb×bw edge crossing; see Figure 27. Hence, if the green-blue kites are in a CVV or
a VVV configuration then we have at least two gb×bw crossings. This sums to at
least six crossings.
Subcase 3.2.2.3: Unary CCV green-blue configuration
If the green-blue configuration is a unary CCV configuration then the red and
green triangles are not concentric; therefore, there is at least one rg×gg crossing.
Adding at least four rb×bw crossings, and at least one gb×bw crossing, by the same
argument as in subcase 3.2.2.2, yields at least six crossings.
Subcase 3.2.2.4: Binary CCV green-blue configurations
We are now left with the case of a CCC red-blue kite configuration and a binary
CCV green-blue kite configuration with the white vertex either inside the red-blue
free zone or not.

If the white vertex is not inside the red-blue free zone then there is at least
one rb×bw crossing, by the same argument used in subcase 3.1, plus at least one
gb×bw crossing, by the same argument as in subcase 3.2.2.2, plus at least four
rw×gb crossings. The sum of these crossings is at least six.

Thus, assume that the white vertex is in the red-blue free zone. We will argue
that there must always be either at least five rw×gb crossings plus at least one
gb×bw crossing, or at least four rw×gb crossings plus at least two gb×bw crossings.

Consider the drawing minus the single green-blue edge in the only convex green-
blue kite, i.e., the inner edge of the convex kite. This creates a green-blue free zone,
inside of which there are no gb×bw edge crossings.

Remark 4.12 In order to cross into the green-blue free zone, a red-white edge
must cross a green-blue edge. Furthermore, if a green-blue kite and a red-blue kite
are both concave, and have their internal (blue) vertices labeled identically, then we
may invoke Lemma 3.8 (Kite Lemma). That is, the red-white edge, incident on the
origin vertex (red) of the red-blue kite, must cross into the concave green-blue kite
before crossing into the free zone. This produces an additional rw×gb crossing.

The white vertex is either inside the green-blue free zone or not.
If the white vertex is inside the green-blue free zone, then the red-blue CCC

configuration together with the pigeon-hole principle implies that we can match up a
concave red-blue kite with each of the two concave blue-green kites. By remark 4.12,
each of these match-ups contribute at least two rw×gb crossings, and the third red-
white edge contributes at least one rw×gb crossing. Thus, if the white vertex is in
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the green-blue free zone there are five rw×gb crossings. By the argument used in
subcase 3.2.2.2, the single convex green-blue kite contributes to at least one gb×bw
crossing. Thus we get at least six crossings.

If the white vertex is outside the green-blue free zone, then we get at least one
gb×bw crossing by the same argument used in subcase 3.1 and at least one gb×bw
crossing by the same argument used in subcase 3.2.2.2. Since we have at least four
rw×gb crossings (case 3), we get a grand total of at least six crossings.

In all possible cases that can occur we have shown that the number of crossings
of the required type is at least six.

Lemma 4.1 imposed a nested triangle requirement on any optimal rectilinear
drawing of K9. The following lemma imposes a similar constraint on optimal recti-
linear drawings of K10.

Lemma 4.13 If ν(K10) = 61 then the first two hulls of an optimal rectilinear
drawing of K10 must be triangles.
Proof: By way of contradiction, assume that there exits an optimal rectilinear
drawing of K10 whose convex hull is not a triangle and 61 edge crossings. By the
same averaging argument used in Theorem 4.9, at least four of the vertices are re-
sponsible for 25 edge crossings; removing any of them yields an optimal drawing of
K9 with 36 crossings. If any of the vertices with responsibility 25 are not on the con-
vex hull, then removing such a vertex yields a drawing of K9 with a non-triangular
convex hull, which is a contradiction. Therefore, all the vertices of responsibility 25
must be on the convex hull of the original drawing. Since we can always remove one
of the four vertices such that the outer hull of the new drawing is not a triangle, this
contradicts the original assumption. Hence, the first convex hull must be a triangle.

Assume that the second hull is not a triangle. Either the second hull is a convex
quadrilateral or the second hull has more than four vertices; assume the latter.
Since at least four of the vertices must have responsibility 25 and the outer hull
is a triangle, at least one vertex of responsibility 25 must either belong to the
second hull, or be contained within it. In either case, removing said vertex creates
a drawing of K9 that has 36 crossings and whose second hull is not a triangle. This
is a contradiction.

Finally, assume that the second hull is a convex quadrilateral. If within the
second hull there is a vertex of responsibility 24 or higher, removing said vertex
creates a drawing of K9 with 37 or fewer vertices. By Lemma 4.1 such a drawing
should have at least 38 crossings, contradiction. Hence, assume that all three vertices
inside the second hull have responsibility 23. Consequently, the remaining 7 vertices,
must have responsibility 25. Since, the second hull is non-concentric with the first,
by the same argument used in Theorem 4.9, we can always remove one of the
vertices from the second hull such that the outer two hulls are non-concentric. This
implies that we can create an optimal drawing of K9 whose outer two hulls are
non-concentric, a contradiction of Theorem 4.7.

Hence, the outer two hulls must be triangular.

Theorem 4.14 If ν(K10) = 61 then an optimal drawing of K10 will consist of two
nested triangles containing a convex quadrilateral.
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Proof: By Lemma 4.13 the outer two hulls of the optimal drawing K10 must be
triangles. We must still account for the four internal vertices. If the four vertices
form a convex quadrilateral then we are done; otherwise, assume the tenth vertex
is inside the third nested triangle.

Colour the tenth vertex white. Now count the number of red-white and green-
white edge crossings, starting with the green-white edge crossings. Each green-white
edge must cross into the blue triangle; multiplying by three yields a total of three
gw×bb crossings. By the K5 principle there are three gw×gb crossings. Each blue
vertex has three incident red-blue edges that partition the green triangle into three
regions (see Figure 28). The white vertex must be in one of the regions; by the
Barrier argument there is at least one gw×rb crossing per blue vertex. The total of
the green-white edge crossings sums to nine.

Figure 28: Partition of the green triangle

Each red-white edge must cross into both the green and blue triangles, totaling
six edge crossings. By the K5 principle, there are three rw×rg crossings and three
rw-rb crossings. This gives an additional 12 crossings.

By Lemma 4.10 there are at least six additional crossings of the rw×gb, rb×bw,
gb×bw and rg×gg type, of which at least three are rw×gb crossings.

Altogether, the number of white and rg×gg crossings is 27 (see Table 4). Since
ν(K9) = 36, the number of edge crossings in the drawing of K10 with the white
vertex in the blue triangle is, 36 + 27 = 63 > 61.

Theorem 4.15 ν(K10) > 61.
Proof: By way of contradiction assume that ν(K10) = 61. By Theorem 4.14 the
inner hull must be a convex quadrilateral. Repeat the argument from Theorem 4.14
disregarding the rw×bb and gw×bb edge crossings (because there is no blue trian-
gle). This gives us an initial count of 63−6 = 57 edge crossings. Let the entire inner
convex quadrilateral be coloured blue (see Figure 29). Inside the quadrilateral there
will be one bb×bb crossing (the diagonals). Furthermore, since the quadrilateral
is neither concentric with the red triangle nor the green triangle, there will be a
minimum of two rb×bb edge crossings and two gb×bb edge crossings. Summing
the edge crossings yields 57 + 5 = 62 > 61.
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Crossing Count
gw×bb 3
gw×gb 3
gw×rb 3
rw×gg 3
rw×bb 3
rw×rg 3
rw×rb 3
rw×gb 6
rb×bw
gb×bw
rg×gg
Total 27

Table 4: Inner crossing count

Theorem 4.16 ν(K10) = 62.
Proof: Singer’s rectilinear drawing of K10 with 62 edge crossings [Sin71] is exhib-
ited in [Gar86, p. 142], and hence ν(K10) ≤ 62. By Theorem 4.15 ν(K10) ≥ 62.
The result follows.

An even stronger statement can be made. Just as in the case of K9, the outer two
hulls of an optimal rectilinear drawing of K10 must be triangles. These properties
could be useful, just as in the case of K10, for determining the rectilinear crossing
number of K11.

Theorem 4.16 enables us to improve the lower bound in equations (1) and (3).

5 Asymptotic Lower Bounds

Given ν(Ka) for a fixed a, one can derive lower bounds for all ν(Kn), n > a. Any
complete subgraph of a vertices drawn from a rectilinear drawing of Kn will include
at least ν(Ka) crossings. There are

(n
a

)
complete subgraphs of size a. Each crossing

consists of four vertices and each will be included in all other subgraphs containing
the same four vertices. The number of such subgraphs that share four given ver-
tices is

(
n−4
a−4

)
. Guy [Guy60], Richter and Thomassen [RT97], and Scheinerman and

Wilf [SW94] each use this argument to show that

ν(Kn) ≥ ν(Ka)
(

n

a

)
/

(
n − 4
a − 4

)
. (4)

Scheinerman and Wilf [SW94] show that this can be rearranged to get

ν(Kn)(
n
4

) ≥ ν(Ka)(
a
4

) . (5)
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1: rw−bb
gw−bb
bw−bb

2: rw−bb
gw−bb

1

2

Figure 29: Replace blue triangle with blue quadrilateral

Thus, one obtains a general lower bound for ν(Kn) from any known ν(Ka). Since
ν(K10) = 62 and

(10
4

)
= 210, one gets

∀n ≥ 10,
ν(Kn)(n

4

) ≥ 62
210

≈ 0.2952 . (6)

This raises the lower bound for ν(K11) to 98. We conjecture ν(K11) = 102.
Since crossing numbers are integers, each lower bound can be slightly increased by
taking its ceiling. Thus,

ν(Kn) ≥
⌈
ν(Ka)

(
n

a

)
/

(
n − 4
a − 4

)⌉
. (7)

If one sets a = n − 1, equation (7) gives a recursive definition whose recursive
ceilings provide an improved lower bound for ν(Kn). For example, one finds that,
ν(K400) ≥ 315356975. This leads to a general lower bound of

lim
n→∞

ν(Kn)(n
4

) ≥ 315356975(400
4

) =
315356975
1050739900

≈ 0.3001 . (8)

As n increases, the limit converges. Whenever ν(Ka′) is discovered for a new a′,
one can find an improved lower bound for a general ν(Kn), n > a′.

Consequently, ν(Kn) can be bound from below by using the technique describe
here and from above by the drawing described by Brodsky, Durocher, and Gethner
in [BDG00] to achieve the following lower and upper bounds:

0.3001 ≈ 315356975
1050739900

≤ lim
n→∞

ν(Kn)(n
4

) ≤ 6467
16848

≈ 0.3838 . (9)
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6 Conclusion

6.1 Current and Future Work

The flavour of finding the crossing number of a graph, particularly in a rectilinear
drawing, is similar to that of determining properties of line arrangements in the
plane; this area is well known to be delicate and difficult. Therefore, one expects
improvements to occur at a slow rate and specific instances of the problem for small
graphs to be hard, though interesting.

An approach that has proved quite useful is to catalogue all inequivalent draw-
ings of a given graph. With such a catalogue one can determine many specific
properties of small graphs; see, for example, [GH90, HT96, AAK01]. In particular,
to find the crossing number or rectilinear crossing number of Kn and Km,n, one
can adopt a brute-force computational approach to find exact values of the crossing
number for small graphs. Such an approach is currently underway for determining
ν(Kn) by Applegate, Cook, Dash, and Dean [Dea00], where not only will they inde-
pendently confirm that ν(K10) = 62, but they will determine exact values of ν(Kn)
for other values of n ≥ 11 as well.

In fact, when each new value of ν(Kn) is found, the lower bounds in equation
(3) and equation (7) will improve by way of the technique given in Section 5. For
example, we have seen that ν(K11) ≥ 98. There exists a rectilinear drawing of
K11 with 102 edge crossings [Jen71, SW94]; by [AR88], ν(K11) is even. Therefore,
ν(K11) ∈ {98, 100, 102}. If ν(K11) = 100 or 102 then the lower bound in equation
(7) becomes .30544 or .31085 respectively. Similarly, the best drawing of K12 known
to date has 156 edge crossings [Jen71]; if ν(K12) = 156, then the lower bound reaches
.31839.

Clearly, finding exact values for ν(Kn) for any value of n will make relatively
large improvements on the asymptotic lower bounds for the determination of ν∗.

6.2 Open Problems

We mention a small subset of open problems that arose from our investigations.

1. We know from [Guy72] that if ν(Kn) = ν(Kn) then the convex hull of any
optimal rectilinear drawing of Kn is a triangle. Prove that the convex hull of
any optimal rectilinear drawing of Kn is a triangle.

2. Given a rectilinear drawing of G, the planar subdivision of G is the graph
obtained by adding vertices (and corresponding adjacencies) at each of the
edge crossings of the particular drawing of G. Is the planar subdivision of
any rectilinear drawing of Kn necessarily 3-connected? This question was also
posed by Nate Dean.

3. Does there exist an optimal rectilinear drawing of Kn, for some n, such that
it does not contain a sub-drawing that is an optimal rectilinear drawing of
Kn−1? Furthermore, does there exist some n for which none of the optimal
rectilinear drawings of Kn contain a sub-drawing that is an optimal rectilinear
drawing of Kn−1?
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4. Often an optimal rectilinear drawing of Kn is not unique. For a given n, how
many optimal drawings of Kn are there? For what values of n is the optimal
drawing unique?

5. Let G be an arbitrary graph. What is the complexity of determining ν(G)?
Similarly, where in the complexity hierarchy does the determination of ν(Kn)
live? Recall that for a not-necessarily-rectilinear drawing of G, the general
problem is known to be NP-complete [GJ83]. For some thoughts on such
problems, see [Bie91].

6. We have seen that ν(K11) ∈ {98, 100, 102} and believe ν(K11) to be 102. Give
a combinatorial proof.

7. Finally, in the spirit of the present paper we feel compelled to mention the
following problem, for which we sincerely apologize. Since 1970 it has been
known that ν(K7,7) ∈ {77, 79, 81} [Kle70]. What is the final answer?
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A Other K9 Drawings

As before, colour the outer hull red, the second hull green, and the vertices inside
the second hull blue.

Lemma A.1 If the first hull of a rectilinear drawing of K9 is a triangle, and the
second hull has six vertices, then the drawing has more than 36 crossings.
Proof: This drawing is coloured by only two colours: red and green. By the K5

principle there are
(6
2

)
= 15 rg×rg crossings. Since the six green vertices comprise

the second hull, there are
(
6
4

)
= 15 gg×gg crossings. The 30 crossings counted so

far include all except the rg×gg crossings.
We now consider the rg×gg crossings. Select four of the green vertices; these

form a convex quadrilateral and at least one green vertex, the guilty vertex, has a
red-green edge that intersects the quadrilateral (see Figure 30). This edge partitions
the green hull into two parts with one green vertex on one side of the green hull and
three on the other, or two on each side. In the former case the red-green edge crosses
three green-green edges that are incident on the single vertex. In the latter case,
the red-green edge intersects four green-green edges that are incident on the two
green vertices in one of the partitions. In both cases, there is an additional rg×gg
crossing due to the red-green edge crossing an edge of the quadrilateral. Hence, at
minimum four rg×gg crossings are due to the single red-green edge. Since there are
at least three guilty vertices in a hull on six vertices. There must be at least 12
rg×gg crossings.

Therefore, the total number of crossings is at least 42 > 36.

Lemma A.2 If the first hull of a rectilinear drawing of K9 is a triangle, and the
second convex hull has five vertices, then the drawing has more than 36 crossings.

the electronic journal of combinatorics 8 (2001), #R23 29



guilty
vertex

Figure 30: The guilty argument

Proof: As before, the single vertex inside the second hull is coloured blue. By the
K5 principle there are

(5
2

)
= 10 rg×rg crossings and

(5
1

)
= 5 rg×rb crossings. By

the same argument used in the previous lemma there are
(
5
4

)
= 5 gg×gg crossings.

There are at least five gb×gg crossings. Thus, we reach a count of 25 crossings
without having considered the rb×gg, rg×gg, and rg×gb crossings.

We count the rg×gg, and rg×gb crossings by the guilty vertex argument used
in the previous lemma. A hull on five vertices will have at least two guilty vertices.
Each guilty vertex is responsible for at least three rg×gg crossings and, by the
Barrier argument, at least one rg×gb crossing. This yields an additional eight
crossings, bringing the total up to 33.

Crossing Min
rg×rg 10
rg×rb 5
gg×gg 5
gb×gg 5
rg×gg 6
rg×gb 2
rb×gg 5
Total 38

Table 5: Total crossings

Finally, consider the rb×gg crossings. At least three occur from the red-blue
edges having to cross into the green hull. By the containment argument, at least
one of these three edges has to cross two of the green-green diagonals within the
green hull. This brings up the total to at least five rb×gg crossings. Adding this to
the running total yields 38 > 36 (see Table 5).
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