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Abstract

A colouring of a 4-cycle system (V,B) is a surjective mapping ¢ : V' — I'. The
elements of I' are colours. If |I'| = m, we have an m-colouring of (V,B). For every
B € B, let ¢(B) = {¢(z)|xr € B}. There are seven distinct colouring patterns in
which a 4-cycle can be coloured: type a (X X X x, monochromatic), type b (x x x0O,
two-coloured of pattern 3 4+ 1), type ¢ (x x OO, two-coloured of pattern 2 + 2),
type d (xO x O, mixed two-coloured), type e (x x OA, three-coloured of pattern
24+ 1+1), type f (xO x A, mixed three-coloured), type g (xOA, four-coloured
or polychromatic).

Let S be a subset of {a,b,c,d, e, f,g}. An m-colouring ¢ of (V, B) is said of type
S if the type of every 4-cycle of B is in S. A type S colouring is said to be proper
if for every type a € S there is at least one 4-cycle of B having colour type .

We say that a P(v,3,1), (W, P), is embedded in a 4-cycle system of order n,
(V,B), if every path p = [aj,as,a3] € P occurs in a 4-cycle (a1, a9, as,x) € B such
that x € W.

In this paper we consider the following spectrum problem: given an integer m
and a set S C {b,d, f}, determine the set of integers n such that there exists a 4-
cycle system of order n with a proper m-colouring of type S (note that each colour
class of a such colouration is the point set of a Ps-design embedded in the 4-cycle
system).

We give a complete answer to the above problem except when S = {b}. In this
case the problem is completely solved only for m = 2.

AMS classification: 05B05.
Keywords: Graph design; m-colouring, Embedding; Path; Cycle.
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1 Introduction

Let G be a subgraph of K, the complete undirected graph on v vertices. A G-design of
K, is a pair (V, B), where V is the vertex set of K, and B is an edge-disjoint decomposition
of K, into copies of the graph G. Usually we say that B is a block of the G-design if
B € B, and B is called the block-set.

A path design P(v,k,1) [4] is a Py-design of K, where Py is the simple path with
k — 1 edges (k vertices) [aq, ao,. .., ar] = {{a1,a2},{az,as}, ..., {ax_1,ar}}.

M. Tarsi [11] proved that the necessary conditions for the existence of a P(v,k,1),
v >k @{ifv>1)and v(v — 1) = 0 (mod 2(k — 1)), are also sufficient. Therefore a
P(v,3,1) exists if and only if v =0 or 1 (mod 4).

An m-cycle system of order n is a C,,-design of K,,, where C,, is the m-cycle (cycle
of length m) (ay,as,...,an) = {{a1, a2}, {as,as}, ..., {am-1,an},{a1,an}}.

It is well-known that the spectrum for 4-cycle system is precisely the set of all n = 1
(mod 8) (see for example [5]).

We say that a P(v,3,1), (Q,P), is embedded in a 4-cycle system of order n, (W, C), if
every path p = [ay, as, ag] € P occurs in a 4-cycle (ay, as, as,x) € C such that z & Q, see

[9]-

Example 1. Let Ql = {ao,al,ag,ﬁg}, W1 = Ql U {bo,bl, bg, b3,b4}, Pl = {[&0,&1,&2],
[&07 as, al]a [a07 a2, &3]}7 81 = {(&07 a1, G2, bO)a (a07 asz, ay, bl)7 (a07 g, a3, b2)7
((IO, b47 bO? b3)7 (a/17 b07 as, b3)7 ((lg, b17 b07 b2)7 (a/27 b47 b27 b3)7 (a/?n b17 b37 b4)7 (ala b47 b17 b?)} It
is easy to see that (21, P1) is a P(4,3,1) embedded in the 4-cycle system (W, S;) of order
9.

A colouring of a G-design (V,B) is a surjective mapping ¢ : V' — I'. The elements
of T" are colours. If |T'| = m, we have an m-colouring of (V,B). For each ¢ € T, the
set o7 1(c) = {z : ¢(zx) = ¢} is a colour class. A colouring ¢ of (V,B) is weak (strong)
if for all B € B, |¢p(B)| > 1 (|¢(B)| = k, where k is the number of vertices of the
subgraph G, respectively), where ¢(B) = {¢(z)|z € B}. In a weak colouring, no block is
monochromatic (i.e., no block has all its elements of the same colour), while in a strong
colouring, the elements of every block B get | B| distinct colours. There exists an extensive
literature on subject of colourings (for a survey, see [2]). Most of the existing papers
are devoted to the case of weak colourings. However, recently other types of colouring
started to be investigated, mainly in connection with the notion of the upper chromatic
number of a hypergraph [12] (see, e.g., [1], [6], [7]). Most of them satisfy the inequalities
1 < |¢p(B)| < k, i.e. are strict colourings in the sense of Voloshin [12] in which the blocks
are both edges and co-edges. A step further is given by Milici, Rosa and Voloshin [§]
where the authors consider some types of colouring of S(2,3,v) and S(2,4, v) (K3-designs
and K4-designs in our terminology) in which only specified block colouring patterns are
allowed. In this paper we want to consider strict colouring in the sense of Voloshin of
4-cycle systems in which only specified block colouring patterns are allowed.

There are seven distinct colouring patterns in which a 4-cycle can be coloured: type
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a (X X xx, monochromatic), type b (x x xO, two-coloured of pattern 3 + 1), type ¢
(x x OO, two-coloured of pattern 2 4 2), type d (xO x O, mixed two-coloured), type e
(x x OA, three-coloured of pattern 2 + 14 1), type f (xO x A, mixed three-coloured),
type g (xOA, four-coloured or polychromatic).

Let S be a subset of {a,b,c,d,e, f,g} and let (V,B) be a 4-cycle system. An m-
colouring ¢ of (V, B) is said of type S if the type of every 4-cycle of B is in S.

A type S colouring is said to be proper if for every type o € S there is at least one
4-cycle of B having colour type .

Since we are looking for 4-cycle systems having a proper strict colouring in the sense
of Voloshin in which the blocks are both edges and co-edges, it is a,g ¢ S. There are 31
distinct nonempty subsets S of {b,¢,d, e, f}. Then 31 distinct types of strict colourings
of a 4-cycle system are possible. We deal here with some of these types; it is hoped that
the remaining types will be dealt with in a future paper by the author. More precisely
we are looking for proper strict colouring of a 4-cycle system having the property that
each colour class is the point set of a Ps-design embedded into the given cycle system [9)].
In other words, we consider the following spectrum problem: given an integer m and a
set S C {b,d, f}, determine the set of integers n such that there exist a 4-cycle system of
order n having an m-colouring of type S. It is clear that a such colouring must contain b.
[Here and in what follows, all braces and commas are omitted for the sake of brevity.] For
types bdf, bf and bd, a complete answer is obtained. The spectrum problem for type b
colouring seems to be the most interesting but also very difficult (at least for the author).
In this paper only the case m = 2 is completely settled. Remark that the analogous
problem for 3-cycle systems (or Steiner triple systems) is also very hard. This problem
has been considered and partially solved by Colbourn, Dinitz and Rosa [1] and Dinitz and
Stinson [3].

2 Colouring of type bdf and bf

It is trivial to see that the necessary condition for the existence of an m-colouring of type
bdf of a 4-cycle system of order n is m € {2,3, ..., "T*S} In this section we will prove the
sufficiency.

Lemma 2.1 (D. Sotteau [10]). The complete bipartite graph Kxy can be decomposed
into edge disjoint cycles of length 2k if and only if (1) |X| =x and |Y| =y are even, (2)
x>k andy >k, and (3) 2k divides xy.

Theorem 2.1 For everyn =1 (mod 8), n > 9, there is a 4-cycle system of order n with

a proper ("TH)-coloum'ng of type bdf .

Proof. Put n = 1+ 8k, k > 1. Let Q; = {z, 2}, 2%, 2%}, i = 0,1,...,2k — 1, and
Qo = {00} be the colour classes. Define the following set B of 4-cycles.

(I) For j = 0,1,...,k — 1, put in B the cycles of a proper type bdf 3-coloured 4-cycle
system on point set €y, U € U €ojpq:
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(IT) For 5,t =0,1,...,k— 1, j <t,and a« = 0,1, put in B the cycles:
(

( 7:[17:[3' » L1

(

Let V = U?*,Q;, then (V,B) is the required 2k + 1-coloured 4-cycle system of order
n=28k-+1 0O

Lemma 2.2 For everyn =1 (mod 8), n > 9, there is a 4-cycle system of order n with
a proper 2-colouring of type bd.

Proof. Put n = 1+ 8k, k > 1. Let Q; = Ui {a}, 2%, 75,28} and Q = {oc} U
UMy, ot s, 44 }) be the colour classes. Define the following set B of 4-cycles.

(

(Yo, Y1, ¥3, 3), (Y1, Y2, 00, %), (Y3, U3, Yo, 21)5 (Y3, 00,91, 73) and

(00, Y, Y3, 75).-

(IT) If £ > 2, then for i = 0,1,...,k—2and j =i+ 1,+2,...,k — 1 put in B the cycles
(xé)a];(])aleay%)a (xz]:x‘ialeayé)a (xéazéaxéayé)a (xéaxéaxéay{)a (33"(7),];12,${,y§), (x‘éazéaleayé)a
(xz,zg,xé,yé), (x%aleaxé:yi)u (yé,yé,yi,flfé), (yg):yiayivl{)a S

(Y2, Y2, Y30 73)s (Y5, U35 U3, 03), (Y0s Y5 Y1, 20)s (Yo, U3 ¥1: 1), (¥2: Yo, Y3, T3) and
(v2: Y1, Y3, 75)

(

J

[I) For i = 0,1,...,k — 1, put in B the cycles (zf, yi, z}, 00).

Let V' = Q; UQy, then (V,B) is the required 2-coloured 4-cycle system of order n.
Note that the cycles of colour type b are those given in (I) and (II). O

Lemma 2.3 If there is a 4-cycle system (W, D) of order n having a proper m-colouring
of type S, S C {bd,bdf}, then there is a 4-cycle system (V,B) of order n + 8 having a
proper (m + 1)-colouring of type bdf .

Proof. Put n =1+ 8k, k > 1. Let W = {0,1,...,8k}. Suppose that the points 1
and 2 have different colours. Put X = {zg,x1,...,27} and V. = W U X. Put in B the
cycles of D and the following ones.

(I) The following 4-cycles cover the edges of both Kx and Kx (01...6}: (%0, 21, 3,6),
(1171,1'2,1'4,5), (ZEQ,I‘g,l‘g),l), (ZE3,I‘4,I6,2), (ZE4,I‘5,I‘0,3), (ZE5,I‘6,I‘1,4), ($6,$0,l'2,5),
(1170,1'3,1'7,0), ($1,$4,I7,1), ($2,$5,l'7,2), (ZE3,I‘6,I‘7,3), (ZE4,I‘0,I‘7,4), (ZE5,I‘1,I‘7,5),
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(37671;271:77 ) (17]70727374)7 (47]70757373)7 (0,.1173,1,33'6), (37]72747376)7
(0, 29,6, 5), (2,21,3,25) and (0,2, 6, x4).

777777

4- cycles

Clearly (V,B) is a 4-cycle system of order 9 + 8k. Colour the elements of X with a
new colour. O

Theorem 2.2 For every n =1 (mod 8), n > 9, and for every m € {3,4, ..., ”TJFP’} there
18 a 4-cycle system of order n with a proper m-colouring of type bdf .

Proof. Starting from a proper m — coloured 4-cycle system of order 9 and type S,
S C {bd,bdf }, and using repeatedly Lemmas 2.2 and 2.3, we get the proof. O

Theorem 2.3 For everyn =1 (mod 8), n > 9, there is a 4-cycle system of order n with
a proper 3-colouring of type bf.

Proof. Put n = 1+ 8k, k > 1. Let Q; = {oo}, Qy = UF {a}, 2%, 2%, 2} and Q3 =
UM adl, oh, b, yi} be the colour classes. Let B be the set of 4 cycles constructed using
Lemma 2.2. Remove from B the 4-cycles (v, vy, vs, x%), (yi, s, 00,2%), (vs, 00, yt, xh),
(00, Y, ¥, %), and put on it the following ones (S, yi,y4, 00), (yi, z, yi, 00),

(v, ys, i, %), (yh, o, 00, 2%). Let V = QUQyUQs, then (V, B) is the required 3-coloured
4-cycle system of order n. O

Theorem 2.4 For everyn =1 (mod 8), n > 9, there is a 4-cycle system of order n with
a proper ("*3) colouring of type bf.

Proof. Put n =1+ 8k, k > 1. Let Q; = {x}, 2%, 2%, 2%}, i = 0,1,...,2k — 1, and
Qg = {00} be the colour classes. Define the set B of 4-cycles by putting on it the cycles
(IT) of Theorem 2.1 and the following ones.

For j = 0,1,...,k — 1, put in B the cycles of a proper type bf 3 coloured 4-cycle

27, 25 25 2+l 2j+1
system on point set Qo U Qgg U Qgé L (wg”, 27, 25, 2”™), (x3?, xF a3 ad ™,
2

27 25 25 2j+1 2j+1  25+1 2j+1 2741 2541 2§
(x07x37x1 T3 )7(% » L1 ) )a(xo y Lo Xy, T3

2j+1 2]+1 2j+1 25 25 2] 2j+1 25 25 25+1 2j+1 2j+1 25
(" 2y’ 2y 2?), (2, 00, $3 2y ), (@3, 00, @y, 25"), (2577, 00,27, 137).
Let V = U?*,Q;, then (V,B) is the required 2k + 1-coloured 4-cycle system of order

n=8k+1. 0O

Lemma 2.4 Suppose there is a type bf m-coloured 4-cycle system of order n = 1 + 8k,
(W, D), whose colour classes €;, i = 1,2, ..., m, have the following cardinalities:

(1) If 3 < m < k+2, then || = 1, |Q] = |Q3] = 4k — 4(m — 3), and (if m > 4)
0] = 19| = .. = 2] = 5.
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(2) ]fk+3 <m< 2k + 1, then ‘Qly = 1, ’QQ‘ = ’Qg’ =...= ’QQm,Qkfl‘ = 4, and (Zf
m S 2]{) ’QmeQk’ = ‘ng,QkJrl’ = ...= ‘Qm‘ = 8
Then there is a type bf (m + 1)-coloured 4-cycle system of order 9 + 8k.

Proof. Put W = {0,1,...,8k}, X = {xo,z1,...,27} and V = W U X. We now
construct a (m + 1)-coloured 4-cycle system of order 9 + 8k, (V,B). Let Q; = {6},
0,2,4 € and 1, 3,5 € 411, where either t = 2 for odd m or t = m —1 for even m. Then
it is easy to see that it is possible to partition the set {7, 8, ..., 8k} into no monochromatic
pairs {a;, 3}, 7 =1,2,...,4k — 3.

Define B by putting on it the following 4-cycles:

(a) the cycles of D;

(b) the cycles (I) of Theorem 2.2;

(c) for each pair {«;, §;}, the cycles (z;, o, 29541, 5;), ¢ = 0,1,2,3. Colour the elements
of X with a new colour. O

Remark 1. The above Lemma 2.4 gets 4-cycle systems of order 9 + 8k satisfying the
hypotheses of same Lemma 2.4 (where it is n = 1+ 8(k + 1)). Theorems 2.3 and 2.4 get
4-cycle systems satisfying the hypotheses of Lemma 2.4 (where it is n = 1 + 8k).

Theorem 2.5 For every n =1 (mod 8), n > 9, and for every m € {3,4,.. ., "T”} there
1 a 4-cycle system of order n with a proper m-colouring of type bf.

Proof. The cases m = 3 and m = ”T+3
2.4 respectively.
Starting from the 3-coloured 4-cycle system of order 9 constructed by using Theorem

2.3, a recursive use of Lemma 2.4 gets the proof. O

are proved by using Theorem 2.3 and Theorem

3 Colouring of type bd

Let (V, B) be a 4-cycle system of order n, n > 9, having an m-colouring of type bd. Clearly
m < "21. Let w; be the cardinality of the colour class €2;, ¢ = 1,2,...,m. Since (); is the
point set of a Ps-design embedded in (V,B), w; =0 or 1 (mod 4).

By definition {Q; | i = 1,2,...,m} is a partition of V, then at least one w; is odd.
W.lo.g. suppose that wy is odd. If there is some other index i € {2,3,...,m} such that w;
is odd, then the cardinality of the edge set of the complete bipartite graph Kgq, o, is odd.
But this is impossible because each B € B covers a nonnegative even number of edges of

Kgq, q,. From now on we will denote by w; the only odd integer of {w; | 1 =1,2,...,m}.

Lemma 3.1 Ifm > %15 then wy > 5.

Proof. Let w; = 1. Since each cycle has no colour type f, it is w; > 8 for each
1=2,3,...,m. O
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Lemma 3.2 Let wy > 5, and let

1+ 9+ 1242 it wg =5+ 124
X(wi)=<¢ 6+17u+ 12>  ifw; =9+ 12u
13+ 25u + 122 if wy = 13 + 12

Then |{i | w; =4} < x(w1).

Proof. Suppose w; = 4 for some j € {2,3,...,m}. Let (€y,P;) and (Q;,P;) be the
two Ps-designs of order w; and 4 respectively, embedded in (V, B). Put Q; = {1,2, ..., w1},
Q; ={ao, a1, az, a3}, P; = {[ao, az, a1}, [ao, as, as), [ao, a1, as},

F ={(ap, az,a1, ), (ag, as,as,y), (ap, a1, a3, 2)} < B.

Let D(Q;) = {Bi, Ba, ..., By} be the set of 4-cycles B of B meeting both €; and €.
Clearly it is B C Q; U () for every B € D(;).

Let M be the 4 x # array on symbol set D(€2;) (with rows indexed by the elements
of Q; and columns indexed by the elements of ) defined by M (a;,a) = B, if and only
if {a;,a} is an edge of B,. The inclusion F C D(£;) follows easily by the fact that the
cardinality of the edge set of the complete bipartite graph Kq, (4,3 is odd, i = 0,1, 2,3,
and each 4-cycle B € F covers a nonnegative even number of edges of Ko, (4,}-

Put By = (ag, as, ai, 1), Bs = (ag, as, as, 2), By = (ag, a1, az,3). Then M(ag,i) =
M(a;,i) = B;,1=1,2,3. For = 1,2 let Dg(2;) denote the set of B, € D(;) such that
|B, N ;| = f}. Each B, € D5(£2;) gets a 2 x 2 subsquare of M with all entries filled by
the same symbol B,. Thus the number of entries of M containing a symbol of Dy(£2;) is
a multiple of four. Then 4w; = 6 + 2|D;1(£2;)| + 4|D2(2;)| and |D;(£2;)| must be odd.

Let |Dy(€2;)| = 1 and suppose Dy () = {By = (a1, a3, 9,a4)}, t € {0,1,2,3} and
aj,ag,a3 € {1,2,...,wi}. It follows M(ay, 1) = M(a, ) = By, aj,as > 4, and the
remaining cells of columns «; and «, are filled by a symbol of D,(€2;). Since this is
impossible, |D;(€2;)| > 3.

By repeating this argument for each colour class €2; whose cardinality is four, we obtain
[{i | wi =4} < 5|1 = x(w1). O

The upper bound for the number of colour classes is found in next theorem.
Theorem 3.1 Letn =1 (mod 8), n > 9, and let
5+12u  if 9+ 16p +48u> < n < 9+ 48 + 482
wn)=1< 9+12u  if 17+ 48u + 481> < n < 33 + 80u + 48>
134+ 12 if 41 4+ 80p + 48u? < n < 65 + 1124 + 4842

Then m < 1 + =2

Ty
Proof. For m < %15 the proof is trivial. Suppose m > —"215, By Lemma 3.1 it is
w1 2 5.
If wy > w(n) then m <1+ 2221 <1+ "*Z(n)‘
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Let w; < w(n). Then, by Lemma 3.2

n—w —4 n—w; —4x(w
mS1+7+%§1+X(w1)+ 18 X 1),
where v = [{i | w; = 4}].
To complete the proof it is sufficient to prove that
n > 4x(w) —wi + 2w(n) (1)

We prove (1) only for 9+16u+48u* < n < 9+48u+48u2, leaving to the reader to check the
remaining two cases. For p = 0, (1) is trivial. Let y > 1. If w; = 5+12p then p < p—1 and
thus it isn > 9+16u+48u* > 4(1+9p+12p%) — (5+12p)+2(5+12u) = 4x(w;) —wi+2w(n).
Similarly it is possible to check (1) for w; =9 or 13 (mod 12). O

In order to prove that for every m such that 2 < m < 14 == w(") , there exists a 4-cycle
system (V) B) having an m-colouring of of type bd, we need to construct some classes of
path designs P(wq,3,1), w; =1 (mod 4), decomposable into the special configurations.

Let (Q1,P;) be a P(wy,3,1) and let P, = [z}, 2%, 2% € P1, i = 1,2,3. The set
{Py, Py, P3} is said to be a conﬁgumtz’on of type 1 if there are three distinct elements 7y,
Y1, Y2 € € such that ) = 23 = 40, 23 = 2} = v and 22 = 23 = 75. We will denote by
L1(v0,71,72) a configuration of type 1 whose paths have endpoints 7, 71, V2.

Note that both a bowtie and a 6-cycle will provide a type 1 configuration.

Let ;, i = 0,1,...,7 be eight mutually distinct elements of ©; and let £ (70,71, 72),
L1(73,74,75) and Lq(¥e,74,77) be three configurations of type 1. The configuration
Lo(70, 715 V2, 135 Y4, V55 Y6, ¥7) = L1(70, 715 72) U L1(73, Y4, ¥5) U L1(76, V4, 7) 18 said to be a
configuration of type 2.

We say that a (€y,P) is Li-decomposable if either the path set P; (if w; = 1 or 9
(mod 12)), or the path set P; from which two paths having the same endpoints have been
deleted (if w; =5 (mod 12)), is decomposable into configurations of type 1.

Example 2. Let ©; = {0
4

= {0,1,...,4} and let £,(0,2,4) = {[0,1,2],0,3,4],[2,0,4]}.
Put Pl :£1U{[3,1,4] [ 2

1}. hen (Q4,P1) is Li-decomposable.

Example 3. Let ; = {0,1,...,8}. A decomposition of P; into 6 configurations of
type 1 is the following

£4(1,3,7) ={[1,2,3],[1,4,7],[3,1,7]}, £(4,8,6) = {[4,3,8],[4,5,6],[8,4,6]},

£4(0,8,2) = {[0,7,8],[0,4,2],[8,0,2]}, £:(3,0,7) = {[3,6,0],[3,5,7],[0,3,7]},

£1(1,8,5) = {[1 6,8],[1,0,5],[8,1,5]}, £1(2,8,6) = {[2,5,8],[2,7,6],[8,2,6]}.
8,6)U£1(O,8,2),and£1(3,0,7)u 1 1, ,5) El( 8,6)} are

Note that £4(1,3,7)ULy(
two conﬁguratlons of type

Example 4. Let Q; = {0,1,...,12}. A decomposition of P; into 13 configurations
of type 1 is the following
£1(0,4,7) = {[0,1,4],[0,5,7], 4,0, 7]},
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£1(1,5,6) = {[1,2,5],[1,8,6],[5,1,6]},
£1(2,6,9) = {[2,3,6],[2,7,9],[6,2,9]},
£1(6,10,0) = {[6,7,10],[6,11,0], [10, 6, 0]},
£1(4,8,9) = {[4,5,8],[4,11,9], 8, 4,9]},
£1(5,9,12) = {[5,6,9], [5,10,12],[9, 5, 12]}
£1(9,0,3) = {[9,10,0], 9, 1,3],[0,9, 3]},
£4(7,11,12) = {[7,8,11],[7,1,12], [11,7,12]}
£1(8,12,2) = {[8,9,12],[8,0,2],[12,8,2]}
£1(12,3,6) = {[12,0,3],[12,4,6], [3,12,6]}
£4(10,1,2) = {[10,11,1],[10,4, 2], [1,10, 2]}
51(11,2,5) = {[11 12,2), [11,3,5], [2, 11, 5},
£1(3,7.10) = {[3,4,7), 3,8, 10], 7,3, 10]}.

Note that the first 12 configurations of type 1 get 4 mutually disjoint type 2 configurations.

In order to prove Theorem 3.3 we need to construct L£;-decomposable path designs
having a sufficient number of disjoint decomposition of type 2 as specified by the following
theorem.

Theorem 3.2 Let wy > 5 and let

—1+2u+3p? ifw =1+12u
4pn + 3p? if w =5+12u
2+ 4y + 3 if w =9+ 12u

Then for each v, 0 < v < 7(wy), there is a L1-decomposable P(w1,3,1) having v mutually
disjoint configurations of type 2.

Proof. Since every configuration of type 2 is decomposable into 3 configurations of
type 1, then it is sufficient to prove the theorem for v = 7(wy).

Suppose w; = 1+ 12u, p > 1. For = 1 the proof follows by Example 4. Let p > 2.
It is sufficient to prove that the existence of a £;-decomposable P(wy,3,1), (€21, P1), con-
taining 7(wq) disjoint type 2 configurations implies the one of a £;-decomposable P(w; +
12,3,1) with 7(wy) + 5+ 64 disjoint type 2 configurations. Put @y = {ap, o, ..., 2.}
Let (I, Q) be a copy of the £;-decomposable P(13,3,1) given in Example 4 based on
point set I' = {on9,} U {1,2,...,12}. We emphasize that the 4 disjoint configurations of
type 2 of (T', Q) do not contain £4(3,7,10) = {[3,4, 7], [3,8,10], [7, 3, 10] }.

Now we construct the required P(w; + 12,3,1), (€, UT,P). Put in P the paths of
P1 U Q and the following ones.

(I) For i =0,1,...,3u — 1 put in P the paths of following type 2 configurations:
,Cé(l, 2, 3, 5, 6, 7, 8, 9) = {[1, (lys, 2], []_, Ogi41, 3], [2, 04542, 3]} U

{[57 Qi 6]7 [57 Ogi42, 7]7 [67 Q4543, 7]} U {[87 Qi 7]7 [87 Qrgi42, 9]7 [77 Qgit1, 9]}7
£5(3,4,5,9,10,11,12,1) = {[3, s, 4], [3, ui+3, 5], [4, agi1, 5]} U

{19, s, 10, [9, cgivg, 11], [10, cugipr, 11} U {[12, g, 111, [12, cugivg, 1], [11, gy, 1]}
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(IT) For ¢ = 0,1,...,3u — 1 put in P the paths of following type 1 configurations:
Ezl (27 47 6) = {[27 Qgi+3, 4]7 [27 Q4i41, 6]7 [47 (4442, 6]}7
£Z1 (8, 10, 12) = {[8, 04513, 10], [8, Ogi11, 12], [10, 04512, 12]}

Use £1(3,7,10) = {[3,4,7],[3,8,10],[7,3,10]}, £9(2,4,6) and L£{(8,10,12) to form a
further configuration of type 2.

It is easy to see that at least 7(w;) + 4 + 2(3u) + 1 disjoint configurations of type 2
appear in P.

By similar arguments it is possible to prove the theorem for w; = 5+ 12u,9 4+ 12u
(note that cases w; = 5 and w; = 9 are given in Example 2 and Example 3 respectively).
O

Remark 2. Let (€21, P;) be the £i-decomposable P(wy,3,1) constructed using Theorem
3.2 with w; = 54+ 12p. . Then P; contains the block set Q of a P(5,3,1) isomorphic to the
one given in Example 2. Moreover P; — Q is decomposable into configurations of type 1.

Theorem 3.3 Let m =1+ %(”), n =1 (mod 8), n > 9, where w(n) is defined as in
Theorem 3.1. Then there is a 4-cycle system of order n having a proper m-colouring of

type bd.

Proof. Suppose

94 164 + 48p% < n < 9 + 48y + 481 (2)
Putwlzw(n):5+12uand)\:%[W—Q] =1+ 9u+ 122 By (2) it is
1+u+12u2§%§1+9u+12u2 (3)
and
n—w
0<A— - < 8u (4)

It is easy to see that p = A — 5% is even. Then 0 < £ < 4p < 7(5 4+ 12). Using
Theorem 3.2 it is possible to construct a £;-decomposable P(wy, 3,1), (€21, P1), containing
£ configurations of type 2, say £5 i =1,2,... £

Let 6 = A =35 = %172”. Denote by L] 7 =1,2,...,9, the type 1 configurations
contained in (€21, P1) not occuring in £j for some i € {1,2,...5}.

Let (T, Q) be the P(5,3,1) embedded in (£2;,P;). Suppose that £] C Q (see above
Remark 2).

Put Qi = {ag, o1, ..., au1ou}, A = {af, a},ab, al}, i =1,2,... 2L

Now we construct a 4-cycle system (V) B) of order n having a m-colouring of type bd.

n—w

Let V=0, U (UZ:Tl1 A;). Let B be the following set of 4-cycles.

(I) Let T' = {aw, a1, a2, a3, g }. Put in B the 4-cycles:
(ala g, O, a%)) (ala Qag, Oy, CL%)), (Oég, Qaq, Oy, CL%), (063, Qp, Oy, a(l))a (053, Qg, Oy, CL%),

(ag, a3, ai, 1), (ad,al, ad, ), (a,ai, a3, as) and (g, al, as, ai).
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If n =9 (= 0) then the proof is completed. If 1 > 1 then using Lemma 2.1 decompose
the complete bipartite graph Kq,_r 4, into edge disjoint 4-cycles and put them in B.
Moreover put in B the following ones.

(IT). Let j € {2,3,...,0}. We can suppose that £] = {[yo, y3, 1], [vo, Ya, ¥2], [v1, U5, ¥2] },
where yo, Y1, - - ., y5 are elements of 2y such that yo # y1 # y2 # yo and y3 # ys # ys # Y3
. PUt Hl B the 4'Cycles (y07 Ys, Y, aé)a (y07 Ya, Y2, a%)a (yb Ys, Y2, a]1>7 (ag)a a%a &{, y0>7
(a{), &%, &%, yl) and (ag)a aia aéa yQ)‘
Decompose the complete bipartite graph Kaq, (y4,.4.1,4, into edge disjoint 4-cycles
and put them in B.

(III). Let i € {14 0,2 +6,...,5 4+ d}. We can suppose that

L5 = {[yo, ys, v1l [Yo, Yo, v2), [v1. y10, y2) } U {3, ya1, val, (Y3, 12, Ys), [ya, 13, ys) U
Y6, y1a; yal, W6, Y15, v, [Ya, va6, y7]}, where yo, 41, ..., 416 are elements of €2 such that
Yo, y1, -,y = 8. . 4 . .

Put in B the 4-cycles (yo, s, Y1, a3), (Yo; Yo, Y2, @b), (Y1: Y10: Y2, i), (Y3, Y1, Ya, ),
(y37 yl?a y57 CLB), (y47 y137 y57 &12)’ (y67 ‘yl47‘y47 af))a (y67 y15‘7 Y, aé)? (94, y‘167 Y, aé)a )
(CL%, &127 &117 y0)7 (CL%, az37 az27 yl)a (@67 azla az37 92), (aéa Ys, az37 g)a (azla Ys, az37 yﬁ)a (CL%, Y, azla g)a
where y € y and y # y; for i =0,1,...,7.

Decompose the complete bipartite graph Ko, (g,y0.41,...47},4; into edge disjoint 4-cycles
and put them in B.

(IV). Decompose the complete bipartite graph Ky, 4;, @ # j, into edge disjoint 4-cycles
and put them in B.

It is easy to see that the above constructed (V, B) is a 4-cycle system of order n having
a proper m-colouring of type bd (the colour classes are 1, Ay, Ag, ..., An-w; ).
4

Similarly it is possible to prove the theorem in the remaining cases 17 + 48 + 4812 <
n < 33 + 80u + 481 and 33 + 80 + 48u? < n < 65 + 112u + 48u?. O

Theorem 3.4 For everyn =1 (mod 8), n > 9, and for everym € {2,3,...,1+ %(n)}
there is a 4-cycle system of order n with a proper m-colouring of type bd.

Proof. The cases m =2 and m =1+ %(”) are proved by Lemma 2.2 and Theorem
3.3 respectively. As in Theorem 2.2 it is possible to prove that the existence of a 4-cycle
system of order n having an m-colouring of type bd, implies the one of a 4-cycle system

of order n + 8 having an (m + 1)-colouring of type bd. O

4 2-Colouring of type b

In this section we deal with the spectrum problem for 4-cycle systems having a 2-colouring
of type b. This problem is equivalent to find a 4-cycle system (V, B) having two Ps-designs
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(Q,P;), i = 1,2, embedded on it and such that each 4-cycle of B contains exactly one
path of Py U Py, ie. [B| = [P1] + |Pel.

Theorem 4.1 Let (V,B) be a 4-cycle system of order n having a 2-colouring of type b,
and let 0, || = w; i = 1,2, be the two colour classes. Then either

(1) wy =21 +52u+ 32u% and  wy = 28 + 60 + 32u%, p >0, or

(2) wy =4p+32u* and wy =1+ 12u+ 32u?, pu > 1.

Proof. Let (Q;,P;), i = 1,2, be the two Ps-designs embedded in (V,B). By |B| =
|P1| + |Po| it is
(w1 — (,UQ)Q - (wl + u)g) = 0. (5)

By (5), wy # wy. Suppose w; < wo and put ¢ = wy —w;. Since t? = wy+wy, then wy = tQT_t
and wy = TFL. So we obtain 2 — 1 =0 (mod 8), =X =0 or 1 (mod 4) and &5 =0 or 1
(mod 4). It follows that ¢t = 1 or 7 (mod 8). Putting either ¢t = 1+ 8u or t = 7 + 8u we

complete the proof. O

Theorem 4.2 For each nonnegative integer i there is a 4-cycle system of order n =
49 + 112p + 64u? having a 2-colouring of type b and colour classes 0y, Qy of cardinality
wi = 21 + 52 + 3202, wo = 28 + 60 + 32u% respectively.

Proof. Let n =7 —8(1+ ), 6 = 44 13+ 8u®. Put X; = {af, 2}, 2%, 2%}, Y; =
{yévyivyéayév }7 Aj = {ag)vajh e '7a]7}7 X = U?:OXi (|X| = W2 — 8(1 + :U'))v Y = U;‘S:O)/iv
Q) = {0} UY, A=U_jA; and Qy = X UA. Let (W, D), W = Q; UX, be the 4-cycle
system of order n having a 2-colouring of type bd constructed by using Lemma 2.2. Let
Dy = {(x},yi, 21,00) | i =0,1,...,8} be the set of cycles of D having colour type bd. Let
V = Q1 UQs. Our aim is to produce a 4-cycle system of order n on vertex set V', having a
2-colouring of type b with colour classes €2; and €. To do this at first we embed (W, D)
in a 4-cycle system (V,DUC), then we replace the cycles whose colour type is not b with
type b cycles covering the same edge-set of the previous ones.

For i = 1,2,...,9 let C; be the cycle-set given in Appendix 1. Put C = U_,C;. In
order to prove that (V,DUC) is a 4-cycle system it is sufficient to verify that the cycles
in C cover the edges of K4 U K4 (syuxuy. Clearly |Ci| = 14(p + 1), |Co| = 16u(p + 1),
Cs| = 30(k + 1) + 8(p + 1)” + 40u(p + 1), |Ca| = 16(2p + 2)(u + 1), |Cs| = 5(p + 1),
Co| = 32(u + 1)p® + 24p(p + 1), |Cr| = [Col, |Cs| = 64pu(p+ 1)* and |Co| = 8u(p + 1). It
follows that C covers the same number of edges of K4 U K4 (ojuxuy. Then it is sufficient
to verify that every edge of K4 U K4 foyuxuy is covered by some cycle in C. In the
following we show how to check this:

—forv=20,1,..., u, the edges of K4, are covered by cycles in Cs;

—fori=0,1,...,u, the edges of Ky, (o are covered by cycles in Cy;

—if p > 1, thenfori=0,1,...,u—1,j=1i+1,2+2,..., u the edges of K4, 4, are covered
by cycles in Cy;

—fori=0,1,...,3u+ 2, the edges of K4y, are covered by cycles in C; U Cs;
—fori=3p+3,3n+4,...,51+4, the edges of K4y, are covered by cycles in Cy;
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—fori=5u+5,5u+6,...,0, the edges of K4y, are covered by cycles in C, UCg U C7 UCs;
—fori=0,1,...,5u+ 4, the edges of K4 x, are covered by cycles in C3 U Cy U Cs;
—fori=5u+5,5146,...,9, the edges of K4 x, are covered by cycles in Cs UC7 UCsUCy.

Remark that the colour classes are €2; and §25. Then the cycles of C5UCy are monochro-
matic whereas the ones of C; UCy UC3 UC4 U Cg U C7 UCg are of colour type b. Let By be
the set of cycles, of colour type b, given in Appendix 1. It is easy to verify that B; and
Cs U Cy U Dy cover the same edges.

Put B= (D —D;)U(C — (C5UCy)) U B;. Then (V, B) is the required 4-cycle system
of order n having a 2-colouring of type b. O

Theorem 4.3 For each p > 1 there is a 4-cycle system of order i = 1 + 16u + 644>
having a 2-colouring of type b and colour classes 1, Qy of cardinality w, = 4u + 3242,
wy = 1+ 12 + 32u? respectively.

Proof. Let n =n—8u, d = 8u?+u—1. Put X; = {xf, 2}, b, 25}, Y, = {vi, i, yb, vi},
Aj={a),d),....al}, W =U_ X;, Y = UV, A= U;;&Aj and Qy = {c0} UY U A.

Let (I), (II) and (I11) be the cycle-sets constructed in Lemma 2.2. Change y} with
oo in cycles of (I) and (I11) and leave unchanged those of (I7). Then we obtain a 4-
cycle system of order n (W, D), W = Q; UY U {oo}, having a 2-colouring of type bd,
with colour classes 2 and Y U {oo}, and such that the set of cycles of colour type bd is
D, = {(x%)ayéaleayé) |i=0,1,...,6}.

Let V. =Q;UQ,. Fori=1,2,...,6 let C; be the cycle-set given in Appendix 2 (where
the suffices of x and y are (mod 4), and the suffices of a are (mod 8)).

Put C = U ,C; and B =CU (D — D;). In order to prove that (V,B) is the required
4-cycle system of order n having a 2-colouring of type b, it is sufficient to verify that the
cycles in C cover the edges of K4 U K4 (soyuxuy and D;.

Clearly [Ci| = 14y, [Co| = 16p(p0 — 1), [Ca| = 9(4p® — 2p) + 108%, |Caf = 16p(8p° —
8u) — 16p(p—1) —4pu, |Cs| = 24p and |Cg| = 16u(p — 1). It follows that C covers the same
number of edges of D; and K4 U K4 (oyuxuy. Then it is sufficient to verify that every
edge of Dy and K4 U K4 (s)uxuy is covered by some cycle in C. In the following we show
how to check this:

—forv=0,1,..., 0 — 1, the edges of K4, are covered by cycles in Cy;

—if g > 2, then fori =0,1,...,u—2, 7 =14+ 1,0+ 2,..., 4 — 1 the edges of K4, 4, are
covered by cycles in Cy;

—fori=0,1,...,u— 1, the edges of K4, (o} are covered by cycles in Cs;
—fori=0,1,...,9u — 1, the edges of K4 x, are covered by cycles in C; UCs U Cs;
—fori=9p,9u+1,...,0, the edges of K4 x, are covered by cycles in C; UCy U Cy;
—forv=0,1,...,9¢ — 1, the edges of K4y, are covered by cycles in C3 U Cj;

—for ¢ =9u, 9+ 1,...,9, the edges of K4y, are covered by cycles in Cy U Cs U Cg;

— the edges of D, are covered by cycles in Cs U Cg. O
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J=it i+ 2 | (@b, 2 0] gy 1Y), (ahes 2T, A g, T ),
+16(j — LY i — 1) | (b, 252, a8 00, U5 T), (a5, T2, af 400 yT ),
/0 = 07 17 R :u (&507 x6+137 a/erQa? y(7)-+13)7 (a507 33'71-+13, all)+20'7 y1'+13)
P 7é ] (agm $6+14, a/erQav y6+14)7 (agm Iﬂl—Jrl ) all)+2m y{+14)7
0 = 07 ]'7 27 3 (0/2)0'7 :L‘70—+157 af“rQO” y6+15)7 (a§0.7 x1—+157 af*‘rQO” y1—+15)7
x=1,2,3 (09, 257, 0 10y U5 ), (@, 2775, 0] 1o 4T ),
ia j7 K, T as above (aj2xa .1'6+9, a]1+2xa y8+9)7 (aéxa $71-+9, aj1+2xa y}'+9)’
x=0,2,3 (@, 5%, @l soy, U5 10), (a2, 2770, a0y, 4T T10),
ia j7 K, T as above (&j2)@ xz)-Jrll? aj1+2x7 y(7]-+11)7 (QJZ)U x71-+117 alerQXa yIJrl )7
X = 07 17 3 (aj2xa 33'6+12, aj1+2xa y(7)-+12)7 (&j2)0 $71—+12, aj1+2xa y}'+12)’
i, J, u, T as above (aéx,x[)*w, a{+2x,yg+13), (aéx, R a{HX, Y7t
x=0,1,2 (@, 5 @l o, U, (0, 27T 0oy, yT M),
Z.v j? M, T as above (a’j2x7 ZE6+15, aj1+2x7 y(7]—+15)7 (CLJZ)(? ‘/L‘71—+157 alerZX’ y1—+15)'

l Cs I
w>1,i= 0’1"""“._4 L,j=i+1,i+2,...,u (a;(,,z;+°“,a¥+2(,,yg+a),
T =545+ 16(j — L i — 1) (a36, 757, ] 190, 43 ).
vy=0,1,...,0,aa=0,1,...,15, 0 =0,1,2,3

l Co |
w>1,1=0,1,...,u—1 (aéa,x{)*%,aéaﬂ,x{”"),
j=i+1,i+2,...,u (aéa,x()””“, aéaﬂ,xﬁ%ﬂ),
T =545+ 16(j . z’(i;rl) +ip— 1) (&%U’x6+20+8’ Gég+17x1+20+8)7
c=0,1,2,3 (ad,, x5 T2, Wi 2727,
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B,

120717' 7:“’ (x07a07x1 700)7 (x817a57x17y3)
( 5141 CL2, xi)erl’ OO), (xngrl %7 .I'?ZJrl, ngJrl),
( 5Z+2 a3,x?+ ) ) ( ot a4’x?z+2’y§z+2)’
( 5z+3 6, :L,i)z-‘r?)’ )’ (x5z+3 CL7, ZE?H—?), ygz-‘r?))’
( 5z+4 é’ xi)z+4’ )’ ( 5i+4 a4’ xin+4’ y§z+4)
,U 2 1’ o= 0’ 1’ 2, 3 ( T+20’ a20-7 x71'+20 ) T+20 G20.+1, x71'+20’ y§+20>’
i=0,1,...,0—1 (2] Pr2otl ,aby, a7 T2t oo),
Jmi+ ik | (gt g, 71T GETH),
T =545+ (apHars G 27718, 00),
+16(] . Z(’L+1) + ’L,LL 1) ( 7'+20+8 a2a+17 ZE1+2J+8, Y3 —1—2(7—1—8)7
( T+20+9 a%m ZL‘71-+20+9, OO),
( T+20’+9 a2a+1’ .1'71—+20+9, y7+20+9>
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Appendix 2

Ci
1=0,1,...,p—1 (a%)a Qs aia l’g), (@éa aila aéa $g), (@ia aéa affw Z'g)
(aév as, ai77 l‘g)v (a67 aih aév l‘gz)v (%a CL2, a57 x?l)
(aéa ay, aéa xngl)’ (aéa aéa aéa x?wl)’ (@47 a17 (L3, x?)HQ)?
(ai:iv aév aév x%—ﬂ)v (%7 a57 CL7, xgz—i-?))’ (%7 a67 a?? x£1)1+3)’
(CLZ, as, aév l‘gz+4)7 (a47 a7, CL3, l‘?ZJA)'
Ca
H > 2 (a207 a4o7 a1+207 z8+2a)7 (a207 a1+4m a1+207 xI+2J)7
i=0,1,...,0—2 (aQU,a2+4a,a1+20,x1+7+2"),
o | S G T,
j=i+1i+2,...,u—1 (ao,aQ,al,zO ), (ao,a3,a1,x1 ), (ao,aﬁ,al,zo ),
T : 9;“ + 16 [Z(,u - 1)_ (a{), (L7, ala J}IJFQ), (@27 a27 a37 x6+10>’ (@27 a37 a37 J}IJAO),
_w +j - 1] (aév a67 a37 $8+11)7 (a27 CL7, a37 $;+11)7 (a47 aO? a57 x6+12)7
0= 07 17 27 3 (afh al? ag’w 1‘71—+12)7 (a47 CL4, az’w x6+13)’ (CL4, CL5, aé, ZL‘IJFB),
(a]67 a07 (L7, $6+14), (a67 ala a?? J}IJFM), (@67 a47 a?a x6+15>7
(aé, a57 a7, 1‘71—+15)
Cs
1=0,1,...,0—1 (af), v ,a5,x2"+1) (missing (aé,ygi, ag,xgﬁrl) o= Q, 3)
j = 0717 Ry 1 (a§ y?.;ga%7 a+1129 (a37ya7aivl‘gj4rl)l+ga67ya73375 l‘gZJrl)a
— 7 1 7 7 _
a=0,1,2,3 (ag o , i, ?1911) (HllSSlilfgl(&Q, " ,ag, xa+112r9z& = Oﬁ?ﬁ
(ad; Ya al? Torr )s (@3, Ya™ al, wo41), (a5, ¥, ™ a7, 1447)
(aj, yat™ a3, 22tY) (missing (a4, o as, a2ty a =0,3)
(ag, 2™, al? g:ﬁz) (a2, yat™, ag, xiﬁ?) (ag, y2™, az, xiﬁ%
(ap, ya™, an o) (missing (ao,yf’fg‘,awiigf) =0,3)
(&{ o a27 31%1) (a37 o a47 xzfil) (a57 o ) Qs xzfil)
(a1, y2"™, a3, 4y y) (missing (a4,y§+9‘,a3,$iigf) a=0,3)
(a0, Yo " a{, Tai1)s (a3, ya™™, ad, 231 T), (ag, yat™ af, 241Y)
(ag, yo ™ a17 o) (missing (ap, y2 ™™, a1, 22LY), a = 0,3)
(ah, yo ™", a37 ott), (ag, y2™, a5yfvii?i) (af, yo ™", ap, 23 5Y)
(a, ySH’ a3, a3t (missing (aQ, 6+9¢ ag,xgﬁz) a=0,3)
(ag, yS ™™, al? Sf-ﬁz) (a4, Yo', az, ngiz) (ag, ya ™, a7, xgi%’)
(a3, ya ™, a5, oty (missing (a4,y2+9‘,a5,$219f) a=0,3)
(@(J) e ala Zj—%l) (a27 e a37 x;j—gll)a (a6? o a]77 x;fil)a
(ag, ya ™" a7, w5y (missing (a67y§¢+91 a?awiigf) a=0,3)
(. yat™, af, a3, (ag, y3™ af, agh), (af, y3t”, af, 25 i)
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Cy

j:0717 7,u_1
7 =9, 9+ 1,
a,0=0,1,2,3

8?4+ —1

J Y4 Y
(a207 ya’ a1+207 lera)

(a)Forj:O,l, Y
T=9p+16[j(n—1) -

ap, y[@aalaxl-i—,@) ap, Y
i 24T 2471

ay, Yy, ‘13’9511,@ , ()

j

4

j

65

1

(ad,

, 11 )s (@,

@, ys'", a5, 7115), (i,
&Yy a2, (ag,y
8+1 _p ) (

(
(
(
(
(ap, Ys
(
(
(

Q

alvl?iog
ag,xﬁr 5 ), (ah,y
+T)’ (&

(

a57x1+ﬁ
): (a

P
a/07
p 10 +T
A3, yg
12+7

1447
07, Ty

(b) For j = 0,1,

J 6 J 5
(a2m Y2, a1+2o7 $3).

)
)

9
)
P
2
P
4
P
67

missing the following cycles:

2,

- 17 ﬁ = 0a37
J(J+1) +p— 1]’
1+T j

ala x%ig)

5 a1,
57 a5, 7Y
7+7- a7,x£ig),

JrlT—i-?'T’ xlij@;%—iﬂ'
13+T a3’ x%érff)
a5a331+ﬁ ),
a?? fﬁ?)

Y

15+7’

Lpu—1and 0 =0,1,2,3,

Cs

1=0,1,...,0—1
c=20,1,2,3

(
(
(2
(21
(27"
G
€
(1"
(1
(21

a2m 00 a1+20'7 Ty

07y37a07y0) ($1,y3,a5,y0) (
1+9 4

7y3

5+0'+91>’ (

2497 | 249
) yS
3+9¢

7y3

) a67 yO
3+92

8+92 8+97 3

(g
(g
(g
(2
("
(g
(g

a2m y27 a1+207 Zg
149:

a47y0
) aanO

7y3 7a67y0

5+a+92)
’

1492
) y3
249
)s

1497
a27 yO )7

3+9:

> 2

7=01...,0—2

c=20,1,2,3

p=J+Lj+2...
T=9u+16[j(p—

7:u_1

1)—

(g
(]
(g
(2,
(g
(z
(g
(7

T+20 |, T+20

) y3
T+2<7

a207 y(7)-+20)7
7'—}—2(7)7

a1+207 Yo
1+T+20
Y3 a2m Yo
1+T+20

7'+20
1+T+20’

a1+2myo

8+7’+20 8+7’+2¢7 a207y0
8+T+20" y§+7+20 CL1+20, vy
§+T+20 a2myo
??THU a{+2myo

9+7’+20

1+T+20)
9

1+T+20’)
3

),

8+T+20)
9

),

9+717+420 )

8+7+20

947420
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