Colouring 4-cycle systems with specified block colour patterns: the case of embedding P_3 -designs *

Gaetano Quattrocchi

Dipartimento di Matematica e Informatica Universita' di Catania, Catania, ITALIA quattrocchi@dmi.unict.it

Submitted: January 20, 2001; Accepted: June 5, 2001

Abstract

A colouring of a 4-cycle system (V, \mathcal{B}) is a surjective mapping $\phi : V \to \Gamma$. The elements of Γ are colours. If $|\Gamma| = m$, we have an *m*-colouring of (V, \mathcal{B}) . For every $B \in \mathcal{B}$, let $\phi(B) = \{\phi(x) | x \in B\}$. There are seven distinct colouring patterns in which a 4-cycle can be coloured: type a (××××, monochromatic), type b (××× \Box , two-coloured of pattern 3 + 1), type c (× × $\Box\Box$, two-coloured of pattern 2 + 2), type d (× \Box × \Box , mixed two-coloured), type e (× × $\Box\Delta$, three-coloured of pattern 2 + 1 + 1), type f (× \Box × Δ , mixed three-coloured), type g (× $\Box\Delta\Diamond$, four-coloured or polychromatic).

Let S be a subset of $\{a, b, c, d, e, f, g\}$. An *m*-colouring ϕ of (V, \mathcal{B}) is said of type S if the type of every 4-cycle of \mathcal{B} is in S. A type S colouring is said to be proper if for every type $\alpha \in S$ there is at least one 4-cycle of \mathcal{B} having colour type α .

We say that a P(v, 3, 1), (W, \mathcal{P}) , is embedded in a 4-cycle system of order n, (V, \mathcal{B}) , if every path $p = [a_1, a_2, a_3] \in \mathcal{P}$ occurs in a 4-cycle $(a_1, a_2, a_3, x) \in \mathcal{B}$ such that $x \notin W$.

In this paper we consider the following spectrum problem: given an integer m and a set $S \subseteq \{b, d, f\}$, determine the set of integers n such that there exists a 4-cycle system of order n with a proper m-colouring of type S (note that each colour class of a such colouration is the point set of a P_3 -design *embedded* in the 4-cycle system).

We give a complete answer to the above problem except when $S = \{b\}$. In this case the problem is completely solved only for m = 2.

AMS classification: 05B05.

Keywords: Graph design; *m*-colouring, Embedding; Path; Cycle.

*Supported by MURST "Cofinanziamento Strutture geometriche, combinatorie e loro applicazioni" and by C.N.R. (G.N.S.A.G.A.), Italy.

1 Introduction

Let G be a subgraph of K_v , the complete undirected graph on v vertices. A G-design of K_v is a pair (V, \mathcal{B}) , where V is the vertex set of K_v and \mathcal{B} is an edge-disjoint decomposition of K_v into copies of the graph G. Usually we say that B is a block of the G-design if $B \in \mathcal{B}$, and \mathcal{B} is called the block-set.

A path design P(v, k, 1) [4] is a P_k -design of K_v , where P_k is the simple path with k - 1 edges (k vertices) $[a_1, a_2, ..., a_k] = \{\{a_1, a_2\}, \{a_2, a_3\}, ..., \{a_{k-1}, a_k\}\}$.

M. Tarsi [11] proved that the necessary conditions for the existence of a P(v, k, 1), $v \ge k$ (if v > 1) and $v(v - 1) \equiv 0 \pmod{2(k - 1)}$, are also sufficient. Therefore a P(v, 3, 1) exists if and only if $v \equiv 0$ or 1 (mod 4).

An *m*-cycle system of order *n* is a C_m -design of K_n , where C_m is the *m*-cycle (cycle of length *m*) $(a_1, a_2, \ldots, a_m) = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{m-1}, a_m\}, \{a_1, a_m\}\}$.

It is well-known that the spectrum for 4-cycle system is precisely the set of all $n \equiv 1 \pmod{8}$ (see for example [5]).

We say that a P(v, 3, 1), (Ω, \mathcal{P}) , is embedded in a 4-cycle system of order n, (W, \mathcal{C}) , if every path $p = [a_1, a_2, a_3] \in \mathcal{P}$ occurs in a 4-cycle $(a_1, a_2, a_3, x) \in \mathcal{C}$ such that $x \notin \Omega$, see [9].

Example 1. Let $\Omega_1 = \{a_0, a_1, a_2, a_3\}, W_1 = \Omega_1 \cup \{b_0, b_1, b_2, b_3, b_4\}, \mathcal{P}_1 = \{[a_0, a_1, a_2], [a_0, a_3, a_1], [a_0, a_2, a_3]\}, \mathcal{S}_1 = \{(a_0, a_1, a_2, b_0), (a_0, a_3, a_1, b_1), (a_0, a_2, a_3, b_2), (a_0, b_4, b_0, b_3), (a_1, b_0, a_3, b_3), (a_2, b_1, b_0, b_2), (a_2, b_4, b_2, b_3), (a_3, b_1, b_3, b_4), (a_1, b_4, b_1, b_2)\}.$ It is easy to see that $(\Omega_1, \mathcal{P}_1)$ is a P(4, 3, 1) embedded in the 4-cycle system (W_1, \mathcal{S}_1) of order 9.

A colouring of a G-design (V, \mathcal{B}) is a surjective mapping $\phi: V \to \Gamma$. The elements of Γ are colours. If $|\Gamma| = m$, we have an *m*-colouring of (V, \mathcal{B}) . For each $c \in \Gamma$, the set $\phi^{-1}(c) = \{x : \phi(x) = c\}$ is a colour class. A colouring ϕ of (V, \mathcal{B}) is weak (strong) if for all $B \in \mathcal{B}$, $|\phi(B)| > 1$ $(|\phi(B)| = k$, where k is the number of vertices of the subgraph G, respectively), where $\phi(B) = \{\phi(x) | x \in B\}$. In a weak colouring, no block is monochromatic (i.e., no block has all its elements of the same colour), while in a strong colouring, the elements of every block B get |B| distinct colours. There exists an extensive literature on subject of colourings (for a survey, see [2]). Most of the existing papers are devoted to the case of *weak* colourings. However, recently other types of colouring started to be investigated, mainly in connection with the notion of the upper chromatic number of a hypergraph [12] (see, e.g., [1], [6], [7]). Most of them satisfy the inequalities $1 < |\phi(B)| < k$, i.e. are strict colourings in the sense of Voloshin [12] in which the blocks are both edges and co-edges. A step further is given by Milici, Rosa and Voloshin [8] where the authors consider some types of colouring of S(2,3,v) and S(2,4,v) (K₃-designs and K_4 -designs in our terminology) in which only specified block colouring patterns are allowed. In this paper we want to consider strict colouring in the sense of Voloshin of 4-cycle systems in which only specified block colouring patterns are allowed.

There are seven distinct colouring patterns in which a 4-cycle can be coloured: type

 $a (\times \times \times \times, \text{ monochromatic}), \text{ type } b (\times \times \times \Box, \text{ two-coloured of pattern } 3 + 1), \text{ type } c (\times \times \Box \Box, \text{ two-coloured of pattern } 2 + 2), \text{ type } d (\times \Box \times \Box, \text{ mixed two-coloured}), \text{ type } e (\times \times \Box \Delta, \text{ three-coloured of pattern } 2 + 1 + 1), \text{ type } f (\times \Box \times \Delta, \text{ mixed three-coloured}), \text{ type } g (\times \Box \Delta \Diamond, \text{ four-coloured or polychromatic}).$

Let S be a subset of $\{a, b, c, d, e, f, g\}$ and let (V, \mathcal{B}) be a 4-cycle system. An mcolouring ϕ of (V, \mathcal{B}) is said of type S if the type of every 4-cycle of \mathcal{B} is in S.

A type S colouring is said to be *proper* if for every type $\alpha \in S$ there is at least one 4-cycle of \mathcal{B} having colour type α .

Since we are looking for 4-cycle systems having a proper strict colouring in the sense of Voloshin in which the blocks are both edges and co-edges, it is $a, g \notin S$. There are 31 distinct nonempty subsets S of $\{b, c, d, e, f\}$. Then 31 distinct types of strict colourings of a 4-cycle system are possible. We deal here with some of these types; it is hoped that the remaining types will be dealt with in a future paper by the author. More precisely we are looking for proper strict colouring of a 4-cycle system having the property that each colour class is the point set of a P_3 -design *embedded* into the given cycle system [9]. In other words, we consider the following spectrum problem: given an integer m and a set $S \subseteq \{b, d, f\}$, determine the set of integers n such that there exist a 4-cycle system of order n having an m-colouring of type S. It is clear that a such colouring must contain b. [Here and in what follows, all braces and commas are omitted for the sake of brevity.] For types bdf, bf and bd, a complete answer is obtained. The spectrum problem for type b colouring seems to be the most interesting but also very difficult (at least for the author). In this paper only the case m = 2 is completely settled. Remark that the analogous problem for 3-cycle systems (or Steiner triple systems) is also very hard. This problem has been considered and partially solved by Colbourn, Dinitz and Rosa [1] and Dinitz and Stinson [3].

2 Colouring of type *bdf* and *bf*

It is trivial to see that the necessary condition for the existence of an *m*-colouring of type bdf of a 4-cycle system of order n is $m \in \{2, 3, \ldots, \frac{n+3}{4}\}$. In this section we will prove the sufficiency.

Lemma 2.1 (D. Sotteau [10]). The complete bipartite graph $K_{X,Y}$ can be decomposed into edge disjoint cycles of length 2k if and only if (1) |X| = x and |Y| = y are even, (2) $x \ge k$ and $y \ge k$, and (3) 2k divides xy.

Theorem 2.1 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, there is a 4-cycle system of order n with a proper $\left(\frac{n+3}{4}\right)$ -colouring of type bdf.

Proof. Put n = 1 + 8k, $k \ge 1$. Let $\Omega_i = \{x_0^i, x_1^i, x_2^i, x_3^i\}$, $i = 0, 1, \ldots, 2k - 1$, and $\Omega_{2k} = \{\infty\}$ be the colour classes. Define the following set \mathcal{B} of 4-cycles.

(I) For j = 0, 1, ..., k - 1, put in \mathcal{B} the cycles of a proper type *bdf* 3-coloured 4-cycle system on point set $\Omega_{2k} \cup \Omega_{2j} \cup \Omega_{2j+1}$:

$$\begin{array}{l} (x_{0}^{2j}, x_{1}^{2j}, x_{2}^{2j}, x_{0}^{2j+1}), \, (x_{0}^{2j}, x_{2}^{2j}, x_{3}^{2j}, x_{1}^{2j+1}), \, (x_{0}^{2j}, x_{3}^{2j}, x_{1}^{2j}, \infty), \, (x_{0}^{2j+1}, x_{1}^{2j+1}, x_{2}^{2j+1}, x_{1}^{2j}) \\ (x_{0}^{2j+1}, x_{2}^{2j+1}, x_{3}^{2j+1}, x_{3}^{2j}), \, (x_{0}^{2j+1}, x_{3}^{2j+1}, x_{1}^{2j+1}, \infty), \, (x_{1}^{2j}, x_{3}^{2j+1}, x_{2}^{2j}, x_{1}^{2j+1}), \\ (x_{2}^{2j}, \infty, x_{3}^{2j}, x_{2}^{2j+1}), \, (x_{2}^{2j+1}, \infty, x_{3}^{2j+1}, x_{0}^{2j}) \end{array}$$

 $\begin{array}{l} \text{(II) For } j,t=0,1,\ldots,k-1,\,j< t,\,\text{and }\alpha=0,1,\,\text{put in }\mathcal{B}\text{ the cycles:} \\ (x_0^{2j+\alpha},x_0^{2t},x_1^{2j+\alpha},x_0^{2t+1}),\,(x_2^{2j+\alpha},x_0^{2t},x_3^{2j+\alpha},x_0^{2t+1}),\,(x_0^{2j+\alpha},x_1^{2t},x_1^{2j+\alpha},x_1^{2t+1}),\\ (x_2^{2j+\alpha},x_1^{2t},x_3^{2j+\alpha},x_1^{2t+1}),\,(x_0^{2j+\alpha},x_2^{2t},x_1^{2j+\alpha},x_2^{2t+1}),\,(x_2^{2j+\alpha},x_2^{2t},x_3^{2j+\alpha},x_2^{2t+1}),\\ (x_0^{2j+\alpha},x_3^{2t},x_1^{2j+\alpha},x_3^{2t+1}),\,(x_2^{2j+\alpha},x_3^{2t},x_3^{2j+\alpha},x_3^{2t+1}). \end{array}$

Let $V = \bigcup_{i=1}^{2k} \Omega_i$, then (V, \mathcal{B}) is the required 2k + 1-coloured 4-cycle system of order n = 8k + 1. \Box

Lemma 2.2 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, there is a 4-cycle system of order n with a proper 2-colouring of type bd.

Proof. Put n = 1 + 8k, $k \ge 1$. Let $\Omega_1 = \bigcup_{i=0}^{k-1} \{x_0^i, x_1^i, x_2^i, x_3^i\}$ and $\Omega_2 = \{\infty\} \cup (\bigcup_{i=0}^{k-1} \{y_0^i, y_1^i, y_2^i, y_3^i\})$ be the colour classes. Define the following set \mathcal{B} of 4-cycles.

(I) For i = 0, 1, ..., k-1, put in \mathcal{B} the cycles $(x_0^i, x_1^i, x_2^i, y_0^i)$, $(x_0^i, x_3^i, x_1^i, y_1^i)$, $(x_0^i, x_2^i, x_3^i, y_2^i)$, $(y_0^i, y_1^i, y_3^i, x_3^i)$, $(y_1^i, y_2^i, \infty, x_3^i)$, $(y_2^i, y_3^i, y_0^i, x_1^i)$, $(y_3^i, \infty, y_1^i, x_2^i)$ and $(\infty, y_0^i, y_2^i, x_2^i)$.

 $\begin{array}{l} \text{(II) If } k \geq 2, \text{ then for } i = 0, 1, \dots, k-2 \text{ and } j = i+1, i+2, \dots, k-1 \text{ put in } \mathcal{B} \text{ the cycles} \\ (x_0^i, x_0^j, x_1^i, y_2^j), (x_0^i, x_1^j, x_1^i, y_3^j), (x_2^i, x_2^j, x_3^i, y_0^j), (x_2^i, x_3^j, x_3^i, y_1^j), (x_0^j, x_2^i, x_1^j, y_2^i), (x_0^j, x_3^i, x_1^j, y_3^i), \\ (x_2^j, x_0^i, x_3^j, y_0^i), (x_2^j, x_1^i, x_3^j, y_1^i), (y_0^i, y_0^j, y_1^i, x_0^j), (y_0^i, y_1^j, y_1^i, x_1^j), \\ (y_2^i, y_2^j, y_3^i, x_2^j), (y_2^i, y_3^j, y_3^i, x_3^j), (y_0^j, y_2^i, y_1^j, x_0^i), (y_0^j, y_3^i, y_1^j, x_1^i), (y_2^j, y_0^i, y_3^j, x_2^i) \text{ and} \\ (y_2^j, y_1^i, y_3^j, x_3^i). \end{array}$

(III) For $i = 0, 1, \ldots, k - 1$, put in \mathcal{B} the cycles $(x_0^i, y_3^i, x_1^i, \infty)$.

Let $V = \Omega_1 \cup \Omega_2$, then (V, \mathcal{B}) is the required 2-coloured 4-cycle system of order n. Note that the cycles of colour type b are those given in (I) and (II). \Box

Lemma 2.3 If there is a 4-cycle system (W, D) of order n having a proper m-colouring of type $S, S \subseteq \{bd, bdf\}$, then there is a 4-cycle system (V, \mathcal{B}) of order n + 8 having a proper (m + 1)-colouring of type bdf.

Proof. Put n = 1 + 8k, $k \ge 1$. Let $W = \{0, 1, \ldots, 8k\}$. Suppose that the points 1 and 2 have different colours. Put $X = \{x_0, x_1, \ldots, x_7\}$ and $V = W \cup X$. Put in \mathcal{B} the cycles of \mathcal{D} and the following ones.

(I) The following 4-cycles cover the edges of both K_X and $K_{X,\{0,1,\dots,6\}}$: $(x_0, x_1, x_3, 6)$, $(x_1, x_2, x_4, 5)$, $(x_2, x_3, x_5, 1)$, $(x_3, x_4, x_6, 2)$, $(x_4, x_5, x_0, 3)$, $(x_5, x_6, x_1, 4)$, $(x_6, x_0, x_2, 5)$, $(x_0, x_3, x_7, 0)$, $(x_1, x_4, x_7, 1)$, $(x_2, x_5, x_7, 2)$, $(x_3, x_6, x_7, 3)$, $(x_4, x_0, x_7, 4)$, $(x_5, x_1, x_7, 5)$,

 $(x_6, x_2, x_7, 6), (1, x_0, 2, x_4), (4, x_0, 5, x_3), (0, x_3, 1, x_6), (3, x_2, 4, x_6), (0, x_2, 6, x_5), (2, x_1, 3, x_5) \text{ and } (0, x_1, 6, x_4).$

(II) By Lemma 2.1 decompose the complete bipartite graph $K_{X,\{7,8,\ldots,2k\}}$ into edge disjoint 4-cycles.

Clearly (V, \mathcal{B}) is a 4-cycle system of order 9 + 8k. Colour the elements of X with a new colour. \Box

Theorem 2.2 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, and for every $m \in \{3, 4, \dots, \frac{n+3}{4}\}$ there is a 4-cycle system of order n with a proper m-colouring of type bdf.

Proof. Starting from a proper m – coloured 4-cycle system of order 9 and type S, $S \subseteq \{bd, bdf\}$, and using repeatedly Lemmas 2.2 and 2.3, we get the proof. \Box

Theorem 2.3 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, there is a 4-cycle system of order n with a proper 3-colouring of type bf.

Proof. Put n = 1 + 8k, $k \ge 1$. Let $\Omega_1 = \{\infty\}$, $\Omega_2 = \bigcup_{i=0}^{k-1} \{x_0^i, x_1^i, x_2^i, x_3^i\}$ and $\Omega_3 = \bigcup_{i=0}^{k-1} \{y_0^i, y_1^i, y_2^i, y_3^i\}$ be the colour classes. Let \mathcal{B} be the set of 4-cycles constructed using Lemma 2.2. Remove from \mathcal{B} the 4-cycles $(y_0^i, y_1^i, y_3^i, x_3^i)$, $(y_1^i, y_2^i, \infty, x_3^i)$, $(y_3^i, \infty, y_1^i, x_2^i)$, $(\infty, y_0^i, y_2^i, x_2^i)$, and put on it the following ones $(y_0^i, y_1^i, y_3^i, \infty)$, $(y_1^i, x_2^i, y_2^i, \infty)$, $(y_0^i, y_2^i, y_1^i, x_3^i)$, $(y_3^i, x_2^i, \infty, x_3^i)$. Let $V = \Omega_1 \cup \Omega_2 \cup \Omega_3$, then (V, \mathcal{B}) is the required 3-coloured 4-cycle system of order n. \Box

Theorem 2.4 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, there is a 4-cycle system of order n with a proper $\left(\frac{n+3}{4}\right)$ -colouring of type bf.

Proof. Put n = 1 + 8k, $k \ge 1$. Let $\Omega_i = \{x_0^i, x_1^i, x_2^i, x_3^i\}$, $i = 0, 1, \ldots, 2k - 1$, and $\Omega_{2k} = \{\infty\}$ be the colour classes. Define the set \mathcal{B} of 4-cycles by putting on it the cycles (II) of Theorem 2.1 and the following ones.

For $j = 0, 1, \ldots, k - 1$, put in \mathcal{B} the cycles of a proper type bf 3-coloured 4-cycle system on point set $\Omega_{2k} \cup \Omega_{2j} \cup \Omega_{2j+1}$: $(x_0^{2j}, x_1^{2j}, x_2^{2j}, x_0^{2j+1}), (x_0^{2j}, x_2^{2j}, x_3^{2j}, x_1^{2j}, x_2^{2j+1}), (x_0^{2j+1}, x_1^{2j+1}, x_2^{2j+1}, \infty), (x_0^{2j+1}, x_2^{2j+1}, x_3^{2j+1}, x_3^{2j}), (x_0^{2j+1}, x_3^{2j+1}, x_1^{2j+1}, x_1^{2j}), (x_0^{2j}, \infty, x_3^{2j}, x_1^{2j+1}), (x_2^{2j}, \infty, x_1^{2j}, x_2^{2j+1}), (x_3^{2j+1}, \infty, x_1^{2j+1}, x_2^{2j}).$ Let $V = \bigcup_{i=1}^{2k} \Omega_i$, then (V, \mathcal{B}) is the required 2k + 1-coloured 4-cycle system of order n = 8k + 1. \Box

Lemma 2.4 Suppose there is a type of m-coloured 4-cycle system of order n = 1 + 8k, (W, \mathcal{D}) , whose colour classes Ω_i , i = 1, 2, ..., m, have the following cardinalities: (1) If $3 \le m \le k+2$, then $|\Omega_1| = 1$, $|\Omega_2| = |\Omega_3| = 4k - 4(m-3)$, and (if $m \ge 4$) $|\Omega_4| = |\Omega_5| = ... = |\Omega_m| = 8$. (2) If $k + 3 \le m \le 2k + 1$, then $|\Omega_1| = 1$, $|\Omega_2| = |\Omega_3| = \ldots = |\Omega_{2m-2k-1}| = 4$, and (if $m \le 2k$) $|\Omega_{2m-2k}| = |\Omega_{2m-2k+1}| = \ldots = |\Omega_m| = 8$. Then there is a type bf (m + 1)-coloured 4-cycle system of order 9 + 8k.

Proof. Put $W = \{0, 1, \ldots, 8k\}$, $X = \{x_0, x_1, \ldots, x_7\}$ and $V = W \cup X$. We now construct a (m + 1)-coloured 4-cycle system of order 9 + 8k, (V, \mathcal{B}) . Let $\Omega_1 = \{6\}$, $0, 2, 4 \in \Omega_t$ and $1, 3, 5 \in \Omega_{t+1}$, where either t = 2 for odd m or t = m-1 for even m. Then it is easy to see that it is possible to partition the set $\{7, 8, \ldots, 8k\}$ into no monochromatic pairs $\{\alpha_i, \beta_i\}, j = 1, 2, \ldots, 4k - 3$.

Define \mathcal{B} by putting on it the following 4-cycles:

(a) the cycles of \mathcal{D} ;

(b) the cycles (I) of Theorem 2.2;

(c) for each pair $\{\alpha_j, \beta_j\}$, the cycles $(x_i, \alpha_j, x_{2i+1}, \beta_j)$, i = 0, 1, 2, 3. Colour the elements of X with a new colour. \Box

Remark 1. The above Lemma 2.4 gets 4-cycle systems of order 9 + 8k satisfying the hypotheses of same Lemma 2.4 (where it is n = 1 + 8(k + 1)). Theorems 2.3 and 2.4 get 4-cycle systems satisfying the hypotheses of Lemma 2.4 (where it is n = 1 + 8k).

Theorem 2.5 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, and for every $m \in \{3, 4, \dots, \frac{n+3}{4}\}$ there is a 4-cycle system of order n with a proper m-colouring of type bf.

Proof. The cases m = 3 and $m = \frac{n+3}{4}$ are proved by using Theorem 2.3 and Theorem 2.4 respectively.

Starting from the 3-coloured 4-cycle system of order 9 constructed by using Theorem 2.3, a recursive use of Lemma 2.4 gets the proof. \Box

3 Colouring of type bd

Let (V, \mathcal{B}) be a 4-cycle system of order $n, n \geq 9$, having an *m*-colouring of type *bd*. Clearly $m \leq \frac{n-1}{4}$. Let ω_i be the cardinality of the colour class $\Omega_i, i = 1, 2, \ldots, m$. Since Ω_i is the point set of a P_3 -design embedded in $(V, \mathcal{B}), \omega_i \equiv 0$ or 1 (mod 4).

By definition $\{\Omega_i \mid i = 1, 2, ..., m\}$ is a partition of V, then at least one ω_i is odd. W.l.o.g. suppose that ω_1 is odd. If there is some other index $i \in \{2, 3, ..., m\}$ such that ω_i is odd, then the cardinality of the edge set of the complete bipartite graph K_{Ω_1,Ω_i} is odd. But this is impossible because each $B \in \mathcal{B}$ covers a nonnegative even number of edges of K_{Ω_1,Ω_i} . From now on we will denote by ω_1 the only odd integer of $\{\omega_i \mid i = 1, 2, ..., m\}$.

Lemma 3.1 If $m \ge \frac{n+15}{8}$ then $\omega_1 \ge 5$.

Proof. Let $\omega_1 = 1$. Since each cycle has no colour type f, it is $\omega_i \geq 8$ for each $i = 2, 3, \ldots, m$. \Box

Lemma 3.2 Let $\omega_1 \geq 5$, and let

$$\chi(\omega_1) = \begin{cases} 1 + 9\mu + 12\mu^2 & \text{if } \omega_1 = 5 + 12\mu \\ 6 + 17\mu + 12\mu^2 & \text{if } \omega_1 = 9 + 12\mu \\ 13 + 25\mu + 12\mu^2 & \text{if } \omega_1 = 13 + 12\mu \end{cases}$$

Then $|\{i \mid \omega_i = 4\}| \leq \chi(\omega_1).$

Proof. Suppose $\omega_j = 4$ for some $j \in \{2, 3, ..., m\}$. Let $(\Omega_1, \mathcal{P}_1)$ and $(\Omega_j, \mathcal{P}_j)$ be the two P_3 -designs of order ω_1 and 4 respectively, embedded in (V, \mathcal{B}) . Put $\Omega_1 = \{1, 2, ..., \omega_1\}$, $\Omega_j = \{a_0, a_1, a_2, a_3\}, \mathcal{P}_j = \{[a_0, a_2, a_1], [a_0, a_3, a_2], [a_0, a_1, a_3]\}, \mathcal{F} = \{(a_0, a_2, a_1, x), (a_0, a_3, a_2, y), (a_0, a_1, a_3, z)\} \subseteq \mathcal{B}.$

Let $\mathcal{D}(\Omega_j) = \{B_1, B_2, \dots, B_\theta\}$ be the set of 4-cycles B of \mathcal{B} meeting both Ω_j and Ω_1 . Clearly it is $B \subseteq \Omega_j \cup \Omega_1$ for every $B \in \mathcal{D}(\Omega_j)$.

Let M be the $4 \times \theta$ array on symbol set $\mathcal{D}(\Omega_j)$ (with rows indexed by the elements of Ω_j and columns indexed by the elements of Ω_1) defined by $M(a_i, \alpha) = B_{\sigma}$ if and only if $\{a_i, \alpha\}$ is an edge of B_{σ} . The inclusion $\mathcal{F} \subseteq \mathcal{D}(\Omega_j)$ follows easily by the fact that the cardinality of the edge set of the complete bipartite graph $K_{\Omega_1,\{a_i\}}$ is odd, i = 0, 1, 2, 3, and each 4-cycle $B \notin \mathcal{F}$ covers a nonnegative even number of edges of $K_{\Omega_1,\{a_i\}}$.

Put $B_1 = (a_0, a_2, a_1, 1), B_2 = (a_0, a_3, a_2, 2), B_3 = (a_0, a_1, a_3, 3)$. Then $M(a_0, i) = M(a_i, i) = B_i, i = 1, 2, 3$. For $\beta = 1, 2$ let $\mathcal{D}_{\beta}(\Omega_j)$ denote the set of $B_{\sigma} \in \mathcal{D}(\Omega_j)$ such that $|B_{\sigma} \cap \Omega_j| = \beta$. Each $B_{\sigma} \in \mathcal{D}_2(\Omega_j)$ gets a 2 × 2 subsquare of M with all entries filled by the same symbol B_{σ} . Thus the number of entries of M containing a symbol of $\mathcal{D}_2(\Omega_j)$ is a multiple of four. Then $4\omega_1 = 6 + 2|\mathcal{D}_1(\Omega_j)| + 4|\mathcal{D}_2(\Omega_j)|$ and $|\mathcal{D}_1(\Omega_j)|$ must be odd.

Let $|\mathcal{D}_1(\Omega_j)| = 1$ and suppose $\mathcal{D}_1(\Omega_j) = \{B_4 = (\alpha_1, \alpha_3, \alpha_2, a_t)\}, t \in \{0, 1, 2, 3\}$ and $\alpha_1, \alpha_2, \alpha_3 \in \{1, 2, \dots, \omega_1\}$. It follows $M(a_t, \alpha_1) = M(a_t, \alpha_2) = B_4, \alpha_1, \alpha_2 \ge 4$, and the remaining cells of columns α_1 and α_2 are filled by a symbol of $\mathcal{D}_2(\Omega_j)$. Since this is impossible, $|\mathcal{D}_1(\Omega_j)| \ge 3$.

By repeating this argument for each colour class Ω_j whose cardinality is four, we obtain $|\{i \mid \omega_i = 4\}| \leq \frac{1}{3}|\mathcal{P}_1| = \chi(\omega_1)$. \Box

The upper bound for the number of colour classes is found in next theorem.

Theorem 3.1 Let $n \equiv 1 \pmod{8}$, $n \geq 9$, and let

$$\omega(n) = \begin{cases} 5+12\mu & \text{if } 9+16\mu+48\mu^2 \le n \le 9+48\mu+48\mu^2\\ 9+12\mu & \text{if } 17+48\mu+48\mu^2 \le n \le 33+80\mu+48\mu^2\\ 13+12\mu & \text{if } 41+80\mu+48\mu^2 \le n \le 65+112\mu+48\mu^2 \end{cases}$$

Then $m \leq 1 + \frac{n - \omega(n)}{4}$.

Proof. For $m < \frac{n+15}{8}$ the proof is trivial. Suppose $m \ge \frac{n+15}{8}$. By Lemma 3.1 it is $\omega_1 \ge 5$.

If $\omega_1 \ge \omega(n)$ then $m \le 1 + \frac{n-\omega_1}{4} \le 1 + \frac{n-\omega(n)}{4}$.

Let $\omega_1 < \omega(n)$. Then, by Lemma 3.2

$$m \le 1 + \gamma + \frac{n - \omega_1 - 4\gamma}{8} \le 1 + \chi(\omega_1) + \frac{n - \omega_1 - 4\chi(\omega_1)}{8}$$

where $\gamma = |\{i \mid \omega_i = 4\}|.$

To complete the proof it is sufficient to prove that

$$n \ge 4\chi(\omega_1) - \omega_1 + 2\omega(n) \tag{1}$$

We prove (1) only for $9+16\mu+48\mu^2 \le n \le 9+48\mu+48\mu^2$, leaving to the reader to check the remaining two cases. For $\mu = 0$, (1) is trivial. Let $\mu \ge 1$. If $\omega_1 = 5+12\rho$ then $\rho \le \mu-1$ and thus it is $n \ge 9+16\mu+48\mu^2 \ge 4(1+9\rho+12\rho^2)-(5+12\rho)+2(5+12\mu)=4\chi(\omega_1)-\omega_1+2\omega(n)$. Similarly it is possible to check (1) for $\omega_1 \equiv 9$ or 13 (mod 12). \Box

In order to prove that for every m such that $2 \le m \le 1 + \frac{n-\omega(n)}{4}$, there exists a 4-cycle system (V, \mathcal{B}) having an m-colouring of type bd, we need to construct some classes of path designs $P(\omega_1, 3, 1), \omega_1 \equiv 1 \pmod{4}$, decomposable into the special configurations.

Let $(\Omega_1, \mathcal{P}_1)$ be a $P(\omega_1, 3, 1)$ and let $P_i = [x_0^i, x_1^i, x_2^i] \in \mathcal{P}_1$, i = 1, 2, 3. The set $\{P_1, P_2, P_3\}$ is said to be a *configuration of type 1* if there are three distinct elements γ_0 , $\gamma_1, \gamma_2 \in \Omega_1$ such that $x_0^1 = x_0^2 = \gamma_0$, $x_0^3 = x_2^1 = \gamma_1$ and $x_2^2 = x_2^3 = \gamma_2$. We will denote by $\mathcal{L}_1(\gamma_0, \gamma_1, \gamma_2)$ a configuration of type 1 whose paths have endpoints $\gamma_0, \gamma_1, \gamma_2$.

Note that both a bowtie and a 6-cycle will provide a type 1 configuration.

Let γ_i , i = 0, 1, ..., 7 be eight mutually distinct elements of Ω_1 and let $\mathcal{L}_1(\gamma_0, \gamma_1, \gamma_2)$, $\mathcal{L}_1(\gamma_3, \gamma_4, \gamma_5)$ and $\mathcal{L}_1(\gamma_6, \gamma_4, \gamma_7)$ be three configurations of type 1. The configuration $\mathcal{L}_2(\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6, \gamma_7) = \mathcal{L}_1(\gamma_0, \gamma_1, \gamma_2) \cup \mathcal{L}_1(\gamma_3, \gamma_4, \gamma_5) \cup \mathcal{L}_1(\gamma_6, \gamma_4, \gamma_7)$ is said to be a *configuration of type 2*.

We say that a $(\Omega_1, \mathcal{P}_1)$ is \mathcal{L}_1 -decomposable if either the path set \mathcal{P}_1 (if $\omega_1 \equiv 1$ or 9 (mod 12)), or the path set \mathcal{P}_1 from which two paths having the same endpoints have been deleted (if $\omega_1 \equiv 5 \pmod{12}$), is decomposable into configurations of type 1.

Example 2. Let $\Omega_1 = \{0, 1, \dots, 4\}$ and let $\mathcal{L}_1(0, 2, 4) = \{[0, 1, 2], [0, 3, 4], [2, 0, 4]\}$. Put $\mathcal{P}_1 = \mathcal{L}_1 \cup \{[3, 1, 4], [3, 2, 4]\}$. Then $(\Omega_1, \mathcal{P}_1)$ is \mathcal{L}_1 -decomposable.

Example 3. Let $\Omega_1 = \{0, 1, \dots, 8\}$. A decomposition of \mathcal{P}_1 into 6 configurations of type 1 is the following $\mathcal{L}_1(1,3,7) = \{[1,2,3], [1,4,7], [3,1,7]\}, \mathcal{L}_1(4,8,6) = \{[4,3,8], [4,5,6], [8,4,6]\}, \mathcal{L}_1(0,8,2) = \{[0,7,8], [0,4,2], [8,0,2]\}, \mathcal{L}_1(3,0,7) = \{[3,6,0], [3,5,7], [0,3,7]\},$

 $\mathcal{L}_1(1,8,5) = \{ [1,6,8], [1,0,5], [8,1,5] \}, \mathcal{L}_1(2,8,6) = \{ [2,5,8], [2,7,6], [8,2,6] \}.$

Note that $\mathcal{L}_1(1,3,7) \cup \mathcal{L}_1(4,8,6) \cup \mathcal{L}_1(0,8,2)$, and $\mathcal{L}_1(3,0,7) \cup \mathcal{L}_1(1,8,5) \cup \mathcal{L}_1(2,8,6)$ } are two configurations of type 2.

Example 4. Let $\Omega_1 = \{0, 1, ..., 12\}$. A decomposition of \mathcal{P}_1 into 13 configurations of type 1 is the following $\mathcal{L}_1(0, 4, 7) = \{[0, 1, 4], [0, 5, 7], [4, 0, 7]\},\$

$$\begin{split} \mathcal{L}_1(1,5,6) &= \{ [1,2,5], [1,8,6], [5,1,6] \}, \\ \mathcal{L}_1(2,6,9) &= \{ [2,3,6], [2,7,9], [6,2,9] \}, \\ \mathcal{L}_1(6,10,0) &= \{ [6,7,10], [6,11,0], [10,6,0] \}, \\ \mathcal{L}_1(4,8,9) &= \{ [4,5,8], [4,11,9], [8,4,9] \}, \\ \mathcal{L}_1(5,9,12) &= \{ [5,6,9], [5,10,12], [9,5,12] \}, \\ \mathcal{L}_1(9,0,3) &= \{ [9,10,0], [9,1,3], [0,9,3] \}, \\ \mathcal{L}_1(7,11,12) &= \{ [7,8,11], [7,1,12], [11,7,12] \}, \\ \mathcal{L}_1(8,12,2) &= \{ [8,9,12], [8,0,2], [12,8,2] \}, \\ \mathcal{L}_1(12,3,6) &= \{ [12,0,3], [12,4,6], [3,12,6] \}, \\ \mathcal{L}_1(10,1,2) &= \{ [10,11,1], [10,4,2], [1,10,2] \}, \\ \mathcal{L}_1(11,2,5) &= \{ [11,12,2], [11,3,5], [2,11,5] \}, \\ \mathcal{L}_1(3,7,10) &= \{ [3,4,7], [3,8,10], [7,3,10] \}. \end{split}$$

Note that the first 12 configurations of type 1 get 4 mutually disjoint type 2 configurations.

In order to prove Theorem 3.3 we need to construct \mathcal{L}_1 -decomposable path designs having a *sufficient number* of disjoint decomposition of type 2 as specified by the following theorem.

Theorem 3.2 Let $\omega_1 \geq 5$ and let

$$\tau(\omega_1) = \begin{cases} -1 + 2\mu + 3\mu^2 & \text{if } \omega_1 = 1 + 12\mu \\ 4\mu + 3\mu^2 & \text{if } \omega_1 = 5 + 12\mu \\ 2 + 4\mu + 3\mu^2 & \text{if } \omega_1 = 9 + 12\mu \end{cases}$$

Then for each γ , $0 \leq \gamma \leq \tau(\omega_1)$, there is a \mathcal{L}_1 -decomposable $P(\omega_1, 3, 1)$ having γ mutually disjoint configurations of type 2.

Proof. Since every configuration of type 2 is decomposable into 3 configurations of type 1, then it is sufficient to prove the theorem for $\gamma = \tau(\omega_1)$.

Suppose $\omega_1 = 1 + 12\mu$, $\mu \ge 1$. For $\mu = 1$ the proof follows by Example 4. Let $\mu \ge 2$. It is sufficient to prove that the existence of a \mathcal{L}_1 -decomposable $P(\omega_1, 3, 1)$, $(\Omega_1, \mathcal{P}_1)$, containing $\tau(\omega_1)$ disjoint type 2 configurations implies the one of a \mathcal{L}_1 -decomposable $P(\omega_1 +$ 12, 3, 1) with $\tau(\omega_1) + 5 + 6\mu$ disjoint type 2 configurations. Put $\Omega_1 = \{\alpha_0, \alpha_1, \ldots, \alpha_{12\mu}\}$. Let (Γ, \mathcal{Q}) be a copy of the \mathcal{L}_1 -decomposable P(13, 3, 1) given in Example 4 based on point set $\Gamma = \{\alpha_{12\mu}\} \cup \{1, 2, \ldots, 12\}$. We emphasize that the 4 disjoint configurations of type 2 of (Γ, \mathcal{Q}) do not contain $\mathcal{L}_1(3, 7, 10) = \{[3, 4, 7], [3, 8, 10], [7, 3, 10]\}$.

Now we construct the required $P(\omega_1 + 12, 3, 1)$, $(\Omega_1 \cup \Gamma, \mathcal{P})$. Put in \mathcal{P} the paths of $\mathcal{P}_1 \cup \mathcal{Q}$ and the following ones.

(I) For $i = 0, 1, ..., 3\mu - 1$ put in \mathcal{P} the paths of following type 2 configurations: $\mathcal{L}_{2}^{i}(1, 2, 3, 5, 6, 7, 8, 9) = \{[1, \alpha_{4i}, 2], [1, \alpha_{4i+1}, 3], [2, \alpha_{4i+2}, 3]\} \cup$ $\{[5, \alpha_{4i}, 6], [5, \alpha_{4i+2}, 7], [6, \alpha_{4i+3}, 7]\} \cup \{[8, \alpha_{4i}, 7], [8, \alpha_{4i+2}, 9], [7, \alpha_{4i+1}, 9]\},$ $\mathcal{L}_{2}^{i}(3, 4, 5, 9, 10, 11, 12, 1) = \{[3, \alpha_{4i}, 4], [3, \alpha_{4i+3}, 5], [4, \alpha_{4i+1}, 5]\} \cup$ $\{[9, \alpha_{4i}, 10], [9, \alpha_{4i+3}, 11], [10, \alpha_{4i+1}, 11]\} \cup \{[12, \alpha_{4i}, 11], [12, \alpha_{4i+3}, 1], [11, \alpha_{4i+2}, 1]\}.$

(II) For $i = 0, 1, \ldots, 3\mu - 1$ put in \mathcal{P} the paths of following type 1 configurations: $\mathcal{L}_{1}^{i}(2,4,6) = \{ [2, \alpha_{4i+3}, 4], [2, \alpha_{4i+1}, 6], [4, \alpha_{4i+2}, 6] \},\$ $\mathcal{L}_{1}^{i}(8, 10, 12) = \{ [8, \alpha_{4i+3}, 10], [8, \alpha_{4i+1}, 12], [10, \alpha_{4i+2}, 12] \}.$

Use $\mathcal{L}_1(3,7,10) = \{[3,4,7], [3,8,10], [7,3,10]\}, \mathcal{L}_1^0(2,4,6) \text{ and } \mathcal{L}_1^0(8,10,12) \text{ to form a}$ further configuration of type 2.

It is easy to see that at least $\tau(\omega_1) + 4 + 2(3\mu) + 1$ disjoint configurations of type 2 appear in \mathcal{P} .

By similar arguments it is possible to prove the theorem for $\omega_1 = 5 + 12\mu, 9 + 12\mu$ (note that cases $\omega_1 = 5$ and $\omega_1 = 9$ are given in Example 2 and Example 3 respectively).

Remark 2. Let $(\Omega_1, \mathcal{P}_1)$ be the \mathcal{L}_1 -decomposable $P(\omega_1, 3, 1)$ constructed using Theorem 3.2 with $\omega_1 = 5 + 12\mu$. Then \mathcal{P}_1 contains the block set \mathcal{Q} of a P(5,3,1) isomorphic to the one given in Example 2. Moreover $\mathcal{P}_1 - \mathcal{Q}$ is decomposable into configurations of type 1.

Theorem 3.3 Let $\bar{m} = 1 + \frac{n-\omega(n)}{4}$, $n \equiv 1 \pmod{8}$, $n \geq 9$, where $\omega(n)$ is defined as in Theorem 3.1. Then there is a 4-cycle system of order n having a proper \bar{m} -colouring of type bd.

Proof. Suppose

$$9 + 16\mu + 48\mu^2 \le n \le 9 + 48\mu + 48\mu^2 \tag{2}$$

Put $\omega_1 = \omega(n) = 5 + 12\mu$ and $\lambda = \frac{1}{3} \left[\frac{\omega_1(\omega_1 - 1)}{4} - 2 \right] = 1 + 9\mu + 12\mu^2$. By (2) it is

$$1 + \mu + 12\mu^2 \le \frac{n - \omega_1}{4} \le 1 + 9\mu + 12\mu^2 \tag{3}$$

and

$$0 \le \lambda - \frac{n - \omega_1}{4} \le 8\mu \tag{4}$$

It is easy to see that $\rho = \lambda - \frac{n-\omega_1}{4}$ is even. Then $0 \le \frac{\rho}{2} \le 4\mu < \tau(5+12\mu)$. Using Theorem 3.2 it is possible to construct a \mathcal{L}_1 -decomposable $P(\omega_1, 3, 1), (\Omega_1, \mathcal{P}_1)$, containing $\frac{\rho}{2}$ configurations of type 2, say \mathcal{L}_2^i $i = 1, 2, \dots, \frac{\rho}{2}$.

Let $\delta = \lambda - 3\frac{\rho}{2} = \frac{n - \omega_1 - 2\rho}{4}$. Denote by $\mathcal{L}_1^j j = 1, 2, \dots, \delta$, the type 1 configurations contained in $(\Omega_1, \mathcal{P}_1)$ not occurring in \mathcal{L}_2^i for some $i \in \{1, 2, \dots, \frac{\rho}{2}\}$.

Let (Γ, \mathcal{Q}) be the P(5, 3, 1) embedded in $(\Omega_1, \mathcal{P}_1)$. Suppose that $\mathcal{L}_1^1 \subseteq \mathcal{Q}$ (see above Remark 2).

Put $\Omega_1 = \{\alpha_0, \alpha_1, \dots, \alpha_{4+12\mu}\}, A_i = \{a_0^i, a_1^i, a_2^i, a_3^i\}, i = 1, 2, \dots, \frac{n-\omega_1}{4}$. Now we construct a 4-cycle system (V, \mathcal{B}) of order *n* having a \bar{m} -colouring of type *bd*. Let $V = \Omega_1 \cup \left(\bigcup_{i=1}^{\frac{n-\omega_1}{4}} A_i \right)$. Let \mathcal{B} be the following set of 4-cycles.

(I) Let $\Gamma = \{\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4\}$. Put in \mathcal{B} the 4-cycles: $\begin{array}{l} (\alpha_1, \alpha_0, \alpha_2, a_2^1), \ (\alpha_1, \alpha_3, \alpha_4, a_3^1), \ (\alpha_2, \alpha_1, \alpha_4, a_1^1), \ (\alpha_3, \alpha_0, \alpha_4, a_0^1), \ (\alpha_3, \alpha_2, \alpha_4, a_2^1), \\ (a_0^1, a_2^1, a_1^1, \alpha_1), \ (a_0^1, a_3^1, a_2^1, \alpha_0), \ (a_0^1, a_1^1, a_3^1, \alpha_2) \ \text{and} \ (\alpha_0, a_3^1, \alpha_3, a_1^1). \end{array}$ If n = 9 ($\mu = 0$) then the proof is completed. If $\mu \ge 1$ then using Lemma 2.1 decompose the complete bipartite graph $K_{\Omega_1-\Gamma,A_1}$ into edge disjoint 4-cycles and put them in \mathcal{B} . Moreover put in \mathcal{B} the following ones.

(II). Let $j \in \{2, 3, ..., \delta\}$. We can suppose that $\mathcal{L}_1^j = \{[y_0, y_3, y_1], [y_0, y_4, y_2], [y_1, y_5, y_2]\}$, where $y_0, y_1, ..., y_5$ are elements of Ω_1 such that $y_0 \neq y_1 \neq y_2 \neq y_0$ and $y_3 \neq y_4 \neq y_5 \neq y_3$.

Put in \mathcal{B} the 4-cycles (y_0, y_3, y_1, a_3^j) , (y_0, y_4, y_2, a_2^j) , (y_1, y_5, y_2, a_1^j) , $(a_0^j, a_2^j, a_1^j, y_0)$, $(a_0^j, a_3^j, a_2^j, y_1)$ and $(a_0^j, a_1^j, a_3^j, y_2)$.

Decompose the complete bipartite graph $K_{\Omega_1-\{y_0,y_1,y_2\},A_j}$ into edge disjoint 4-cycles and put them in \mathcal{B} .

(III). Let $i \in \{1 + \delta, 2 + \delta, \dots, \frac{\rho}{2} + \delta\}$. We can suppose that $\mathcal{L}_2^{i-\delta} = \{[y_0, y_8, y_1], [y_0, y_9, y_2], [y_1, y_{10}, y_2]\} \cup \{[y_3, y_{11}, y_4], [y_3, y_{12}, y_5], [y_4, y_{13}, y_5]\} \cup \{[y_6, y_{14}, y_4], [y_6, y_{15}, y_7], [y_4, y_{16}, y_7]\}, \text{ where } y_0, y_1, \dots, y_{16} \text{ are elements of } \Omega_1 \text{ such that } |\{y_0, y_1, \dots, y_7\}| = 8.$

Put in \mathcal{B} the 4-cycles (y_0, y_8, y_1, a_3^i) , (y_0, y_9, y_2, a_2^i) , $(y_1, y_{10}, y_2, a_1^i)$, $(y_3, y_{11}, y_4, a_1^i)$, $(y_3, y_{12}, y_5, a_0^i)$, $(y_4, y_{13}, y_5, a_2^i)$, $(y_6, y_{14}, y_4, a_0^i)$, $(y_6, y_{15}, y_7, a_2^i)$, $(y_4, y_{16}, y_7, a_3^i)$, $(a_0^i, a_2^i, a_1^i, y_0)$, $(a_0^i, a_3^i, a_2^i, y_1)$, $(a_0^i, a_1^i, a_3^i, y_2)$, $(a_2^i, y_3, a_3^i, \bar{y})$, (a_1^i, y_5, a_3^i, y_6) , $(a_0^i, y_7, a_1^i, \bar{y})$, where $\bar{y} \in \Omega_1$ and $\bar{y} \neq y_i$ for $i = 0, 1, \dots, 7$.

Decompose the complete bipartite graph $K_{\Omega_1 - \{\bar{y}, y_0, y_1, \dots, y_7\}, A_i}$ into edge disjoint 4-cycles and put them in \mathcal{B} .

(IV). Decompose the complete bipartite graph K_{A_i,A_j} , $i \neq j$, into edge disjoint 4-cycles and put them in \mathcal{B} .

It is easy to see that the above constructed (V, \mathcal{B}) is a 4-cycle system of order *n* having a proper \overline{m} -colouring of type *bd* (the colour classes are $\Omega_1, A_1, A_2, \ldots, A_{\underline{n-\omega_1}}$).

Similarly it is possible to prove the theorem in the remaining cases $17 + 48\mu + 48\mu^2 \le n \le 33 + 80\mu + 48\mu^2$ and $33 + 80\mu + 48\mu^2 \le n \le 65 + 112\mu + 48\mu^2$. \Box

Theorem 3.4 For every $n \equiv 1 \pmod{8}$, $n \geq 9$, and for every $m \in \{2, 3, ..., 1 + \frac{n-\omega(n)}{4}\}$ there is a 4-cycle system of order n with a proper m-colouring of type bd.

Proof. The cases m = 2 and $m = 1 + \frac{n-\omega(n)}{4}$ are proved by Lemma 2.2 and Theorem 3.3 respectively. As in Theorem 2.2 it is possible to prove that the existence of a 4-cycle system of order n having an m-colouring of type bd, implies the one of a 4-cycle system of order n + 8 having an (m + 1)-colouring of type bd. \Box

4 2-Colouring of type b

In this section we deal with the spectrum problem for 4-cycle systems having a 2-colouring of type b. This problem is equivalent to find a 4-cycle system (V, \mathcal{B}) having two P_3 -designs

 $(\Omega_i, \mathcal{P}_i), i = 1, 2$, embedded on it and such that each 4-cycle of \mathcal{B} contains exactly one path of $\mathcal{P}_1 \cup \mathcal{P}_2$, i.e. $|\mathcal{B}| = |\mathcal{P}_1| + |\mathcal{P}_2|$.

Theorem 4.1 Let (V, \mathcal{B}) be a 4-cycle system of order n having a 2-colouring of type b, and let Ω_i , $|\Omega_i| = \omega_i \ i = 1, 2$, be the two colour classes. Then either (1) $\omega_1 = 21 + 52\mu + 32\mu^2$ and $\omega_2 = 28 + 60\mu + 32\mu^2$, $\mu \ge 0$, or (2) $\omega_1 = 4\mu + 32\mu^2$ and $\omega_2 = 1 + 12\mu + 32\mu^2$, $\mu \ge 1$.

Proof. Let $(\Omega_i, \mathcal{P}_i)$, i = 1, 2, be the two P_3 -designs embedded in (V, \mathcal{B}) . By $|\mathcal{B}| = |\mathcal{P}_1| + |\mathcal{P}_2|$ it is

$$(\omega_1 - \omega_2)^2 - (\omega_1 + \omega_2) = 0.$$
(5)

By (5), $\omega_1 \neq \omega_2$. Suppose $\omega_1 < \omega_2$ and put $t = \omega_2 - \omega_1$. Since $t^2 = \omega_2 + \omega_1$, then $\omega_1 = \frac{t^2 - t}{2}$ and $\omega_2 = \frac{t^2 + t}{2}$. So we obtain $t^2 - 1 \equiv 0 \pmod{8}$, $\frac{t^2 - t}{2} \equiv 0$ or 1 (mod 4) and $\frac{t^2 + t}{2} \equiv 0$ or 1 (mod 4). It follows that $t \equiv 1$ or 7 (mod 8). Putting either $t = 1 + 8\mu$ or $t = 7 + 8\mu$ we complete the proof. \Box

Theorem 4.2 For each nonnegative integer μ there is a 4-cycle system of order $\bar{n} = 49 + 112\mu + 64\mu^2$ having a 2-colouring of type b and colour classes Ω_1 , Ω_2 of cardinality $\omega_1 = 21 + 52\mu + 32\mu^2$, $\omega_2 = 28 + 60\mu + 32\mu^2$ respectively.

Proof. Let $n = \bar{n} - 8(1 + \mu)$, $\delta = 4 + 13\mu + 8\mu^2$. Put $X_i = \{x_0^i, x_1^i, x_2^i, x_3^i\}$, $Y_i = \{y_0^i, y_1^i, y_2^i, y_3^i, \}$, $A_j = \{a_0^j, a_1^j, \ldots, a_7^j\}$, $X = \bigcup_{i=0}^{\delta} X_i$ $(|X| = \omega_2 - 8(1 + \mu))$, $Y = \bigcup_{i=0}^{\delta} Y_i$, $\Omega_1 = \{\infty\} \cup Y$, $A = \bigcup_{j=0}^{\mu} A_j$ and $\Omega_2 = X \cup A$. Let (W, \mathcal{D}) , $W = \Omega_1 \cup X$, be the 4-cycle system of order n having a 2-colouring of type bd constructed by using Lemma 2.2. Let $\mathcal{D}_1 = \{(x_0^i, y_3^i, x_1^i, \infty) \mid i = 0, 1, \ldots, \delta\}$ be the set of cycles of \mathcal{D} having colour type bd. Let $V = \Omega_1 \cup \Omega_2$. Our aim is to produce a 4-cycle system of order \bar{n} on vertex set V, having a 2-colouring of type b with colour classes Ω_1 and Ω_2 . To do this at first we embed (W, \mathcal{D}) in a 4-cycle system $(V, \mathcal{D} \cup \mathcal{C})$, then we replace the cycles whose colour type is not b with type b cycles covering the same edge-set of the previous ones.

For $i = 1, 2, \ldots, 9$ let C_i be the cycle-set given in Appendix 1. Put $\mathcal{C} = \bigcup_{i=1}^9 C_i$. In order to prove that $(V, \mathcal{D} \cup \mathcal{C})$ is a 4-cycle system it is sufficient to verify that the cycles in \mathcal{C} cover the edges of $K_A \cup K_{A,\{\infty\}\cup X\cup Y}$. Clearly $|\mathcal{C}_1| = 14(\mu+1)$, $|\mathcal{C}_2| = 16\mu(\mu+1)$, $|\mathcal{C}_3| = 30(\mu+1) + 8(\mu+1)^2 + 40\mu(\mu+1)$, $|\mathcal{C}_4| = 16(2\mu+2)(\mu+1)$, $|\mathcal{C}_5| = 5(\mu+1)$, $|\mathcal{C}_6| = 32(\mu+1)\mu^2 + 24\mu(\mu+1)$, $|\mathcal{C}_7| = |\mathcal{C}_6|$, $|\mathcal{C}_8| = 64\mu(\mu+1)^2$ and $|\mathcal{C}_9| = 8\mu(\mu+1)$. It follows that \mathcal{C} covers the same number of edges of $K_A \cup K_{A,\{\infty\}\cup X\cup Y}$. Then it is sufficient to verify that every edge of $K_A \cup K_{A,\{\infty\}\cup X\cup Y}$ is covered by some cycle in \mathcal{C} . In the following we show how to check this:

- for $i = 0, 1, \ldots, \mu$, the edges of K_{A_i} are covered by cycles in \mathcal{C}_1 ;

- for $i = 0, 1, \ldots, \mu$, the edges of $K_{A_i, \{\infty\}}$ are covered by cycles in \mathcal{C}_1 ;

- if $\mu \ge 1$, then for $i = 0, 1, \ldots, \mu - 1, j = i + 1, i + 2, \ldots, \mu$ the edges of K_{A_i, A_j} are covered by cycles in \mathcal{C}_2 ;

- for $i = 0, 1, \ldots, 3\mu + 2$, the edges of K_{A,Y_i} are covered by cycles in $\mathcal{C}_1 \cup \mathcal{C}_3$;

- for $i = 3\mu + 3, 3\mu + 4, \ldots, 5\mu + 4$, the edges of K_{A,Y_i} are covered by cycles in \mathcal{C}_4 ;

- for $i = 5\mu + 5, 5\mu + 6, \dots, \delta$, the edges of K_{A,Y_i} are covered by cycles in $\mathcal{C}_2 \cup \mathcal{C}_6 \cup \mathcal{C}_7 \cup \mathcal{C}_8$; - for $i = 0, 1, \dots, 5\mu + 4$, the edges of K_{A,X_i} are covered by cycles in $\mathcal{C}_3 \cup \mathcal{C}_4 \cup \mathcal{C}_5$;

- for $i = 5\mu + 5, 5\mu + 6, \ldots, \delta$, the edges of K_{A,X_i} are covered by cycles in $\mathcal{C}_6 \cup \mathcal{C}_7 \cup \mathcal{C}_8 \cup \mathcal{C}_9$. Remark that the colour classes are Ω_1 and Ω_2 . Then the cycles of $\mathcal{C}_5 \cup \mathcal{C}_9$ are monochromatic whereas the ones of $\mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3 \cup \mathcal{C}_4 \cup \mathcal{C}_6 \cup \mathcal{C}_7 \cup \mathcal{C}_8$ are of colour type b. Let \mathcal{B}_1 be the set of cycles, of colour type b, given in Appendix 1. It is easy to verify that \mathcal{B}_1 and $\mathcal{C}_5 \cup \mathcal{C}_9 \cup \mathcal{D}_1$ cover the same edges.

Put $\mathcal{B} = (\mathcal{D} - \mathcal{D}_1) \cup (\mathcal{C} - (\mathcal{C}_5 \cup \mathcal{C}_9)) \cup \mathcal{B}_1$. Then (V, \mathcal{B}) is the required 4-cycle system of order \bar{n} having a 2-colouring of type b. \Box

Theorem 4.3 For each $\mu \geq 1$ there is a 4-cycle system of order $\bar{n} = 1 + 16\mu + 64\mu^2$ having a 2-colouring of type b and colour classes Ω_1 , Ω_2 of cardinality $\omega_1 = 4\mu + 32\mu^2$, $\omega_2 = 1 + 12\mu + 32\mu^2$ respectively.

Proof. Let $n = \bar{n} - 8\mu$, $\delta = 8\mu^2 + \mu - 1$. Put $X_i = \{x_0^i, x_1^i, x_2^i, x_3^i\}$, $Y_i = \{y_0^i, y_1^i, y_2^i, y_3^i\}$, $A_j = \{a_0^j, a_1^j, \dots, a_7^j\}$, $\Omega_1 = \bigcup_{i=0}^{\delta} X_i$, $Y = \bigcup_{i=0}^{\delta} Y_i$, $A = \bigcup_{j=0}^{\mu-1} A_j$ and $\Omega_2 = \{\infty\} \cup Y \cup A$.

Let (I), (II) and (III) be the cycle-sets constructed in Lemma 2.2. Change y_0^i with ∞ in cycles of (I) and (III) and leave unchanged those of (II). Then we obtain a 4-cycle system of order n (W, \mathcal{D}) , $W = \Omega_1 \cup Y \cup \{\infty\}$, having a 2-colouring of type bd, with colour classes Ω_1 and $Y \cup \{\infty\}$, and such that the set of cycles of colour type bd is $\mathcal{D}_1 = \{(x_0^i, y_3^i, x_1^i, y_0^i) \mid i = 0, 1, \ldots, \delta\}.$

Let $V = \Omega_1 \cup \Omega_2$. For i = 1, 2, ..., 6 let C_i be the cycle-set given in Appendix 2 (where the suffices of x and y are (mod 4), and the suffices of a are (mod 8)).

Put $\mathcal{C} = \bigcup_{i=1}^{6} \mathcal{C}_i$ and $\mathcal{B} = \mathcal{C} \cup (\mathcal{D} - \mathcal{D}_1)$. In order to prove that (V, \mathcal{B}) is the required 4-cycle system of order \bar{n} having a 2-colouring of type b, it is sufficient to verify that the cycles in \mathcal{C} cover the edges of $K_A \cup K_{A,\{\infty\} \cup X \cup Y}$ and \mathcal{D}_1 .

Clearly $|\mathcal{C}_1| = 14\mu$, $|\mathcal{C}_2| = 16\mu(\mu - 1)$, $|\mathcal{C}_3| = 9(4\mu^2 - 2\mu) + 108\mu^2$, $|\mathcal{C}_4| = 16\mu(8\mu^2 - 8\mu) - 16\mu(\mu - 1) - 4\mu$, $|\mathcal{C}_5| = 24\mu$ and $|\mathcal{C}_6| = 16\mu(\mu - 1)$. It follows that \mathcal{C} covers the same number of edges of \mathcal{D}_1 and $K_A \cup K_{A,\{\infty\}\cup X\cup Y}$. Then it is sufficient to verify that every edge of \mathcal{D}_1 and $K_A \cup K_{A,\{\infty\}\cup X\cup Y}$ is covered by some cycle in \mathcal{C} . In the following we show how to check this:

- for $i = 0, 1, \ldots, \mu - 1$, the edges of K_{A_i} are covered by cycles in \mathcal{C}_1 ;

- if $\mu \geq 2$, then for $i = 0, 1, \ldots, \mu - 2$, $j = i + 1, i + 2, \ldots, \mu - 1$ the edges of K_{A_i, A_j} are covered by cycles in \mathcal{C}_2 ;

- for $i = 0, 1, \ldots, \mu - 1$, the edges of $K_{A_i, \{\infty\}}$ are covered by cycles in \mathcal{C}_5 ;

- for $i = 0, 1, \ldots, 9\mu - 1$, the edges of K_{A,X_i} are covered by cycles in $\mathcal{C}_1 \cup \mathcal{C}_3 \cup \mathcal{C}_5$;

- for $i = 9\mu, 9\mu + 1, \ldots, \delta$, the edges of K_{A,X_i} are covered by cycles in $\mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_4$;

- for $i = 0, 1, \ldots, 9\mu - 1$, the edges of K_{A,Y_i} are covered by cycles in $\mathcal{C}_3 \cup \mathcal{C}_5$;

- for $i = 9\mu, 9\mu + 1, \ldots, \delta$, the edges of K_{A,Y_i} are covered by cycles in $\mathcal{C}_4 \cup \mathcal{C}_5 \cup \mathcal{C}_6$;

– the edges of \mathcal{D}_1 are covered by cycles in $\mathcal{C}_5 \cup \mathcal{C}_6$. \Box

References

- C.J. Colbourn, J.H. Dinitz and A. Rosa, Bicoloring Steiner triple systems, *Electron. J. Combin.*, 6, (1999), R25.
- [2] C.J. Colbourn and A. Rosa, Triple Systems, Oxford Mathematical Monographs, Oxford University Press, (1999), Clarendon Press, Oxford.
- [3] J.H. Dinitz and D.R. Stinson, A singular direct product for Bicolorable Steiner Triple Systems, to appear.
- [4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math., 2, (1972), 229–252.
- [5] C. C. Lindner and C. A. Rodger, Decomposition into cycles II: Cycle Systems, Contemporary Design Theory: A Collection of Surveys (eds. J. H. Dinitz and D. R. Stinson), John Wiley and Son, New York (1992), 325–369.
- [6] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, *Discrete Math.*, 174 (1997), 247-259.
- [7] L. Milazzo and Zs. Tuza, Strict clourings for classes of Steiner triple systems, *Discrete Math.*, 182 (1998), 233-243.
- [8] S. Milici, A. Rosa and V. Voloshin, Colouring Steiner systems with specified block colour patterns, Discrete Math., to appear.
- [9] G. Quattrocchi, Embedding path designs in 4-cycle systems, *Discrete Math.*, to appear.
- [10] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory (B), **30** (1981), 75-81.
- [11] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A, 34 (1983), 60-70.
- [12] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin., 11 (1995), 25-45.

Appendix 1

	\mathcal{C}_1
$i = 0, 1, \dots, \mu$	$ \begin{array}{l} (a_0^i, a_7^i, a_1^i, \infty), (a_2^i, a_4^i, a_3^i, \infty), (a_4^i, a_6^i, a_5^i, \infty), (a_6^i, a_2^i, a_7^i, \infty), \\ (a_0^i, a_1^i, a_5^i, y_0^{3i}), (a_0^i, a_2^i, a_5^i, y_1^{3i}), (a_2^i, a_1^i, a_6^i, y_2^{3i}), (a_2^i, a_3^i, a_6^i, y_3^{3i}), \\ (a_4^i, a_1^i, a_3^i, y_0^{1+3i}), (a_4^i, a_0^i, a_3^i, y_1^{1+3i}), (a_0^i, a_5^i, a_7^i, y_2^{1+3i}), \\ (a_0^i, a_6^i, a_7^i, y_3^{1+3i}), (a_4^i, a_5^i, a_3^i, y_0^{2+3i}), (a_4^i, a_7^i, a_3^i, y_1^{2+3i}). \end{array} $

\mathcal{C}_2		
$\mu \ge 1$	$(a_0^i, a_0^j, a_1^i, y_0^{\tau}), (a_0^i, a_1^j, a_1^i, y_1^{\tau}), (a_0^i, a_2^j, a_1^i, y_0^{\tau+1}),$	
$i=0,1,\ldots,\mu-1$	$(a_0^i, a_3^j, a_1^i, y_1^{\tau+1}), (a_2^i, a_4^j, a_3^i, y_0^{\tau+2}), (a_2^i, a_5^j, a_3^i, y_1^{\tau+2}),$	
$j = i + 1, i + 2, \dots, \mu$	$(a_2^i, a_6^j, a_3^i, y_0^{\tau+3}), (a_2^i, a_7^j, a_3^i, y_1^{\tau+3}), (a_4^i, a_0^j, a_5^i, y_0^{\tau+4}),$	
$\tau = 5 + 5\mu +$	$(a_4^i, a_1^j, a_5^i, y_1^{\tau+4}), (a_4^i, a_2^j, a_5^i, y_0^{\tau+5}), (a_4^i, a_3^j, a_5^i, y_1^{\tau+5}),$	
$+16(j - \frac{i(i+1)}{2} + i\mu - 1)$	$(a_6^i, a_4^j, a_7^i, y_0^{\tau+6}), (a_6^i, a_5^j, a_7^i, y_1^{\tau+6}), (a_6^i, a_6^j, a_7^i, y_0^{\tau+7}),$	
	$(a_6^i, a_7^j, a_7^i, y_1^{\tau+7}), (a_0^j, a_2^i, a_1^j, y_0^{\tau+8}), (a_0^j, a_3^i, a_1^j, y_1^{\tau+8}),$	
	$(a_0^j, a_6^i, a_1^j, y_0^{\tau+9}), (a_0^j, a_7^i, a_1^j, y_1^{\tau+9}), (a_2^j, a_2^i, a_3^j, y_0^{\tau+10}),$	
	$(a_2^j, a_3^i, a_3^j, y_1^{\tau+10}), (a_2^j, a_6^i, a_3^j, y_0^{\tau+11}), (a_2^j, a_7^i, a_3^j, y_1^{\tau+11}),$	
	$(a_4^j, a_0^i, a_5^j, y_0^{\tau+12}), (a_4^j, a_1^i, a_5^j, y_1^{\tau+12}), (a_4^j, a_4^i, a_5^j, y_0^{\tau+13}),$	
	$(a_4^j, a_5^i, a_5^j, y_1^{\tau+13}), (a_6^j, a_0^i, a_7^j, y_0^{\tau+14}), (a_6^j, a_1^i, a_7^j, y_1^{\tau+14}),$	
	$(a_6^j, a_4^i, a_7^j, y_0^{\tau+15}), (a_6^j, a_5^i, a_7^j, y_1^{\tau+15}).$	

	\mathcal{C}_3
$i = 0, 1, \dots, \mu$	$ \begin{array}{l} (a_1^i, x_0^{5i}, a_4^i, y_0^{3i}), (a_2^i, x_0^{5i}, a_6^i, y_0^{3i}), (a_3^i, x_0^{5i}, a_7^i, y_0^{3i}), \\ (a_1^i, x_1^{5i}, a_4^i, y_1^{3i}), (a_2^i, x_1^{5i}, a_6^i, y_1^{3i}), (a_3^i, x_1^{5i}, a_7^i, y_1^{3i}), \\ (a_0^i, x_0^{5i+1}, a_4^i, y_2^{3i}), (a_1^i, x_0^{5i+1}, a_5^i, y_2^{3i}), (a_3^i, x_0^{5i+1}, a_7^i, y_2^{3i}), \\ (a_0^i, x_1^{5i+1}, a_4^i, y_3^{3i}), (a_1^i, x_1^{5i+1}, a_5^i, y_3^{3i}), (a_3^i, x_1^{5i+1}, a_7^i, y_3^{3i}), \\ (a_0^i, x_0^{5i+2}, a_5^i, y_0^{3i+1}), (a_1^i, x_0^{5i+2}, a_6^i, y_0^{3i+1}), (a_2^i, x_0^{5i+2}, a_7^i, y_0^{3i+1}), \\ (a_0^i, x_1^{5i+2}, a_5^i, y_1^{3i+1}), (a_1^i, x_1^{5i+2}, a_6^i, y_1^{3i+1}), (a_2^i, x_1^{5i+2}, a_7^i, y_1^{3i+1}), \\ (a_1^i, x_0^{5i+3}, a_4^i, y_2^{3i+1}), (a_2^i, x_0^{5i+3}, a_5^i, y_3^{3i+1}), (a_3^i, x_0^{5i+3}, a_6^i, y_3^{3i+1}), \\ (a_1^i, x_0^{5i+3}, a_4^i, y_3^{3i+1}), (a_2^i, x_1^{5i+3}, a_5^i, y_3^{3i+1}), (a_3^i, x_1^{5i+3}, a_6^i, y_3^{3i+1}), \\ (a_0^i, x_0^{5i+4}, a_5^i, y_0^{3i+2}), (a_1^i, x_0^{5i+4}, a_6^i, y_3^{3i+2}), (a_2^i, x_0^{5i+4}, a_7^i, y_0^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), \\ (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), (a_1^i, x_0^{5i+4}, a_1^i, y_3^{3i+2}), $
$i, j = 0, 1, \dots, \mu$ $\sigma = 0, 1, 2, 3$	$(a_{2\sigma}^{i}, x_{2}^{i}, a_{2\sigma+1}^{j}, y_{2}^{3i+2}), (a_{2\sigma}^{j}, x_{3}^{i}, a_{2\sigma+1}^{j}, y_{3}^{3i+2}),$
$\mu \ge 1$ $i, \rho = 0, 1, \dots, \mu$ $\rho \ne i$ $\sigma = 0, 1, 2, 3$	$ \begin{array}{l} (a_{2\sigma}^{\rho}, x_{0}^{5i}, a_{2\sigma+1}^{\rho}, y_{0}^{3i}), (a_{2\sigma}^{\rho}, x_{1}^{5i}, a_{2\sigma+1}^{\rho}, y_{1}^{3i}), \\ (a_{2\sigma}^{\rho}, x_{0}^{5i+1}, a_{2\sigma+1}^{\rho}, y_{2}^{3i}), (a_{2\sigma}^{\rho}, x_{1}^{5i+1}, a_{2\sigma+1}^{\rho}, y_{3}^{3i}), \\ (a_{2\sigma}^{\rho}, x_{0}^{5i+2}, a_{2\sigma+1}^{\rho}, y_{0}^{3i+1}), (a_{2\sigma}^{\rho}, x_{1}^{5i+2}, a_{2\sigma+1}^{\rho}, y_{1}^{3i+1}), \\ (a_{2\sigma}^{\rho}, x_{0}^{5i+3}, a_{2\sigma+1}^{\rho}, y_{2}^{3i+1}), (a_{2\sigma}^{\rho}, x_{1}^{5i+3}, a_{2\sigma+1}^{\rho}, y_{3}^{3i+1}), \\ (a_{2\sigma}^{\rho}, x_{0}^{5i+4}, a_{2\sigma+1}^{\rho}, y_{0}^{3i+2}), (a_{2\sigma}^{\rho}, x_{1}^{5i+4}, a_{2\sigma+1}^{\rho}, y_{1}^{3i+2}). \end{array} $

	\mathcal{C}_4
$i = 0, 1, \dots, 2\mu + 1$	$(a_{2\sigma}^{j}, x_{2}^{2i+\mu+1}, a_{2\sigma+1}^{j}, y_{0}^{i+3\mu+3}), (a_{2\sigma}^{j}, x_{3}^{2i+\mu+1}, a_{2\sigma+1}^{j}, y_{1}^{i+3\mu+3}),$
$j=0,1,\ldots,\mu$	$(a_{2\sigma}^{j}, x_{2}^{2i+\mu+2}, a_{2\sigma+1}^{j}, y_{2}^{i+3\mu+3}), (a_{2\sigma}^{j}, x_{3}^{2i+\mu+2}, a_{2\sigma+1}^{j}, y_{3}^{i+3\mu+3}).$
$\sigma = 0, 1, 2, 3$	

		\mathcal{C}_5
Ī	$i=0,1,\ldots,\mu$	$\begin{array}{c}(a_{0}^{i}, x_{0}^{5i}, a_{5}^{i}, x_{1}^{5i}),(a_{2}^{i}, x_{0}^{5i+1}, a_{6}^{i}, x_{1}^{5i+1}),(a_{3}^{i}, x_{0}^{5i+2}, a_{4}^{i}, x_{1}^{5i+2}),\\(a_{0}^{i}, x_{0}^{5i+3}, a_{7}^{i}, x_{1}^{5i+3}),(a_{3}^{i}, x_{0}^{5i+4}, a_{4}^{i}, x_{1}^{5i+4}).\end{array}$

\mathcal{C}_6	
$\mu \ge 1$	$(a_{2\sigma}^{\rho}, x_0^{\tau}, a_{1+2\sigma}^{\rho}, y_0^{\tau}), (a_{2\sigma}^{\rho}, x_1^{\tau}, a_{1+2\sigma}^{\rho}, y_1^{\tau}),$
$i=0,1,\ldots,\mu-1$	$(a_{2\sigma}^{\rho}, x_0^{\tau+1}, a_{1+2\sigma}^{\rho}, y_0^{\tau+1}), (a_{2\sigma}^{\rho}, x_1^{\tau+1}, a_{1+2\sigma}^{\rho}, y_1^{\tau+1}),$
$j = i + 1, i + 2, \dots, \mu$	$(a_{2\sigma}^{\rho}, x_0^{\tau+2}, a_{1+2\sigma}^{\rho}, y_0^{\tau+2}), (a_{2\sigma}^{\rho}, x_1^{\tau+2}, a_{1+2\sigma}^{\rho}, y_1^{\tau+2}),$
$\tau = 5 + 5\mu +$	$(a_{2\sigma}^{\rho}, x_0^{\tau+3}, a_{1+2\sigma}^{\rho}, y_0^{\tau+3}), (a_{2\sigma}^{\rho}, x_1^{\tau+3}, a_{1+2\sigma}^{\rho}, y_1^{\tau+3}),$
$+16(j - \frac{i(i+1)}{2} + i\mu - 1)$	$(a_{2\sigma}^{\rho}, x_0^{\tau+4}, a_{1+2\sigma}^{\rho}, y_0^{\tau+4}), (a_{2\sigma}^{\rho}, x_1^{\tau+4}, a_{1+2\sigma}^{\rho}, y_1^{\tau+4}),$
$\rho = 0, 1, \dots, \mu$	$(a_{2\sigma}^{\rho}, x_0^{\tau+5}, a_{1+2\sigma}^{\rho}, y_0^{\tau+5}), (a_{2\sigma}^{\rho}, x_1^{\tau+5}, a_{1+2\sigma}^{\rho}, y_1^{\tau+5}),$
$\rho \neq i$	$(a_{2\sigma}^{\rho}, x_0^{\tau+6}, a_{1+2\sigma}^{\rho}, y_0^{\tau+6}), (a_{2\sigma}^{\rho}, x_1^{\tau+6}, a_{1+2\sigma}^{\rho}, y_1^{\tau+6}),$
$\sigma = 0, 1, 2, 3$	$(a_{2\sigma}^{\rho}, x_0^{\tau+7}, a_{1+2\sigma}^{\rho}, y_0^{\tau+7}), (a_{2\sigma}^{\rho}, x_1^{\tau+7}, a_{1+2\sigma}^{\rho}, y_1^{\tau+7}),$
$\chi = 1, 2, 3$	$(a_{2\chi}^i, x_0^{\tau}, a_{1+2\chi}^i, y_0^{\tau}), (a_{2\chi}^i, x_1^{\tau}, a_{1+2\chi}^i, y_1^{\tau}),$
i, j, μ, τ as above	$(a_{2\chi}^i, x_0^{\tau+1}, a_{1+2\chi}^i, y_0^{\tau+1}), (a_{2\chi}^i, x_1^{\tau+1}, a_{1+2\chi}^i, y_1^{\tau+1}),$
$\chi = 0, 2, 3$	$(a_{2\chi}^i, x_0^{\tau+2}, a_{1+2\chi}^i, y_0^{\tau+2}), (a_{2\chi}^i, x_1^{\tau+2}, a_{1+2\chi}^i, y_1^{\tau+2}),$
i, j, μ, τ as above	$(a_{2\chi}^i, x_0^{\tau+3}, a_{1+2\chi}^i, y_0^{\tau+3}), (a_{2\chi}^i, x_1^{\tau+3}, a_{1+2\chi}^i, y_1^{\tau+3}),$
$\chi = 0, 1, 3$	$(a_{2\chi}^i, x_0^{\tau+4}, a_{1+2\chi}^i, y_0^{\tau+4}), (a_{2\chi}^i, x_1^{\tau+4}, a_{1+2\chi}^i, y_1^{\tau+4}),$
i, j, μ, τ as above	$(a_{2\chi}^i, x_0^{\tau+5}, a_{1+2\chi}^i, y_0^{\tau+5}), (a_{2\chi}^i, x_1^{\tau+5}, a_{1+2\chi}^i, y_1^{\tau+5}),$
$\chi = \overline{0, 1, 2}$	$(a_{2\chi}^i, x_0^{\tau+6}, \overline{a_{1+2\chi}^i, y_0^{\tau+6}}), (a_{2\chi}^i, x_1^{\tau+6}, \overline{a_{1+2\chi}^i, y_1^{\tau+6}}),$
i, j, μ, τ as above	$(a_{2\chi}^i, x_0^{\tau+7}, a_{1+2\chi}^i, y_0^{\tau+7}), (a_{2\chi}^i, x_1^{\tau+7}, a_{1+2\chi}^i, y_1^{\tau+7}).$

\mathcal{C}_7		
$\mu \ge 1$	$(a_{2\sigma}^{\rho}, x_0^{\tau+8}, a_{1+2\sigma}^{\rho}, y_0^{\tau+8}), (a_{2\sigma}^{\rho}, x_1^{\tau+8}, a_{1+2\sigma}^{\rho}, y_1^{\tau+8}),$	
$i=0,1,\ldots,\mu-1$	$(a_{2\sigma}^{\rho}, x_0^{\tau+9}, a_{1+2\sigma}^{\rho}, y_0^{\tau+9}), (a_{2\sigma}^{\rho}, x_1^{\tau+9}, a_{1+2\sigma}^{\rho}, y_1^{\tau+9})$	
$j = i + 1, i + 2, \dots, \mu$	$(a_{2\sigma}^{\rho}, x_0^{\tau+10}, a_{1+2\sigma}^{\rho}, y_0^{\tau+10}), (a_{2\sigma}^{\rho}, x_1^{\tau+10}, a_{1+2\sigma}^{\rho}, y_1^{\tau+10}),$	
$\tau = 5 + 5\mu +$	$(a_{2\sigma}^{\rho}, x_0^{\tau+11}, a_{1+2\sigma}^{\rho}, y_0^{\tau+11}), (a_{2\sigma}^{\rho}, x_1^{\tau+11}, a_{1+2\sigma}^{\rho}, y_1^{\tau+11}),$	
$+16(j - \frac{i(i+1)}{2} + i\mu - 1)$	$(a_{2\sigma}^{\rho}, x_0^{\tau+12}, a_{1+2\sigma}^{\rho}, y_0^{\tau+12}), (a_{2\sigma}^{\rho}, x_1^{\tau+12}, a_{1+2\sigma}^{\rho}, y_1^{\tau+12}),$	
$\rho = 0, 1, \ldots, \mu$	$(a_{2\sigma}^{\rho}, x_0^{\tau+13}, a_{1+2\sigma}^{\rho}, y_0^{\tau+13}), (a_{2\sigma}^{\rho}, x_1^{\tau+13}, a_{1+2\sigma}^{\rho}, y_1^{\tau+13})$	
$\rho \neq j$	$(a_{2\sigma}^{\rho}, x_0^{\tau+14}, a_{1+2\sigma}^{\rho}, y_0^{\tau+14}), (a_{2\sigma}^{\rho}, x_1^{\tau+14}, a_{1+2\sigma}^{\rho}, y_1^{\tau+14}),$	
$\sigma = 0, 1, 2, 3$	$(a_{2\sigma}^{\rho}, x_0^{\tau+15}, a_{1+2\sigma}^{\rho}, y_0^{\tau+15}), (a_{2\sigma}^{\rho}, x_1^{\tau+15}, a_{1+2\sigma}^{\rho}, y_1^{\tau+15}),$	
$\chi = 1, 2, 3$	$(a_{2\chi}^j, x_0^{\tau+8}, a_{1+2\chi}^j, y_0^{\tau+8}), (a_{2\chi}^j, x_1^{\tau+8}, a_{1+2\chi}^j, y_1^{\tau+8}),$	
i, j, μ, τ as above	$(a_{2\chi}^{j}, x_0^{\tau+9}, a_{1+2\chi}^{j}, y_0^{\tau+9}), (a_{2\chi}^{j}, x_1^{\tau+9}, a_{1+2\chi}^{j}, y_1^{\tau+9}),$	
$\chi = 0, 2, 3$	$(a_{2\chi}^j, x_0^{\tau+10}, a_{1+2\chi}^j, y_0^{\tau+10}), (a_{2\chi}^j, x_1^{\tau+10}, a_{1+2\chi}^j, y_1^{\tau+10}),$	
i, j, μ, τ as above	$(a_{2\chi}^j, x_0^{\tau+11}, a_{1+2\chi}^j, y_0^{\tau+11}), (a_{2\chi}^j, x_1^{\tau+11}, a_{1+2\chi}^j, y_1^{\tau+11}),$	
$\chi = 0, 1, 3$	$(a_{2\chi}^j, x_0^{\tau+12}, a_{1+2\chi}^j, y_0^{\tau+12}), (a_{2\chi}^j, x_1^{\tau+12}, a_{1+2\chi}^j, y_1^{\tau+12}),$	
i, j, μ, τ as above	$(a_{2\chi}^{j}, x_{0}^{\tau+13}, a_{1+2\chi}^{j}, y_{0}^{\tau+13}), (a_{2\chi}^{j}, x_{1}^{\tau+13}, a_{1+2\chi}^{j}, y_{1}^{\tau+13}),$	
$\chi = \overline{0, 1, 2}$	$(a_{2\chi}^{j}, x_{0}^{\tau+14}, \overline{a_{1+2\chi}^{j}, y_{0}^{\tau+14}}), (a_{2\chi}^{j}, x_{1}^{\tau+14}, \overline{a_{1+2\chi}^{j}, y_{1}^{\tau+14}}),$	
i, j, μ, τ as above	$(a_{2\chi}^j, x_0^{\tau+15}, a_{1+2\chi}^j, y_0^{\tau+15}), (a_{2\chi}^j, x_1^{\tau+15}, a_{1+2\chi}^j, y_1^{\tau+15}).$	

\mathcal{C}_8	
$ \mu \ge 1, i = 0, 1, \dots, \mu - 1, j = i + 1, i + 2, \dots, \mu \tau = 5 + 5\mu + 16(j - \frac{i(i+1)}{2} + i\mu - 1) \gamma = 0, 1, \dots, \mu, \alpha = 0, 1, \dots, 15, \sigma = 0, 1, 2, 3 $	$ \begin{array}{l} (a_{2\sigma}^{\gamma}, x_{2}^{\tau+\alpha}, a_{1+2\sigma}^{\gamma}, y_{2}^{\tau+\alpha}), \\ (a_{2\sigma}^{\gamma}, x_{3}^{\tau+\alpha}, a_{1+2\sigma}^{\gamma}, y_{3}^{\tau+\alpha}). \end{array} $

\mathcal{C}_9	
$\mu \ge 1, i = 0, 1, \dots, \mu - 1$ $j = i + 1, i + 2, \dots, \mu$ $\tau = 5 + 5\mu + 16(j - \frac{i(i+1)}{2} + i\mu - 1)$ $\sigma = 0, 1, 2, 3$	$ \begin{array}{c} (a_{2\sigma}^{i}, x_{0}^{\tau+2\sigma}, a_{2\sigma+1}^{i}, x_{1}^{\tau+2\sigma}), \\ (a_{2\sigma}^{i}, x_{0}^{\tau+2\sigma+1}, a_{2\sigma+1}^{i}, x_{1}^{\tau+2\sigma+1}), \\ (a_{2\sigma}^{j}, x_{0}^{\tau+2\sigma+8}, a_{2\sigma+1}^{j}, x_{1}^{\tau+2\sigma+8}), \\ (a_{2\sigma}^{j}, x_{0}^{\tau+2\sigma+9}, a_{2\sigma+1}^{j}, x_{1}^{\tau+2\sigma+9}). \end{array} $

\mathcal{B}_1	
$i = 0, 1, \dots, \mu$	$\begin{array}{l} (x_0^{5i},a_0^i,x_1^{5i},\infty),(x_0^{5i},a_5^i,x_1^{5i},y_3^{5i}),\\ (x_0^{5i+1},a_2^i,x_1^{5i+1},\infty),(x_0^{5i+1},a_6^i,x_1^{5i+1},y_3^{5i+1}),\\ (x_0^{5i+2},a_3^i,x_1^{5i+2},\infty),(x_0^{5i+2},a_4^i,x_1^{5i+2},y_3^{5i+2}),\\ (x_0^{5i+3},a_0^i,x_1^{5i+3},\infty),(x_0^{5i+3},a_7^i,x_1^{5i+3},y_3^{5i+3}),\\ (x_0^{5i+4},a_3^i,x_1^{5i+4},\infty),(x_0^{5i+4},a_4^i,x_1^{5i+4},y_3^{5i+4}). \end{array}$
$\mu \ge 1, \sigma = 0, 1, 2, 3$ $i = 0, 1, \dots, \mu - 1$ $j = i + 1, i + 2, \dots, \mu$ $\tau = 5 + 5\mu + + 16(j - \frac{i(i+1)}{2} + i\mu - 1)$	$\begin{array}{l} (x_{0}^{\tau+2\sigma}, a_{2\sigma}^{i}, x_{1}^{\tau+2\sigma}, \infty), (x_{0}^{\tau+2\sigma}, a_{2\sigma+1}^{i}, x_{1}^{\tau+2\sigma}, y_{3}^{\tau+2\sigma}), \\ (x_{0}^{\tau+2\sigma+1}, a_{2\sigma}^{i}, x_{1}^{\tau+2\sigma+1}, \infty), \\ (x_{0}^{\tau+2\sigma+1}, a_{2\sigma+1}^{i}, x_{1}^{\tau+2\sigma+1}, y_{3}^{\tau+2\sigma+1}), \\ (x_{0}^{\tau+2\sigma+8}, a_{2\sigma}^{j}, x_{1}^{\tau+2\sigma+8}, \infty), \\ (x_{0}^{\tau+2\sigma+8}, a_{2\sigma+1}^{j}, x_{1}^{\tau+2\sigma+8}, y_{3}^{\tau+2\sigma+8}), \\ (x_{0}^{\tau+2\sigma+9}, a_{2\sigma}^{j}, x_{1}^{\tau+2\sigma+9}, \infty), \\ (x_{0}^{\tau+2\sigma+9}, a_{2\sigma+1}^{j}, x_{1}^{\tau+2\sigma+9}, y_{3}^{\tau+2\sigma+9}). \end{array}$

Appendix 2

	\mathcal{C}_1
$i = 0, 1, \dots, \mu - 1$	$(a_0^i, a_7^i, a_1^i, x_3^{\delta}), (a_2^i, a_4^i, a_3^i, x_3^{\delta}), (a_4^i, a_6^i, a_5^i, x_3^{\delta}),$
	$(a_6^i, a_2^i, a_7^i, x_3^\delta), (a_0^i, a_1^i, a_5^i, x_0^{9i}), (a_0^i, a_2^i, a_5^i, x_1^{9i}),$
	$(a_2^i, a_1^i, a_6^i, x_0^{9i+1}), (a_2^i, a_3^i, a_6^i, x_1^{9i+1}), (a_4^i, a_1^i, a_3^i, x_0^{9i+2}),$
	$(a_4^i, a_0^i, a_3^i, x_1^{9i+2}), (a_0^i, a_5^i, a_7^i, x_0^{9i+3}), (a_0^i, a_6^i, a_7^i, x_1^{9i+3}),$
	$(a_4^i, a_5^i, a_3^i, x_0^{9i+4}), (a_4^i, a_7^i, a_3^i, x_1^{9i+4}).$

\mathcal{C}_2		
$\mu \ge 2$	$(a_{2\sigma}^i, a_{4\sigma}^j, a_{1+2\sigma}^i, x_0^{\tau+2\sigma}), (a_{2\sigma}^i, a_{1+4\sigma}^j, a_{1+2\sigma}^i, x_1^{\tau+2\sigma}),$	
$i=0,1,\ldots,\mu-2$	$(a_{2\sigma}^i, a_{2+4\sigma}^j, a_{1+2\sigma}^i, x_0^{1+\tau+2\sigma}),$	
	$(a_{2\sigma}^i, a_{3+4\sigma}^j, a_{1+2\sigma}^i, x_1^{1+\tau+2\sigma}),$	
$j = i + 1, i + 2, \dots, \mu - 1$	$(a_0^j, a_2^i, a_1^j, x_0^{\tau+8}), (a_0^j, a_3^i, a_1^j, x_1^{\tau+8}), (a_0^j, a_6^i, a_1^j, x_0^{\tau+9}),$	
$\tau = 9\mu + 16[i(\mu - 1) -$	$(a_0^j, a_7^i, a_1^j, x_1^{\tau+9}), (a_2^j, a_2^i, a_3^j, x_0^{\tau+10}), (a_2^j, a_3^i, a_3^j, x_1^{\tau+10}),$	
$\left[-\frac{i(i+1)}{2}+j-1\right]$	$(a_2^j, a_6^i, a_3^j, x_0^{\tau+11}), (a_2^j, a_7^i, a_3^j, x_1^{\tau+11}), (a_4^j, a_0^i, a_5^j, x_0^{\tau+12}),$	
$\sigma = 0, 1, 2, 3$	$(a_4^j, a_1^i, a_5^j, x_1^{\tau+12}), (a_4^j, a_4^i, a_5^j, x_0^{\tau+13}), (a_4^j, a_5^i, a_5^j, x_1^{\tau+13}),$	
	$(a_6^j, a_0^i, a_7^j, x_0^{\tau+14}), (a_6^j, a_1^i, a_7^j, x_1^{\tau+14}), (a_6^j, a_4^i, a_7^j, x_0^{\tau+15}),$	
	$(a_6^j, a_5^i, a_7^j, x_1^{\tau+15}).$	

\mathcal{C}_3		
$i = 0, 1, \dots, \mu - 1$	$(a_0^j, y_\alpha^{9i}, a_5^j, x_{\alpha+1}^{9i})$ (missing $(a_0^i, y_\alpha^{9i}, a_5^i, x_{\alpha+1}^{9i}), \alpha = 0, 3$)	
$j = 0, 1, \dots, \mu - 1$	$(a_1^j, y_{\alpha}^{9i}, a_2^j, x_{\alpha+1}^{9i}), (a_3^j, y_{\alpha}^{9i}, a_4^j, x_{\alpha+1}^{9i}), (a_6^j, y_{\alpha}^{9i}, a_7^j, x_{\alpha+1}^{9i}),$	
$\alpha=0,1,2,3$	$(a_2^j, y_\alpha^{1+9i}, a_6^j, x_{\alpha+1}^{1+9i}) \text{ (missing } (a_2^i, y_\alpha^{1+9i}, a_6^i, x_{\alpha+1}^{1+9i}), \alpha = 0, 3)$	
	$\left[(a_0^j, y_\alpha^{1+9i}, a_1^j, x_{\alpha+1}^{1+9i}), (a_3^j, y_\alpha^{1+9i}, a_4^j, x_{\alpha+1}^{1+9i}), (a_5^j, y_\alpha^{1+9i}, a_7^j, x_{\alpha+1}^{1+9i}), \right]$	
	$(a_4^j, y_\alpha^{2+9i}, a_3^j, x_{\alpha+1}^{2+9i}) \text{ (missing } (a_4^i, y_\alpha^{2+9i}, a_3^i, x_{\alpha+1}^{2+9i}), \alpha = 0, 3)$	
	$\left(a_{0}^{j}, y_{\alpha}^{2+9i}, a_{1}^{j}, x_{\alpha+1}^{2+9i}\right), (a_{2}^{j}, y_{\alpha}^{2+9i}, a_{5}^{j}, x_{\alpha+1}^{2+9i}), (a_{6}^{j}, y_{\alpha}^{2+9i}, a_{7}^{j}, x_{\alpha+1}^{2+9i}), \left(a_{6}^{j}, y_{\alpha}^{2+9i}, a_{7}^{j}, x_{\alpha+1}^{2+9i}\right), a_{1}^{j}$	
	$(a_0^j, y_\alpha^{3+9i}, a_7^j, x_{\alpha+1}^{3+9i}) \text{ (missing } (a_0^i, y_\alpha^{3+9i}, a_7^i, x_{\alpha+1}^{3+9i}), \alpha = 0, 3)$	
	$(a_1^j, y_{\alpha}^{3+9i}, a_2^j, x_{\alpha+1}^{3+9i}), (a_3^j, y_{\alpha}^{3+9i}, a_4^j, x_{\alpha+1}^{3+9i}), (a_5^j, y_{\alpha}^{3+9i}, a_6^j, x_{\alpha+1}^{3+9i}),$	
	$(a_4^j, y_\alpha^{4+9i}, a_3^j, x_{\alpha+1}^{4+9i}) \text{ (missing } (a_4^i, y_\alpha^{4+9i}, a_3^i, x_{\alpha+1}^{4+9i}), \alpha = 0, 3)$	
	$\left[(a_0^j, y_\alpha^{4+9i}, a_1^j, x_{\alpha+1}^{4+9i}), (a_2^j, y_\alpha^{4+9i}, a_5^j, x_{\alpha+1}^{4+9i}), (a_6^j, y_\alpha^{4+9i}, a_7^j, x_{\alpha+1}^{4+9i}), \right]$	
	$(a_0^j, y_\alpha^{5+9i}, a_1^j, x_{\alpha+1}^{5+9i}) \text{ (missing } (a_0^i, y_\alpha^{5+9i}, a_1^i, x_{\alpha+1}^{5+9i}), \alpha = 0, 3)$	
	$(a_2^j, y_{\alpha}^{5+9i}, a_3^j, x_{\alpha+1}^{5+9i}), (a_4^j, y_{\alpha}^{5+9i}, a_5^j, x_{\alpha+1}^{5+9i}), (a_6^j, y_{\alpha}^{5+9i}, a_7^j, x_{\alpha+1}^{5+9i}),$	
	$(a_2^j, y_{\alpha}^{6+9i}, a_3^j, x_{\alpha+1}^{6+9i}) \text{ (missing } (a_2^i, y_{\alpha}^{6+9i}, a_3^i, x_{\alpha+1}^{6+9i}), \alpha = 0, 3)$	
	$(a_0^j, y_{\alpha}^{6+9i}, a_1^j, x_{\alpha+1}^{6+9i}), (a_4^j, y_{\alpha}^{6+9i}, a_5^j, x_{\alpha+1}^{6+9i}), (a_6^j, y_{\alpha}^{6+9i}, a_7^j, x_{\alpha+1}^{6+9i}),$	
	$(a_4^j, y_\alpha^{7+9i}, a_5^j, x_{\alpha+1}^{7+9i}) \text{ (missing } (a_4^i, y_\alpha^{7+9i}, a_5^i, x_{\alpha+1}^{7+9i}), \alpha = 0, 3)$	
	$\left[(a_0^j, y_\alpha^{7+9i}, a_1^j, x_{\alpha+1}^{7+9i}), (a_2^j, y_\alpha^{7+9i}, a_3^j, x_{\alpha+1}^{7+9i}), (a_6^j, y_\alpha^{7+9i}, a_7^j, x_{\alpha+1}^{7+9i}), \right]$	
	$(a_6^j, y_\alpha^{8+9i}, a_7^j, x_{\alpha+1}^{\overline{8+9i}}) \text{ (missing } (a_6^i, y_\alpha^{8+9i}, a_7^i, x_{\alpha+1}^{8+9i}), \alpha = 0, 3)$	
	$\left(a_{0}^{j}, y_{\alpha}^{8+9i}, a_{1}^{j}, x_{\alpha+1}^{8+9i}\right), (a_{2}^{j}, y_{\alpha}^{8+9i}, a_{3}^{j}, x_{\alpha+1}^{8+9i}), (a_{4}^{j}, y_{\alpha}^{8+9i}, a_{5}^{j}, x_{\alpha+1}^{8+9i}).$	

\mathcal{C}_4		
$\mu \ge 2$	$(a_{2\sigma}^j, y_{lpha}^{\gamma}, a_{1+2\sigma}^j, x_{1+lpha}^{\gamma})$	
$j=0,1,\ldots,\mu-1$	missing the following cycles:	
$\gamma = 9\mu, 9\mu + 1, \dots, 8\mu^2 + \mu - 1$		
$\alpha, \sigma = 0, 1, 2, 3$	(a) For $j = 0, 1, \dots, \mu - 2$,	
	$\rho = j + 1, j + 2, \dots, \mu - 1, \beta = 0, 3,$	
	$\tau = 9\mu + 16 \left[j(\mu - 1) - \frac{j(j+1)}{2} + \rho - 1 \right],$	
	$(a_0^j, y_\beta^\tau, a_1^j, x_{1+\beta}^\tau), (a_0^j, y_\beta^{1+\tau}, a_1^j, x_{1+\beta}^{1+\tau}),$	
	$(a_2^j, y_{\beta}^{2+\tau}, a_3^j, x_{1+\beta}^{2+\tau}), (a_2^j, y_{\beta}^{3+\tau}, a_3^j, x_{1+\beta}^{3+\tau}),$	
	$(a_4^j, y_{\beta}^{4+\tau}, a_5^j, x_{1+\beta}^{4+\tau}), (a_4^j, y_{\beta}^{5+\tau}, a_5^j, x_{1+\beta}^{5+\tau}),$	
	$(a_6^j, y_\beta^{6+\tau}, a_7^j, x_{1+\beta}^{6+\tau}), (a_6^j, y_\beta^{7+\tau}, a_7^j, x_{1+\beta}^{7+\tau}),$	
	$(a_{0}^{\rho}, y_{\beta}^{\bar{8}+\tau}, a_{1}^{\rho}, x_{1+\beta}^{\bar{8}+\tau}), (a_{0}^{\rho}, y_{\beta}^{\bar{9}+\tau}, a_{1}^{\rho}, x_{1+\beta}^{\bar{9}+\tau}),$	
	$(a_2^{\rho}, y_{\beta}^{10+\tau}, a_3^{\rho}, x_{1+\beta}^{10+\tau}), (a_2^{\rho}, y_{\beta}^{11+\tau}, a_3^{\rho}, x_{1+\beta}^{11+\tau}),$	
	$(a_4^{\rho}, y_{\beta}^{12+\tau}, a_5^{\rho}, x_{1+\beta}^{12+\tau}), (a_4^{\rho}, y_{\beta}^{13+\tau}, a_5^{\rho}, x_{1+\beta}^{13+\tau}),$	
	$(a_6^{\rho}, y_{\beta}^{\bar{1}4+\tau}, a_7^{\rho}, x_{1+\beta}^{\bar{1}4+\tau}), (a_6^{\rho}, y_{\beta}^{\bar{1}5+\tau}, a_7^{\rho}, x_{1+\beta}^{\bar{1}5+\tau}).$	
	(b) For $j = 0, 1, \dots, \mu - 1$ and $\sigma = 0, 1, 2, 3$,	
	$(a_{2\sigma}^j, y_2^{\delta}, a_{1+2\sigma}^j, x_3^{\delta}).$	

\mathcal{C}_5			
$i = 0, 1, \dots, \mu - 1$	$(a_{2\sigma}^{i}, \infty, a_{1+2\sigma}^{i}, x_{1}^{5+\sigma+9i}), (a_{2\sigma}^{i}, y_{2}^{\delta}, a_{1+2\sigma}^{i}, x_{0}^{5+\sigma+9i}),$		
$\sigma = 0, 1, 2, 3$	$(x_0^{9i}, y_3^{9i}, a_0^i, y_0^{9i}), (x_1^{9i}, y_3^{9i}, a_5^i, y_0^{9i}), (x_0^{1+9i}, y_3^{1+9i}, a_2^i, y_0^{1+9i}),$		
	$(x_1^{1+9i}, y_3^{1+9i}, a_6^i, y_0^{1+9i}), (x_0^{2+9i}, y_3^{2+9i}, a_4^i, y_0^{2+9i}),$		
	$(x_1^{\overline{2}+9i}, y_3^{\overline{2}+9i}, a_3^i, y_0^{\overline{2}+9i}), (x_0^{\overline{3}+9i}, y_3^{\overline{3}+9i}, a_0^i, y_0^{\overline{3}+9i}),$		
	$(x_1^{\overline{3}+9i}, y_3^{\overline{3}+9i}, a_7^i, y_0^{\overline{3}+9i}), (x_0^{\overline{4}+9i}, y_3^{\overline{4}+9i}, a_4^i, y_0^{\overline{4}+9i}),$		
	$(x_1^{\overline{4}+9i}, y_3^{\overline{4}+9i}, a_3^{\overline{i}}, y_0^{\overline{4}+9i}), (x_0^{\overline{5}+9i}, y_3^{\overline{5}+9i}, a_0^{\overline{i}}, y_0^{\overline{5}+9i}),$		
	$(x_1^{5+9i}, y_3^{5+9i}, a_1^i, y_0^{5+9i}), (x_0^{6+9i}, y_3^{6+9i}, a_2^i, y_0^{6+9i}),$		
	$(x_1^{\overline{6}+9i}, y_3^{\overline{6}+9i}, a_3^{\overline{i}}, y_0^{\overline{6}+9i}), (x_0^{\overline{7}+9i}, y_3^{\overline{7}+9i}, a_4^{\overline{i}}, y_0^{\overline{7}+9i}),$		
	$(x_1^{7+9i}, y_3^{7+9i}, a_5^i, y_0^{7+9i}), (x_0^{8+9i}, y_3^{8+9i}, a_6^i, y_0^{8+9i}),$		
	$(x_1^{\hat{8}+9i}, y_3^{\hat{8}+9i}, a_7^i, y_0^{\hat{8}+9i}).$		

	\mathcal{C}_6
$\mu \ge 2$	$(x_0^{\tau+2\sigma}, y_3^{\tau+2\sigma}, a_{2\sigma}^j, y_0^{\tau+2\sigma}),$
$j = 0, 1, \dots, \mu - 2$	$(x_1^{\tau+2\sigma}, y_3^{\tau+2\sigma}, a_{1+2\sigma}^j, y_0^{\tau+2\sigma}),$
$\rho = j + 1, j + 2, \dots, \mu - 1$	$(x_0^{1+\tau+2\sigma}, y_3^{1+\tau+2\sigma}, a_{2\sigma}^j, y_0^{1+\tau+2\sigma}),$
$\tau = 9\mu + 16[j(\mu - 1) -$	$(x_1^{1+\tau+2\sigma}, y_3^{1+\tau+2\sigma}, a_{1+2\sigma}^j, y_0^{1+\tau+2\sigma}),$
$\left[-\frac{j(j+1)}{2}+\rho-1\right]$	$(x_0^{8+\tau+2\sigma}, y_3^{8+\tau+2\sigma}, a_{2\sigma}^j, y_0^{8+\tau+2\sigma}),$
$\sigma = 0, 1, 2, 3$	$(x_1^{8+\tau+2\sigma}, y_3^{8+\tau+2\sigma}, a_{1+2\sigma}^j, y_0^{8+\tau+2\sigma}),$
	$(x_0^{9+\tau+2\sigma}, y_3^{9+\tau+2\sigma}, a_{2\sigma}^j, y_0^{9+\tau+2\sigma}),$
	$(x_1^{9+\tau+2\sigma}, y_3^{9\tau+2\sigma}, a_{1+2\sigma}^j, y_0^{9+\tau+2\sigma}).$