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Abstract
A colouring of a 4-cycle system (V,B) is a surjective mapping φ : V → Γ. The

elements of Γ are colours. If |Γ| = m, we have an m-colouring of (V,B). For every
B ∈ B, let φ(B) = {φ(x)|x ∈ B}. There are seven distinct colouring patterns in
which a 4-cycle can be coloured: type a (××××, monochromatic), type b (×××2,
two-coloured of pattern 3 + 1), type c (× × 22, two-coloured of pattern 2 + 2),
type d (×2 × 2, mixed two-coloured), type e (× × 24, three-coloured of pattern
2 + 1 + 1), type f (×2 ×4, mixed three-coloured), type g (×24♦, four-coloured
or polychromatic).

Let S be a subset of {a, b, c, d, e, f, g}. An m-colouring φ of (V,B) is said of type
S if the type of every 4-cycle of B is in S. A type S colouring is said to be proper
if for every type α ∈ S there is at least one 4-cycle of B having colour type α.

We say that a P (v, 3, 1), (W,P), is embedded in a 4-cycle system of order n,
(V,B), if every path p = [a1, a2, a3] ∈ P occurs in a 4-cycle (a1, a2, a3, x) ∈ B such
that x 6∈ W .

In this paper we consider the following spectrum problem: given an integer m
and a set S ⊆ {b, d, f}, determine the set of integers n such that there exists a 4-
cycle system of order n with a proper m-colouring of type S (note that each colour
class of a such colouration is the point set of a P3-design embedded in the 4-cycle
system).

We give a complete answer to the above problem except when S = {b}. In this
case the problem is completely solved only for m = 2.
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1 Introduction

Let G be a subgraph of Kv, the complete undirected graph on v vertices. A G-design of
Kv is a pair (V,B), where V is the vertex set of Kv and B is an edge-disjoint decomposition
of Kv into copies of the graph G. Usually we say that B is a block of the G-design if
B ∈ B, and B is called the block-set.

A path design P (v, k, 1) [4] is a Pk-design of Kv, where Pk is the simple path with
k − 1 edges (k vertices) [a1, a2, . . . , ak] = {{a1, a2}, {a2, a3}, . . . , {ak−1, ak}}.

M. Tarsi [11] proved that the necessary conditions for the existence of a P (v, k, 1),
v ≥ k (if v > 1) and v(v − 1) ≡ 0 (mod 2(k − 1)), are also sufficient. Therefore a
P (v, 3, 1) exists if and only if v ≡ 0 or 1 (mod 4).

An m-cycle system of order n is a Cm-design of Kn, where Cm is the m-cycle (cycle
of length m) (a1, a2, . . . , am) = {{a1, a2}, {a2, a3}, . . . , {am−1, am}, {a1, am}}.

It is well-known that the spectrum for 4-cycle system is precisely the set of all n ≡ 1
(mod 8) (see for example [5]).

We say that a P (v, 3, 1), (Ω,P), is embedded in a 4-cycle system of order n, (W, C), if
every path p = [a1, a2, a3] ∈ P occurs in a 4-cycle (a1, a2, a3, x) ∈ C such that x 6∈ Ω, see
[9].

Example 1. Let Ω1 = {a0, a1, a2, a3}, W1 = Ω1 ∪ {b0, b1, b2, b3, b4}, P1 = {[a0, a1, a2],
[a0, a3, a1], [a0, a2, a3]}, S1 = {(a0, a1, a2, b0), (a0, a3, a1, b1), (a0, a2, a3, b2),
(a0, b4, b0, b3), (a1, b0, a3, b3), (a2, b1, b0, b2), (a2, b4, b2, b3), (a3, b1, b3, b4), (a1, b4, b1, b2)}. It
is easy to see that (Ω1,P1) is a P (4, 3, 1) embedded in the 4-cycle system (W1,S1) of order
9.

A colouring of a G-design (V,B) is a surjective mapping φ : V → Γ. The elements
of Γ are colours. If |Γ| = m, we have an m-colouring of (V,B). For each c ∈ Γ, the
set φ−1(c) = {x : φ(x) = c} is a colour class. A colouring φ of (V,B) is weak (strong)
if for all B ∈ B, |φ(B)| > 1 (|φ(B)| = k, where k is the number of vertices of the
subgraph G, respectively), where φ(B) = {φ(x)|x ∈ B}. In a weak colouring, no block is
monochromatic (i.e., no block has all its elements of the same colour), while in a strong
colouring, the elements of every block B get |B| distinct colours. There exists an extensive
literature on subject of colourings (for a survey, see [2]). Most of the existing papers
are devoted to the case of weak colourings. However, recently other types of colouring
started to be investigated, mainly in connection with the notion of the upper chromatic
number of a hypergraph [12] (see, e.g., [1], [6], [7]). Most of them satisfy the inequalities
1 < |φ(B)| < k, i.e. are strict colourings in the sense of Voloshin [12] in which the blocks
are both edges and co-edges. A step further is given by Milici, Rosa and Voloshin [8]
where the authors consider some types of colouring of S(2, 3, v) and S(2, 4, v) (K3-designs
and K4-designs in our terminology) in which only specified block colouring patterns are
allowed. In this paper we want to consider strict colouring in the sense of Voloshin of
4-cycle systems in which only specified block colouring patterns are allowed.

There are seven distinct colouring patterns in which a 4-cycle can be coloured: type
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a (× × ××, monochromatic), type b (× × ×2, two-coloured of pattern 3 + 1), type c
(× × 22, two-coloured of pattern 2 + 2), type d (×2 × 2, mixed two-coloured), type e
(×× 24, three-coloured of pattern 2 + 1 + 1), type f (×2 ×4, mixed three-coloured),
type g (×24♦, four-coloured or polychromatic).

Let S be a subset of {a, b, c, d, e, f, g} and let (V,B) be a 4-cycle system. An m-
colouring φ of (V,B) is said of type S if the type of every 4-cycle of B is in S.

A type S colouring is said to be proper if for every type α ∈ S there is at least one
4-cycle of B having colour type α.

Since we are looking for 4-cycle systems having a proper strict colouring in the sense
of Voloshin in which the blocks are both edges and co-edges, it is a, g 6∈ S. There are 31
distinct nonempty subsets S of {b, c, d, e, f}. Then 31 distinct types of strict colourings
of a 4-cycle system are possible. We deal here with some of these types; it is hoped that
the remaining types will be dealt with in a future paper by the author. More precisely
we are looking for proper strict colouring of a 4-cycle system having the property that
each colour class is the point set of a P3-design embedded into the given cycle system [9].
In other words, we consider the following spectrum problem: given an integer m and a
set S ⊆ {b, d, f}, determine the set of integers n such that there exist a 4-cycle system of
order n having an m-colouring of type S. It is clear that a such colouring must contain b.
[Here and in what follows, all braces and commas are omitted for the sake of brevity.] For
types bdf , bf and bd, a complete answer is obtained. The spectrum problem for type b
colouring seems to be the most interesting but also very difficult (at least for the author).
In this paper only the case m = 2 is completely settled. Remark that the analogous
problem for 3-cycle systems (or Steiner triple systems) is also very hard. This problem
has been considered and partially solved by Colbourn, Dinitz and Rosa [1] and Dinitz and
Stinson [3].

2 Colouring of type bdf and bf

It is trivial to see that the necessary condition for the existence of an m-colouring of type
bdf of a 4-cycle system of order n is m ∈ {2, 3, . . . , n+3

4
}. In this section we will prove the

sufficiency.

Lemma 2.1 (D. Sotteau [10]). The complete bipartite graph KX,Y can be decomposed
into edge disjoint cycles of length 2k if and only if (1) |X| = x and |Y | = y are even, (2)
x ≥ k and y ≥ k, and (3) 2k divides xy.

Theorem 2.1 For every n ≡ 1 (mod 8), n ≥ 9, there is a 4-cycle system of order n with
a proper (n+3

4
)-colouring of type bdf .

Proof. Put n = 1 + 8k, k ≥ 1. Let Ωi = {xi
0, x

i
1, x

i
2, x

i
3}, i = 0, 1, . . . , 2k − 1, and

Ω2k = {∞} be the colour classes. Define the following set B of 4-cycles.

(I) For j = 0, 1, . . . , k − 1, put in B the cycles of a proper type bdf 3-coloured 4-cycle
system on point set Ω2k ∪ Ω2j ∪ Ω2j+1:
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(x2j
0 , x2j

1 , x2j
2 , x2j+1

0 ), (x2j
0 , x2j

2 , x2j
3 , x2j+1

1 ), (x2j
0 , x2j

3 , x2j
1 ,∞), (x2j+1

0 , x2j+1
1 , x2j+1

2 , x2j
1 ),

(x2j+1
0 , x2j+1

2 , x2j+1
3 , x2j

3 ), (x2j+1
0 , x2j+1

3 , x2j+1
1 ,∞), (x2j

1 , x2j+1
3 , x2j

2 , x2j+1
1 ),

(x2j
2 ,∞, x2j

3 , x2j+1
2 ), (x2j+1

2 ,∞, x2j+1
3 , x2j

0 )

(II) For j, t = 0, 1, . . . , k − 1, j < t, and α = 0, 1, put in B the cycles:
(x2j+α

0 , x2t
0 , x2j+α

1 , x2t+1
0 ), (x2j+α

2 , x2t
0 , x2j+α

3 , x2t+1
0 ), (x2j+α

0 , x2t
1 , x2j+α

1 , x2t+1
1 ),

(x2j+α
2 , x2t

1 , x2j+α
3 , x2t+1

1 ), (x2j+α
0 , x2t

2 , x2j+α
1 , x2t+1

2 ), (x2j+α
2 , x2t

2 , x2j+α
3 , x2t+1

2 ),
(x2j+α

0 , x2t
3 , x2j+α

1 , x2t+1
3 ), (x2j+α

2 , x2t
3 , x2j+α

3 , x2t+1
3 ).

Let V = ∪2k
i=1Ωi, then (V,B) is the required 2k + 1-coloured 4-cycle system of order

n = 8k + 1. 2

Lemma 2.2 For every n ≡ 1 (mod 8), n ≥ 9, there is a 4-cycle system of order n with
a proper 2-colouring of type bd.

Proof. Put n = 1 + 8k, k ≥ 1. Let Ω1 = ∪k−1
i=0 {xi

0, x
i
1, x

i
2, x

i
3} and Ω2 = {∞} ∪

(∪k−1
i=0 {yi

0, y
i
1, y

i
2, y

i
3}) be the colour classes. Define the following set B of 4-cycles.

(I) For i = 0, 1, . . . , k−1, put in B the cycles (xi
0, x

i
1, x

i
2, y

i
0), (xi

0, x
i
3, x

i
1, y

i
1), (xi

0, x
i
2, x

i
3, y

i
2),

(yi
0, y

i
1, y

i
3, x

i
3), (yi

1, y
i
2,∞, xi

3), (yi
2, y

i
3, y

i
0, x

i
1), (yi

3,∞, yi
1, x

i
2) and

(∞, yi
0, y

i
2, x

i
2).

(II) If k ≥ 2, then for i = 0, 1, . . . , k − 2 and j = i + 1, i + 2, . . . , k − 1 put in B the cycles
(xi

0, x
j
0, x

i
1, y

j
2), (xi

0, x
j
1, x

i
1, y

j
3), (xi

2, x
j
2, x

i
3, y

j
0), (xi

2, x
j
3, x

i
3, y

j
1), (xj

0, x
i
2, x

j
1, y

i
2), (xj

0, x
i
3, x

j
1, y

i
3),

(xj
2, x

i
0, x

j
3, y

i
0), (xj

2, x
i
1, x

j
3, y

i
1), (yi

0, y
j
0, y

i
1, x

j
0), (yi

0, y
j
1, y

i
1, x

j
1),

(yi
2, y

j
2, y

i
3, x

j
2), (yi

2, y
j
3, y

i
3, x

j
3), (yj

0, y
i
2, y

j
1, x

i
0), (yj

0, y
i
3, y

j
1, x

i
1), (yj

2, y
i
0, y

j
3, x

i
2) and

(yj
2, y

i
1, y

j
3, x

i
3).

(III) For i = 0, 1, . . . , k − 1, put in B the cycles (xi
0, y

i
3, x

i
1,∞).

Let V = Ω1 ∪ Ω2, then (V,B) is the required 2-coloured 4-cycle system of order n.
Note that the cycles of colour type b are those given in (I) and (II). 2

Lemma 2.3 If there is a 4-cycle system (W,D) of order n having a proper m-colouring
of type S, S ⊆ {bd, bdf}, then there is a 4-cycle system (V,B) of order n + 8 having a
proper (m + 1)-colouring of type bdf .

Proof. Put n = 1 + 8k, k ≥ 1. Let W = {0, 1, . . . , 8k}. Suppose that the points 1
and 2 have different colours. Put X = {x0, x1, . . . , x7} and V = W ∪ X. Put in B the
cycles of D and the following ones.

(I) The following 4-cycles cover the edges of both KX and KX,{0,1,...,6}: (x0, x1, x3, 6),
(x1, x2, x4, 5), (x2, x3, x5, 1), (x3, x4, x6, 2), (x4, x5, x0, 3), (x5, x6, x1, 4), (x6, x0, x2, 5),
(x0, x3, x7, 0), (x1, x4, x7, 1), (x2, x5, x7, 2), (x3, x6, x7, 3), (x4, x0, x7, 4), (x5, x1, x7, 5),
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(x6, x2, x7, 6), (1, x0, 2, x4), (4, x0, 5, x3), (0, x3, 1, x6), (3, x2, 4, x6),
(0, x2, 6, x5), (2, x1, 3, x5) and (0, x1, 6, x4).

(II) By Lemma 2.1 decompose the complete bipartite graph KX,{7,8,...,2k} into edge disjoint
4-cycles.

Clearly (V,B) is a 4-cycle system of order 9 + 8k. Colour the elements of X with a
new colour. 2

Theorem 2.2 For every n ≡ 1 (mod 8), n ≥ 9, and for every m ∈ {3, 4, . . . , n+3
4
} there

is a 4-cycle system of order n with a proper m-colouring of type bdf .

Proof. Starting from a proper m − coloured 4-cycle system of order 9 and type S,
S ⊆ {bd, bdf}, and using repeatedly Lemmas 2.2 and 2.3, we get the proof. 2

Theorem 2.3 For every n ≡ 1 (mod 8), n ≥ 9, there is a 4-cycle system of order n with
a proper 3-colouring of type bf .

Proof. Put n = 1 + 8k, k ≥ 1. Let Ω1 = {∞}, Ω2 = ∪k−1
i=0 {xi

0, x
i
1, x

i
2, x

i
3} and Ω3 =

∪k−1
i=0 {yi

0, y
i
1, y

i
2, y

i
3} be the colour classes. Let B be the set of 4-cycles constructed using

Lemma 2.2. Remove from B the 4-cycles (yi
0, y

i
1, y

i
3, x

i
3), (yi

1, y
i
2,∞, xi

3), (yi
3,∞, yi

1, x
i
2),

(∞, yi
0, y

i
2, x

i
2), and put on it the following ones (yi

0, y
i
1, y

i
3,∞), (yi

1, x
i
2, y

i
2,∞),

(yi
0, y

i
2, y

i
1, x

i
3), (yi

3, x
i
2,∞, xi

3). Let V = Ω1∪Ω2∪Ω3, then (V,B) is the required 3-coloured
4-cycle system of order n. 2

Theorem 2.4 For every n ≡ 1 (mod 8), n ≥ 9, there is a 4-cycle system of order n with
a proper (n+3

4
)-colouring of type bf .

Proof. Put n = 1 + 8k, k ≥ 1. Let Ωi = {xi
0, x

i
1, x

i
2, x

i
3}, i = 0, 1, . . . , 2k − 1, and

Ω2k = {∞} be the colour classes. Define the set B of 4-cycles by putting on it the cycles
(II) of Theorem 2.1 and the following ones.

For j = 0, 1, . . . , k − 1, put in B the cycles of a proper type bf 3-coloured 4-cycle
system on point set Ω2k ∪ Ω2j ∪ Ω2j+1: (x2j

0 , x2j
1 , x2j

2 , x2j+1
0 ), (x2j

0 , x2j
2 , x2j

3 , x2j+1
2 ),

(x2j
0 , x2j

3 , x2j
1 , x2j+1

3 ), (x2j+1
0 , x2j+1

1 , x2j+1
2 ,∞), (x2j+1

0 , x2j+1
2 , x2j+1

3 , x2j
3 ),

(x2j+1
0 , x2j+1

3 , x2j+1
1 , x2j

1 ), (x2j
0 ,∞, x2j

3 , x2j+1
1 ), (x2j

2 ,∞, x2j
1 , x2j+1

2 ), (x2j+1
3 ,∞, x2j+1

1 , x2j
2 ).

Let V = ∪2k
i=1Ωi, then (V,B) is the required 2k + 1-coloured 4-cycle system of order

n = 8k + 1. 2

Lemma 2.4 Suppose there is a type bf m-coloured 4-cycle system of order n = 1 + 8k,
(W,D), whose colour classes Ωi, i = 1, 2, . . . , m, have the following cardinalities:
(1) If 3 ≤ m ≤ k + 2, then |Ω1| = 1, |Ω2| = |Ω3| = 4k − 4(m − 3), and (if m ≥ 4)
|Ω4| = |Ω5| = . . . = |Ωm| = 8.
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(2) If k + 3 ≤ m ≤ 2k + 1, then |Ω1| = 1, |Ω2| = |Ω3| = . . . = |Ω2m−2k−1| = 4, and (if
m ≤ 2k) |Ω2m−2k| = |Ω2m−2k+1| = . . . = |Ωm| = 8.
Then there is a type bf (m + 1)-coloured 4-cycle system of order 9 + 8k.

Proof. Put W = {0, 1, . . . , 8k}, X = {x0, x1, . . . , x7} and V = W ∪ X. We now
construct a (m + 1)-coloured 4-cycle system of order 9 + 8k, (V,B). Let Ω1 = {6},
0, 2, 4 ∈ Ωt and 1, 3, 5 ∈ Ωt+1, where either t = 2 for odd m or t = m−1 for even m. Then
it is easy to see that it is possible to partition the set {7, 8, . . . , 8k} into no monochromatic
pairs {αj, βj}, j = 1, 2, . . . , 4k − 3.

Define B by putting on it the following 4-cycles:
(a) the cycles of D;
(b) the cycles (I) of Theorem 2.2;
(c) for each pair {αj, βj}, the cycles (xi, αj, x2i+1, βj), i = 0, 1, 2, 3. Colour the elements
of X with a new colour. 2

Remark 1. The above Lemma 2.4 gets 4-cycle systems of order 9 + 8k satisfying the
hypotheses of same Lemma 2.4 (where it is n = 1 + 8(k + 1)). Theorems 2.3 and 2.4 get
4-cycle systems satisfying the hypotheses of Lemma 2.4 (where it is n = 1 + 8k).

Theorem 2.5 For every n ≡ 1 (mod 8), n ≥ 9, and for every m ∈ {3, 4, . . . , n+3
4
} there

is a 4-cycle system of order n with a proper m-colouring of type bf .

Proof. The cases m = 3 and m = n+3
4

are proved by using Theorem 2.3 and Theorem
2.4 respectively.

Starting from the 3-coloured 4-cycle system of order 9 constructed by using Theorem
2.3, a recursive use of Lemma 2.4 gets the proof. 2

3 Colouring of type bd

Let (V,B) be a 4-cycle system of order n, n ≥ 9, having an m-colouring of type bd. Clearly
m ≤ n−1

4
. Let ωi be the cardinality of the colour class Ωi, i = 1, 2, . . . , m. Since Ωi is the

point set of a P3-design embedded in (V,B), ωi ≡ 0 or 1 (mod 4).
By definition {Ωi | i = 1, 2, . . . , m} is a partition of V , then at least one ωi is odd.

W.l.o.g. suppose that ω1 is odd. If there is some other index i ∈ {2, 3, . . . , m} such that ωi

is odd, then the cardinality of the edge set of the complete bipartite graph KΩ1,Ωi
is odd.

But this is impossible because each B ∈ B covers a nonnegative even number of edges of
KΩ1,Ωi

. From now on we will denote by ω1 the only odd integer of {ωi | i = 1, 2, . . . , m}.

Lemma 3.1 If m ≥ n+15
8

then ω1 ≥ 5.

Proof. Let ω1 = 1. Since each cycle has no colour type f , it is ωi ≥ 8 for each
i = 2, 3, . . . , m. 2
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Lemma 3.2 Let ω1 ≥ 5, and let

χ(ω1) =




1 + 9µ + 12µ2 if ω1 = 5 + 12µ
6 + 17µ + 12µ2 if ω1 = 9 + 12µ
13 + 25µ + 12µ2 if ω1 = 13 + 12µ

Then |{i | ωi = 4}| ≤ χ(ω1).

Proof. Suppose ωj = 4 for some j ∈ {2, 3, . . . , m}. Let (Ω1,P1) and (Ωj ,Pj) be the
two P3-designs of order ω1 and 4 respectively, embedded in (V,B). Put Ω1 = {1, 2, . . . , ω1},
Ωj = {a0, a1, a2, a3}, Pj = {[a0, a2, a1], [a0, a3, a2], [a0, a1, a3]},
F = {(a0, a2, a1, x), (a0, a3, a2, y), (a0, a1, a3, z)} ⊆ B.

Let D(Ωj) = {B1, B2, . . . , Bθ} be the set of 4-cycles B of B meeting both Ωj and Ω1.
Clearly it is B ⊆ Ωj ∪ Ω1 for every B ∈ D(Ωj).

Let M be the 4 × θ array on symbol set D(Ωj) (with rows indexed by the elements
of Ωj and columns indexed by the elements of Ω1) defined by M(ai, α) = Bσ if and only
if {ai, α} is an edge of Bσ. The inclusion F ⊆ D(Ωj) follows easily by the fact that the
cardinality of the edge set of the complete bipartite graph KΩ1,{ai} is odd, i = 0, 1, 2, 3,
and each 4-cycle B 6∈ F covers a nonnegative even number of edges of KΩ1,{ai}.

Put B1 = (a0, a2, a1, 1), B2 = (a0, a3, a2, 2), B3 = (a0, a1, a3, 3). Then M(a0, i) =
M(ai, i) = Bi, i = 1, 2, 3. For β = 1, 2 let Dβ(Ωj) denote the set of Bσ ∈ D(Ωj) such that
|Bσ ∩ Ωj | = β}. Each Bσ ∈ D2(Ωj) gets a 2 × 2 subsquare of M with all entries filled by
the same symbol Bσ. Thus the number of entries of M containing a symbol of D2(Ωj) is
a multiple of four. Then 4ω1 = 6 + 2|D1(Ωj)| + 4|D2(Ωj)| and |D1(Ωj)| must be odd.

Let |D1(Ωj)| = 1 and suppose D1(Ωj) = {B4 = (α1, α3, α2, at)}, t ∈ {0, 1, 2, 3} and
α1, α2, α3 ∈ {1, 2, . . . , ω1}. It follows M(at, α1) = M(at, α2) = B4, α1, α2 ≥ 4, and the
remaining cells of columns α1 and α2 are filled by a symbol of D2(Ωj). Since this is
impossible, |D1(Ωj)| ≥ 3.

By repeating this argument for each colour class Ωj whose cardinality is four, we obtain
|{i | ωi = 4}| ≤ 1

3
|P1| = χ(ω1). 2

The upper bound for the number of colour classes is found in next theorem.

Theorem 3.1 Let n ≡ 1 (mod 8), n ≥ 9, and let

ω(n) =




5 + 12µ if 9 + 16µ + 48µ2 ≤ n ≤ 9 + 48µ + 48µ2

9 + 12µ if 17 + 48µ + 48µ2 ≤ n ≤ 33 + 80µ + 48µ2

13 + 12µ if 41 + 80µ + 48µ2 ≤ n ≤ 65 + 112µ + 48µ2

Then m ≤ 1 + n−ω(n)
4

.

Proof. For m < n+15
8

the proof is trivial. Suppose m ≥ n+15
8

. By Lemma 3.1 it is
ω1 ≥ 5.

If ω1 ≥ ω(n) then m ≤ 1 + n−ω1

4
≤ 1 + n−ω(n)

4
.
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Let ω1 < ω(n). Then, by Lemma 3.2

m ≤ 1 + γ +
n − ω1 − 4γ

8
≤ 1 + χ(ω1) +

n − ω1 − 4χ(ω1)

8
,

where γ = |{i | ωi = 4}|.
To complete the proof it is sufficient to prove that

n ≥ 4χ(ω1) − ω1 + 2ω(n) (1)

We prove (1) only for 9+16µ+48µ2 ≤ n ≤ 9+48µ+48µ2, leaving to the reader to check the
remaining two cases. For µ = 0, (1) is trivial. Let µ ≥ 1. If ω1 = 5+12ρ then ρ ≤ µ−1 and
thus it is n ≥ 9+16µ+48µ2 ≥ 4(1+9ρ+12ρ2)−(5+12ρ)+2(5+12µ) = 4χ(ω1)−ω1+2ω(n).
Similarly it is possible to check (1) for ω1 ≡ 9 or 13 (mod 12). 2

In order to prove that for every m such that 2 ≤ m ≤ 1+ n−ω(n)
4

, there exists a 4-cycle
system (V,B) having an m-colouring of of type bd, we need to construct some classes of
path designs P (ω1, 3, 1), ω1 ≡ 1 (mod 4), decomposable into the special configurations.

Let (Ω1,P1) be a P (ω1, 3, 1) and let Pi = [xi
0, x

i
1, x

i
2] ∈ P1, i = 1, 2, 3. The set

{P1, P2, P3} is said to be a configuration of type 1 if there are three distinct elements γ0,
γ1, γ2 ∈ Ω1 such that x1

0 = x2
0 = γ0, x3

0 = x1
2 = γ1 and x2

2 = x3
2 = γ2. We will denote by

L1(γ0, γ1, γ2) a configuration of type 1 whose paths have endpoints γ0, γ1, γ2.
Note that both a bowtie and a 6-cycle will provide a type 1 configuration.
Let γi, i = 0, 1, . . . , 7 be eight mutually distinct elements of Ω1 and let L1(γ0, γ1, γ2),

L1(γ3, γ4, γ5) and L1(γ6, γ4, γ7) be three configurations of type 1. The configuration
L2(γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7) = L1(γ0, γ1, γ2)∪L1(γ3, γ4, γ5)∪L1(γ6, γ4, γ7) is said to be a
configuration of type 2.

We say that a (Ω1,P1) is L1-decomposable if either the path set P1 (if ω1 ≡ 1 or 9
(mod 12)), or the path set P1 from which two paths having the same endpoints have been
deleted (if ω1 ≡ 5 (mod 12)), is decomposable into configurations of type 1.

Example 2. Let Ω1 = {0, 1, . . . , 4} and let L1(0, 2, 4) = {[0, 1, 2], [0, 3, 4], [2, 0, 4]}.
Put P1 = L1 ∪ {[3, 1, 4], [3, 2, 4]}. Then (Ω1,P1) is L1-decomposable.

Example 3. Let Ω1 = {0, 1, . . . , 8}. A decomposition of P1 into 6 configurations of
type 1 is the following
L1(1, 3, 7) = {[1, 2, 3], [1, 4, 7], [3, 1, 7]}, L1(4, 8, 6) = {[4, 3, 8], [4, 5, 6], [8, 4, 6]},
L1(0, 8, 2) = {[0, 7, 8], [0, 4, 2], [8, 0, 2]}, L1(3, 0, 7) = {[3, 6, 0], [3, 5, 7], [0, 3, 7]},
L1(1, 8, 5) = {[1, 6, 8], [1, 0, 5], [8, 1, 5]}, L1(2, 8, 6) = {[2, 5, 8], [2, 7, 6], [8, 2, 6]}.
Note that L1(1, 3, 7)∪L1(4, 8, 6)∪L1(0, 8, 2), and L1(3, 0, 7)∪L1(1, 8, 5)∪L1(2, 8, 6)} are
two configurations of type 2.

Example 4. Let Ω1 = {0, 1, . . . , 12}. A decomposition of P1 into 13 configurations
of type 1 is the following
L1(0, 4, 7) = {[0, 1, 4], [0, 5, 7], [4, 0, 7]},
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L1(1, 5, 6) = {[1, 2, 5], [1, 8, 6], [5, 1, 6]},
L1(2, 6, 9) = {[2, 3, 6], [2, 7, 9], [6, 2, 9]},
L1(6, 10, 0) = {[6, 7, 10], [6, 11, 0], [10, 6, 0]},
L1(4, 8, 9) = {[4, 5, 8], [4, 11, 9], [8, 4, 9]},
L1(5, 9, 12) = {[5, 6, 9], [5, 10, 12], [9, 5, 12]},
L1(9, 0, 3) = {[9, 10, 0], [9, 1, 3], [0, 9, 3]},
L1(7, 11, 12) = {[7, 8, 11], [7, 1, 12], [11, 7, 12]},
L1(8, 12, 2) = {[8, 9, 12], [8, 0, 2], [12, 8, 2]},
L1(12, 3, 6) = {[12, 0, 3], [12, 4, 6], [3, 12, 6]},
L1(10, 1, 2) = {[10, 11, 1], [10, 4, 2], [1, 10, 2]},
L1(11, 2, 5) = {[11, 12, 2], [11, 3, 5], [2, 11, 5]},
L1(3, 7, 10) = {[3, 4, 7], [3, 8, 10], [7, 3, 10]}.
Note that the first 12 configurations of type 1 get 4 mutually disjoint type 2 configurations.

In order to prove Theorem 3.3 we need to construct L1-decomposable path designs
having a sufficient number of disjoint decomposition of type 2 as specified by the following
theorem.

Theorem 3.2 Let ω1 ≥ 5 and let

τ(ω1) =




−1 + 2µ + 3µ2 if ω1 = 1 + 12µ
4µ + 3µ2 if ω1 = 5 + 12µ
2 + 4µ + 3µ2 if ω1 = 9 + 12µ

Then for each γ, 0 ≤ γ ≤ τ(ω1), there is a L1-decomposable P (ω1, 3, 1) having γ mutually
disjoint configurations of type 2.

Proof. Since every configuration of type 2 is decomposable into 3 configurations of
type 1, then it is sufficient to prove the theorem for γ = τ(ω1).

Suppose ω1 = 1 + 12µ, µ ≥ 1. For µ = 1 the proof follows by Example 4. Let µ ≥ 2.
It is sufficient to prove that the existence of a L1-decomposable P (ω1, 3, 1), (Ω1,P1), con-
taining τ(ω1) disjoint type 2 configurations implies the one of a L1-decomposable P (ω1 +
12, 3, 1) with τ(ω1) + 5 + 6µ disjoint type 2 configurations. Put Ω1 = {α0, α1, . . . , α12µ}.
Let (Γ,Q) be a copy of the L1-decomposable P (13, 3, 1) given in Example 4 based on
point set Γ = {α12µ} ∪ {1, 2, . . . , 12}. We emphasize that the 4 disjoint configurations of
type 2 of (Γ,Q) do not contain L1(3, 7, 10) = {[3, 4, 7], [3, 8, 10], [7, 3, 10]}.

Now we construct the required P (ω1 + 12, 3, 1), (Ω1 ∪ Γ,P). Put in P the paths of
P1 ∪Q and the following ones.

(I) For i = 0, 1, . . . , 3µ − 1 put in P the paths of following type 2 configurations:
Li

2(1, 2, 3, 5, 6, 7, 8, 9) = {[1, α4i, 2], [1, α4i+1, 3], [2, α4i+2, 3]} ∪
{[5, α4i, 6], [5, α4i+2, 7], [6, α4i+3, 7]} ∪ {[8, α4i, 7], [8, α4i+2, 9], [7, α4i+1, 9]},
Li

2(3, 4, 5, 9, 10, 11, 12, 1) = {[3, α4i, 4], [3, α4i+3, 5], [4, α4i+1, 5]} ∪
{[9, α4i, 10], [9, α4i+3, 11], [10, α4i+1, 11]} ∪ {[12, α4i, 11], [12, α4i+3, 1], [11, α4i+2, 1]}.
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(II) For i = 0, 1, . . . , 3µ − 1 put in P the paths of following type 1 configurations:
Li

1(2, 4, 6) = {[2, α4i+3, 4], [2, α4i+1, 6], [4, α4i+2, 6]},
Li

1(8, 10, 12) = {[8, α4i+3, 10], [8, α4i+1, 12], [10, α4i+2, 12]}.
Use L1(3, 7, 10) = {[3, 4, 7], [3, 8, 10], [7, 3, 10]}, L0

1(2, 4, 6) and L0
1(8, 10, 12) to form a

further configuration of type 2.
It is easy to see that at least τ(ω1) + 4 + 2(3µ) + 1 disjoint configurations of type 2

appear in P.
By similar arguments it is possible to prove the theorem for ω1 = 5 + 12µ, 9 + 12µ

(note that cases ω1 = 5 and ω1 = 9 are given in Example 2 and Example 3 respectively).
2

Remark 2. Let (Ω1,P1) be the L1-decomposable P (ω1, 3, 1) constructed using Theorem
3.2 with ω1 = 5+12µ. . Then P1 contains the block set Q of a P(5,3,1) isomorphic to the
one given in Example 2. Moreover P1 −Q is decomposable into configurations of type 1.

Theorem 3.3 Let m̄ = 1 + n−ω(n)
4

, n ≡ 1 (mod 8), n ≥ 9, where ω(n) is defined as in
Theorem 3.1. Then there is a 4-cycle system of order n having a proper m̄-colouring of
type bd.

Proof. Suppose
9 + 16µ + 48µ2 ≤ n ≤ 9 + 48µ + 48µ2 (2)

Put ω1 = ω(n) = 5 + 12µ and λ = 1
3

[ω1(ω1−1)
4

− 2
]

= 1 + 9µ + 12µ2. By (2) it is

1 + µ + 12µ2 ≤ n − ω1

4
≤ 1 + 9µ + 12µ2 (3)

and

0 ≤ λ − n − ω1

4
≤ 8µ (4)

It is easy to see that ρ = λ − n−ω1

4
is even. Then 0 ≤ ρ

2
≤ 4µ < τ(5 + 12µ). Using

Theorem 3.2 it is possible to construct a L1-decomposable P (ω1, 3, 1), (Ω1,P1), containing
ρ
2

configurations of type 2, say Li
2 i = 1, 2, . . . ρ

2
.

Let δ = λ − 3ρ
2

= n−ω1−2ρ
4

. Denote by Lj
1 j = 1, 2, . . . , δ, the type 1 configurations

contained in (Ω1,P1) not occuring in Li
2 for some i ∈ {1, 2, . . . ρ

2
}.

Let (Γ,Q) be the P (5, 3, 1) embedded in (Ω1,P1). Suppose that L1
1 ⊆ Q (see above

Remark 2).
Put Ω1 = {α0, α1, . . . , α4+12µ}, Ai = {ai

0, a
i
1, a

i
2, a

i
3}, i = 1, 2, . . . , n−ω1

4
.

Now we construct a 4-cycle system (V,B) of order n having a m̄-colouring of type bd.

Let V = Ω1 ∪
(∪

n−ω1
4

i=1 Ai

)
. Let B be the following set of 4-cycles.

(I) Let Γ = {α0, α1, α2, α3, α4}. Put in B the 4-cycles:
(α1, α0, α2, a

1
2), (α1, α3, α4, a

1
3), (α2, α1, α4, a

1
1), (α3, α0, α4, a

1
0), (α3, α2, α4, a

1
2),

(a1
0, a

1
2, a

1
1, α1), (a1

0, a
1
3, a

1
2, α0), (a1

0, a
1
1, a

1
3, α2) and (α0, a

1
3, α3, a

1
1).
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If n = 9 (µ = 0) then the proof is completed. If µ ≥ 1 then using Lemma 2.1 decompose
the complete bipartite graph KΩ1−Γ,A1 into edge disjoint 4-cycles and put them in B.
Moreover put in B the following ones.

(II). Let j ∈ {2, 3, . . . , δ}. We can suppose that Lj
1 = {[y0, y3, y1], [y0, y4, y2], [y1, y5, y2]},

where y0, y1, . . . , y5 are elements of Ω1 such that y0 6= y1 6= y2 6= y0 and y3 6= y4 6= y5 6= y3.
Put in B the 4-cycles (y0, y3, y1, a

j
3), (y0, y4, y2, a

j
2), (y1, y5, y2, a

j
1), (aj

0, a
j
2, a

j
1, y0),

(aj
0, a

j
3, a

j
2, y1) and (aj

0, a
j
1, a

j
3, y2).

Decompose the complete bipartite graph KΩ1−{y0,y1,y2},Aj
into edge disjoint 4-cycles

and put them in B.

(III). Let i ∈ {1 + δ, 2 + δ, . . . , ρ
2

+ δ}. We can suppose that

Li−δ
2 = {[y0, y8, y1], [y0, y9, y2], [y1, y10, y2]} ∪ {[y3, y11, y4], [y3, y12, y5], [y4, y13, y5]} ∪

{[y6, y14, y4], [y6, y15, y7], [y4, y16, y7]}, where y0, y1, . . . , y16 are elements of Ω1 such that
|{y0, y1, . . . , y7}| = 8.

Put in B the 4-cycles (y0, y8, y1, a
i
3), (y0, y9, y2, a

i
2), (y1, y10, y2, a

i
1), (y3, y11, y4, a

i
1),

(y3, y12, y5, a
i
0), (y4, y13, y5, a

i
2), (y6, y14, y4, a

i
0), (y6, y15, y7, a

i
2), (y4, y16, y7, a

i
3),

(ai
0, a

i
2, a

i
1, y0), (ai

0, a
i
3, a

i
2, y1), (ai

0, a
i
1, a

i
3, y2), (ai

2, y3, a
i
3, ȳ), (ai

1, y5, a
i
3, y6), (ai

0, y7, a
i
1, ȳ),

where ȳ ∈ Ω1 and ȳ 6= yi for i = 0, 1, . . . , 7.
Decompose the complete bipartite graph KΩ1−{ȳ,y0,y1,...,y7},Ai

into edge disjoint 4-cycles
and put them in B.

(IV). Decompose the complete bipartite graph KAi,Aj
, i 6= j, into edge disjoint 4-cycles

and put them in B.

It is easy to see that the above constructed (V,B) is a 4-cycle system of order n having
a proper m̄-colouring of type bd (the colour classes are Ω1, A1, A2, . . . , An−ω1

4
).

Similarly it is possible to prove the theorem in the remaining cases 17 + 48µ+ 48µ2 ≤
n ≤ 33 + 80µ + 48µ2 and 33 + 80µ + 48µ2 ≤ n ≤ 65 + 112µ + 48µ2. 2

Theorem 3.4 For every n ≡ 1 (mod 8), n ≥ 9, and for every m ∈ {2, 3, . . . , 1 + n−ω(n)
4

}
there is a 4-cycle system of order n with a proper m-colouring of type bd.

Proof. The cases m = 2 and m = 1 + n−ω(n)
4

are proved by Lemma 2.2 and Theorem
3.3 respectively. As in Theorem 2.2 it is possible to prove that the existence of a 4-cycle
system of order n having an m-colouring of type bd, implies the one of a 4-cycle system
of order n + 8 having an (m + 1)-colouring of type bd. 2

4 2-Colouring of type b

In this section we deal with the spectrum problem for 4-cycle systems having a 2-colouring
of type b. This problem is equivalent to find a 4-cycle system (V,B) having two P3-designs
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(Ωi,Pi), i = 1, 2, embedded on it and such that each 4-cycle of B contains exactly one
path of P1 ∪ P2, i.e. |B| = |P1| + |P2|.

Theorem 4.1 Let (V,B) be a 4-cycle system of order n having a 2-colouring of type b,
and let Ωi, |Ωi| = ωi i = 1, 2, be the two colour classes. Then either
(1) ω1 = 21 + 52µ + 32µ2 and ω2 = 28 + 60µ + 32µ2, µ ≥ 0, or
(2) ω1 = 4µ + 32µ2 and ω2 = 1 + 12µ + 32µ2, µ ≥ 1.

Proof. Let (Ωi,Pi), i = 1, 2, be the two P3-designs embedded in (V,B). By |B| =
|P1| + |P2| it is

(ω1 − ω2)
2 − (ω1 + ω2) = 0. (5)

By (5), ω1 6= ω2. Suppose ω1 < ω2 and put t = ω2−ω1. Since t2 = ω2 +ω1, then ω1 = t2−t
2

and ω2 = t2+t
2

. So we obtain t2 − 1 ≡ 0 (mod 8), t2−t
2

≡ 0 or 1 (mod 4) and t2+t
2

≡ 0 or 1
(mod 4). It follows that t ≡ 1 or 7 (mod 8). Putting either t = 1 + 8µ or t = 7 + 8µ we
complete the proof. 2

Theorem 4.2 For each nonnegative integer µ there is a 4-cycle system of order n̄ =
49 + 112µ + 64µ2 having a 2-colouring of type b and colour classes Ω1, Ω2 of cardinality
ω1 = 21 + 52µ + 32µ2, ω2 = 28 + 60µ + 32µ2 respectively.

Proof. Let n = n̄ − 8(1 + µ), δ = 4 + 13µ + 8µ2. Put Xi = {xi
0, x

i
1, x

i
2, x

i
3}, Yi =

{yi
0, y

i
1, y

i
2, y

i
3, }, Aj = {aj

0, a
j
1, . . . , a

j
7}, X = ∪δ

i=0Xi (|X| = ω2 − 8(1 + µ)), Y = ∪δ
i=0Yi,

Ω1 = {∞} ∪ Y , A = ∪µ
j=0Aj and Ω2 = X ∪ A. Let (W,D), W = Ω1 ∪ X, be the 4-cycle

system of order n having a 2-colouring of type bd constructed by using Lemma 2.2. Let
D1 = {(xi

0, y
i
3, x

i
1,∞) | i = 0, 1, . . . , δ} be the set of cycles of D having colour type bd. Let

V = Ω1 ∪Ω2. Our aim is to produce a 4-cycle system of order n̄ on vertex set V , having a
2-colouring of type b with colour classes Ω1 and Ω2. To do this at first we embed (W,D)
in a 4-cycle system (V,D ∪ C), then we replace the cycles whose colour type is not b with
type b cycles covering the same edge-set of the previous ones.

For i = 1, 2, . . . , 9 let Ci be the cycle-set given in Appendix 1. Put C = ∪9
i=1Ci. In

order to prove that (V,D ∪ C) is a 4-cycle system it is sufficient to verify that the cycles
in C cover the edges of KA ∪ KA,{∞}∪X∪Y . Clearly |C1| = 14(µ + 1), |C2| = 16µ(µ + 1),
|C3| = 30(µ + 1) + 8(µ + 1)2 + 40µ(µ + 1), |C4| = 16(2µ + 2)(µ + 1), |C5| = 5(µ + 1),
|C6| = 32(µ + 1)µ2 + 24µ(µ + 1), |C7| = |C6|, |C8| = 64µ(µ + 1)2 and |C9| = 8µ(µ + 1). It
follows that C covers the same number of edges of KA ∪KA,{∞}∪X∪Y . Then it is sufficient
to verify that every edge of KA ∪ KA,{∞}∪X∪Y is covered by some cycle in C. In the
following we show how to check this:
– for i = 0, 1, . . . , µ, the edges of KAi

are covered by cycles in C1;
– for i = 0, 1, . . . , µ, the edges of KAi,{∞} are covered by cycles in C1;
– if µ ≥ 1, then for i = 0, 1, . . . , µ−1, j = i+1, i+2, . . . , µ the edges of KAi,Aj

are covered
by cycles in C2;
– for i = 0, 1, . . . , 3µ + 2, the edges of KA,Yi

are covered by cycles in C1 ∪ C3;
– for i = 3µ + 3, 3µ + 4, . . . , 5µ + 4, the edges of KA,Yi

are covered by cycles in C4;
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– for i = 5µ+5, 5µ+6, . . . , δ, the edges of KA,Yi
are covered by cycles in C2 ∪C6 ∪C7 ∪C8;

– for i = 0, 1, . . . , 5µ + 4, the edges of KA,Xi
are covered by cycles in C3 ∪ C4 ∪ C5;

– for i = 5µ+5, 5µ+6, . . . , δ, the edges of KA,Xi
are covered by cycles in C6 ∪C7 ∪C8 ∪C9.

Remark that the colour classes are Ω1 and Ω2. Then the cycles of C5∪C9 are monochro-
matic whereas the ones of C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 ∪ C7 ∪ C8 are of colour type b. Let B1 be
the set of cycles, of colour type b, given in Appendix 1. It is easy to verify that B1 and
C5 ∪ C9 ∪ D1 cover the same edges.

Put B = (D −D1) ∪ (C − (C5 ∪ C9)) ∪ B1. Then (V,B) is the required 4-cycle system
of order n̄ having a 2-colouring of type b. 2

Theorem 4.3 For each µ ≥ 1 there is a 4-cycle system of order n̄ = 1 + 16µ + 64µ2

having a 2-colouring of type b and colour classes Ω1, Ω2 of cardinality ω1 = 4µ + 32µ2,
ω2 = 1 + 12µ + 32µ2 respectively.

Proof. Let n = n̄−8µ, δ = 8µ2 +µ−1. Put Xi = {xi
0, x

i
1, x

i
2, x

i
3}, Yi = {yi

0, y
i
1, y

i
2, y

i
3},

Aj = {aj
0, a

j
1, . . . , a

j
7}, Ω1 = ∪δ

i=0Xi, Y = ∪δ
i=0Yi, A = ∪µ−1

j=0Aj and Ω2 = {∞} ∪ Y ∪ A.
Let (I), (II) and (III) be the cycle-sets constructed in Lemma 2.2. Change yi

0 with
∞ in cycles of (I) and (III) and leave unchanged those of (II). Then we obtain a 4-
cycle system of order n (W,D), W = Ω1 ∪ Y ∪ {∞}, having a 2-colouring of type bd,
with colour classes Ω1 and Y ∪ {∞}, and such that the set of cycles of colour type bd is
D1 = {(xi

0, y
i
3, x

i
1, y

i
0) | i = 0, 1, . . . , δ}.

Let V = Ω1 ∪Ω2. For i = 1, 2, . . . , 6 let Ci be the cycle-set given in Appendix 2 (where
the suffices of x and y are (mod 4), and the suffices of a are (mod 8)).

Put C = ∪6
i=1Ci and B = C ∪ (D − D1). In order to prove that (V,B) is the required

4-cycle system of order n̄ having a 2-colouring of type b, it is sufficient to verify that the
cycles in C cover the edges of KA ∪ KA,{∞}∪X∪Y and D1.

Clearly |C1| = 14µ, |C2| = 16µ(µ − 1), |C3| = 9(4µ2 − 2µ) + 108µ2, |C4| = 16µ(8µ2 −
8µ)−16µ(µ−1)−4µ, |C5| = 24µ and |C6| = 16µ(µ−1). It follows that C covers the same
number of edges of D1 and KA ∪ KA,{∞}∪X∪Y . Then it is sufficient to verify that every
edge of D1 and KA ∪KA,{∞}∪X∪Y is covered by some cycle in C. In the following we show
how to check this:
– for i = 0, 1, . . . , µ − 1, the edges of KAi

are covered by cycles in C1;
– if µ ≥ 2, then for i = 0, 1, . . . , µ − 2, j = i + 1, i + 2, . . . , µ − 1 the edges of KAi,Aj

are
covered by cycles in C2;
– for i = 0, 1, . . . , µ − 1, the edges of KAi,{∞} are covered by cycles in C5;
– for i = 0, 1, . . . , 9µ − 1, the edges of KA,Xi

are covered by cycles in C1 ∪ C3 ∪ C5;
– for i = 9µ, 9µ + 1, . . . , δ, the edges of KA,Xi

are covered by cycles in C1 ∪ C2 ∪ C4;
– for i = 0, 1, . . . , 9µ − 1, the edges of KA,Yi

are covered by cycles in C3 ∪ C5;
– for i = 9µ, 9µ + 1, . . . , δ, the edges of KA,Yi

are covered by cycles in C4 ∪ C5 ∪ C6;
– the edges of D1 are covered by cycles in C5 ∪ C6. 2
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3, x

τ+10
1 ),

− i(i+1)
2

+ j − 1
]

(aj
2, a

i
6, a

j
3, x

τ+11
0 ), (aj

2, a
i
7, a

j
3, x

τ+11
1 ), (aj

4, a
i
0, a

j
5, x

τ+12
0 ),

σ = 0, 1, 2, 3 (aj
4, a

i
1, a

j
5, x

τ+12
1 ), (aj

4, a
i
4, a

j
5, x

τ+13
0 ), (aj

4, a
i
5, a

j
5, x

τ+13
1 ),

(aj
6, a

i
0, a

j
7, x

τ+14
0 ), (aj

6, a
i
1, a

j
7, x

τ+14
1 ), (aj

6, a
i
4, a

j
7, x

τ+15
0 ),

(aj
6, a

i
5, a

j
7, x

τ+15
1 ).

C3

i = 0, 1, . . . , µ − 1 (aj
0, y

9i
α , aj

5, x
9i
α+1) (missing (ai

0, y
9i
α , ai

5, x
9i
α+1), α = 0, 3)

j = 0, 1, . . . , µ − 1 (aj
1, y

9i
α , aj

2, x
9i
α+1), (aj

3, y
9i
α , aj

4, x
9i
α+1), (aj

6, y
9i
α , aj

7, x
9i
α+1),

α = 0, 1, 2, 3 (aj
2, y

1+9i
α , aj

6, x
1+9i
α+1 ) (missing (ai

2, y
1+9i
α , ai

6, x
1+9i
α+1 ), α = 0, 3)

(aj
0, y

1+9i
α , aj

1, x
1+9i
α+1 ), (aj

3, y
1+9i
α , aj

4, x
1+9i
α+1 ), (aj

5, y
1+9i
α , aj

7, x
1+9i
α+1 ),

(aj
4, y

2+9i
α , aj

3, x
2+9i
α+1 ) (missing (ai

4, y
2+9i
α , ai

3, x
2+9i
α+1 ), α = 0, 3)

(aj
0, y

2+9i
α , aj

1, x
2+9i
α+1 ), (aj

2, y
2+9i
α , aj

5, x
2+9i
α+1 ), (aj

6, y
2+9i
α , aj

7, x
2+9i
α+1 ),

(aj
0, y

3+9i
α , aj

7, x
3+9i
α+1 ) (missing (ai

0, y
3+9i
α , ai

7, x
3+9i
α+1 ), α = 0, 3)

(aj
1, y

3+9i
α , aj

2, x
3+9i
α+1 ), (aj

3, y
3+9i
α , aj

4, x
3+9i
α+1 ), (aj

5, y
3+9i
α , aj

6, x
3+9i
α+1 ),

(aj
4, y

4+9i
α , aj

3, x
4+9i
α+1 ) (missing (ai

4, y
4+9i
α , ai

3, x
4+9i
α+1 ), α = 0, 3)

(aj
0, y

4+9i
α , aj

1, x
4+9i
α+1 ), (aj

2, y
4+9i
α , aj

5, x
4+9i
α+1 ), (aj

6, y
4+9i
α , aj

7, x
4+9i
α+1 ),

(aj
0, y

5+9i
α , aj

1, x
5+9i
α+1 ) (missing (ai

0, y
5+9i
α , ai

1, x
5+9i
α+1 ), α = 0, 3)

(aj
2, y

5+9i
α , aj

3, x
5+9i
α+1 ), (aj

4, y
5+9i
α , aj

5, x
5+9i
α+1 ), (aj

6, y
5+9i
α , aj

7, x
5+9i
α+1 ),

(aj
2, y

6+9i
α , aj

3, x
6+9i
α+1 ) (missing (ai

2, y
6+9i
α , ai

3, x
6+9i
α+1 ), α = 0, 3)

(aj
0, y

6+9i
α , aj

1, x
6+9i
α+1 ), (aj

4, y
6+9i
α , aj

5, x
6+9i
α+1 ), (aj

6, y
6+9i
α , aj

7, x
6+9i
α+1 ),

(aj
4, y

7+9i
α , aj

5, x
7+9i
α+1 ) (missing (ai

4, y
7+9i
α , ai

5, x
7+9i
α+1 ), α = 0, 3)

(aj
0, y

7+9i
α , aj

1, x
7+9i
α+1 ), (aj

2, y
7+9i
α , aj

3, x
7+9i
α+1 ), (aj

6, y
7+9i
α , aj

7, x
7+9i
α+1 ),

(aj
6, y

8+9i
α , aj

7, x
8+9i
α+1 ) (missing (ai

6, y
8+9i
α , ai

7, x
8+9i
α+1 ), α = 0, 3)

(aj
0, y

8+9i
α , aj

1, x
8+9i
α+1 ), (aj

2, y
8+9i
α , aj

3, x
8+9i
α+1 ), (aj

4, y
8+9i
α , aj

5, x
8+9i
α+1 ).
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C4

µ ≥ 2 (aj
2σ, yγ

α, aj
1+2σ, x

γ
1+α)

j = 0, 1, . . . , µ − 1 missing the following cycles:
γ = 9µ, 9µ + 1, . . . , 8µ2 + µ − 1
α, σ = 0, 1, 2, 3 (a) For j = 0, 1, . . . , µ − 2,

ρ = j + 1, j + 2, . . . , µ − 1, β = 0, 3,

τ = 9µ + 16
[
j(µ − 1) − j(j+1)

2
+ ρ − 1

]
,

(aj
0, y

τ
β, a

j
1, x

τ
1+β), (aj

0, y
1+τ
β , aj

1, x
1+τ
1+β),

(aj
2, y

2+τ
β , aj

3, x
2+τ
1+β), (aj

2, y
3+τ
β , aj

3, x
3+τ
1+β),

(aj
4, y

4+τ
β , aj

5, x
4+τ
1+β), (aj

4, y
5+τ
β , aj

5, x
5+τ
1+β),

(aj
6, y

6+τ
β , aj

7, x
6+τ
1+β), (aj

6, y
7+τ
β , aj

7, x
7+τ
1+β),

(aρ
0, y

8+τ
β , aρ

1, x
8+τ
1+β), (aρ

0, y
9+τ
β , aρ

1, x
9+τ
1+β),

(aρ
2, y

10+τ
β , aρ

3, x
10+τ
1+β ), (aρ

2, y
11+τ
β , aρ

3, x
11+τ
1+β ),

(aρ
4, y

12+τ
β , aρ

5, x
12+τ
1+β ), (aρ

4, y
13+τ
β , aρ

5, x
13+τ
1+β ),

(aρ
6, y

14+τ
β , aρ

7, x
14+τ
1+β ), (aρ

6, y
15+τ
β , aρ

7, x
15+τ
1+β ).

(b) For j = 0, 1, . . . , µ − 1 and σ = 0, 1, 2, 3,

(aj
2σ, yδ

2, a
j
1+2σ, x

δ
3).

C5

i = 0, 1, . . . , µ − 1 (ai
2σ,∞, ai

1+2σ, x
5+σ+9i
1 ), (ai

2σ, yδ
2, a

i
1+2σ, x

5+σ+9i
0 ),

σ = 0, 1, 2, 3 (x9i
0 , y9i

3 , ai
0, y

9i
0 ), (x9i

1 , y9i
3 , ai

5, y
9i
0 ), (x1+9i

0 , y1+9i
3 , ai

2, y
1+9i
0 ),

(x1+9i
1 , y1+9i

3 , ai
6, y

1+9i
0 ), (x2+9i

0 , y2+9i
3 , ai

4, y
2+9i
0 ),

(x2+9i
1 , y2+9i

3 , ai
3, y

2+9i
0 ), (x3+9i

0 , y3+9i
3 , ai

0, y
3+9i
0 ),

(x3+9i
1 , y3+9i

3 , ai
7, y

3+9i
0 ), (x4+9i

0 , y4+9i
3 , ai

4, y
4+9i
0 ),

(x4+9i
1 , y4+9i

3 , ai
3, y

4+9i
0 ), (x5+9i

0 , y5+9i
3 , ai

0, y
5+9i
0 ),

(x5+9i
1 , y5+9i

3 , ai
1, y

5+9i
0 ), (x6+9i

0 , y6+9i
3 , ai

2, y
6+9i
0 ),

(x6+9i
1 , y6+9i

3 , ai
3, y

6+9i
0 ), (x7+9i

0 , y7+9i
3 , ai

4, y
7+9i
0 ),

(x7+9i
1 , y7+9i

3 , ai
5, y

7+9i
0 ), (x8+9i

0 , y8+9i
3 , ai

6, y
8+9i
0 ),

(x8+9i
1 , y8+9i

3 , ai
7, y

8+9i
0 ).

C6

µ ≥ 2 (xτ+2σ
0 , yτ+2σ

3 , aj
2σ, yτ+2σ

0 ),

j = 0, 1, . . . , µ − 2 (xτ+2σ
1 , yτ+2σ

3 , aj
1+2σ, y

τ+2σ
0 ),

ρ = j + 1, j + 2, . . . , µ − 1 (x1+τ+2σ
0 , y1+τ+2σ

3 , aj
2σ, y1+τ+2σ

0 ),

τ = 9µ + 16
[
j(µ − 1)− (x1+τ+2σ

1 , y1+τ+2σ
3 , aj

1+2σ, y
1+τ+2σ
0 ),

− j(j+1)
2

+ ρ − 1
]

(x8+τ+2σ
0 , y8+τ+2σ

3 , aj
2σ, y8+τ+2σ

0 ),

σ = 0, 1, 2, 3 (x8+τ+2σ
1 , y8+τ+2σ

3 , aj
1+2σ, y

8+τ+2σ
0 ),

(x9+τ+2σ
0 , y9+τ+2σ

3 , aj
2σ, y9+τ+2σ

0 ),

(x9+τ+2σ
1 , y9τ+2σ

3 , aj
1+2σ, y

9+τ+2σ
0 ).

the electronic journal of combinatorics 8 (2001), #R24 20


