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Abstract

It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k +
1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the
statement that planar graphs of girth at least 4k have circular chromatic number at
most 2 + 1

k . Even this restricted version of Jaeger’s conjecture is largely open. The
k = 1 case is the well-known Grötzsch 3-colour theorem. This paper proves that for
k ≥ 2, planar graphs of odd girth at least 8k− 3 have circular chromatic number at
most 2 + 1

k .

1 Introduction

Let G be a graph and D an orientation of G. For positive integers k ≥ 2d, a (k, d)-flow f
of D is a mapping that assigns to each edge e of D an integer f(e) such that (i): for every
vertex x, Σe∈E+(x)f(e) − Σe∈E−(x)f(e) = 0, and (ii) for every edge e, d ≤ |f(e)| ≤ k − d.
Here E+(x) is the set of edges incident to and oriented away from x, and E−(x) is the set
of edges incident to and oriented towards x. A graph G is said to admit a (k, d)-flow if
G has an orientation D that admits a (k, d)-flow. The following conjecture was proposed
by Jaeger [7, 8]:

Conjecture 1.1 For any integer k ≥ 1, every 4k-edge-connected graph admits an (2k +
1, k)-flow.

∗This research was partially supported by the National Science Council under grant NSC89-2115-M-
110-012

the electronic journal of combinatorics 8 (2001), #R25 1



Jaeger’s conjecture is very strong. The k = 1 case is Tutte’s 3-flow conjecture [16],
and the k = 2 case implies Tutte’s 5-flow conjecture [17]. Both the 3-flow conjecture and
the 5-flow conjecture are long standing open problems [20]. Many difficult conjectures
for flows have been proved for planar graphs. However, even restricted to planar graphs,
Jaeger’s conjecture remains largely open.

For planar graphs, the flow problem can be dualized to a colouring problem. For
positive integers k ≥ 2d, a (k, d)-colouring of a graph G is a mapping f : V (G) →
{0, 1, · · · , k− 1} such that d ≤ |f(x)− f(y)| ≤ k − d for every edge xy of G. The circular
chromatic number χc(G) of G is defined as

χc(G) = min{k/d : there exists a (k, d)-colouring of G}.

The circular chromatic number (also known as the “star chromatic number” [18]) has
been studied extensively in the past decade. Readers are referred to [22] for a survey on
this subject. A (k, d)-colouring of a planar graph G corresponds to a (k, d)-flow of the
dual graph of G [4], [22]. Therefore, the restriction of Jaeger’s conjecture to planar graphs
is equivalent to the following:

Conjecture 1.2 [Jaeger’s conjecture restricted to planar graphs] Every planar
graph G of girth at least 4k has circular chromatic number at most 2 + 1

k
.

It was proved by Galluccio, Goddyn and Hell [3] that for each ε > 0, for every surface
S, there exists an integer g such that every graph of girth at least g embedded in S has
circular chromatic number at most 2 + ε. In particular, we seek the smallest integer g(k)
such that every planar graph G of girth at least g(k) has χc(G) ≤ 2 + 1

k
. It follows from

Grötzsch’s Theorem (triangle free planar graphs are 3-colourable [5]) that g(1) = 4. For
k ≥ 2, the best known bounds at present are 4k ≤ g(k) ≤ 10k− 4. The upper bound was
proved by Galluccio, Goddyn and Hell [3], and the lower bound was proved by DeVos [2].
Conjecture 1.2 asserts that the lower bound is tight.

The odd edge-connectivity of a graph G is the size of a smallest odd edge cut of G. The
odd girth of G is the length of a shortest odd cycle of G. Zhang [19] proposed a strengthing
of Jaeger’s conjecture, where the edge-connectivity condition is replaced by an odd edge-
connectivity condition. Conjecture 1.3 below is the restriction of that conjecture to planar
graphs (in the dual version).

Conjecture 1.3 [19] Every planar graph G of odd girth at least 4k + 1 has circular
chromatic number at most 2 + 1

k
.

It was proved by Klostermeyer and Zhang that for any ε > 0, there is an integer f
such that every planar graph of odd girth at least f has circular chromatic number at
most 2 + ε. We seek the smallest odd integer f(k) such that every planar graph of odd
girth at least f(k) has circular chromatic number at most 2 + 1

k
. The best known bounds

at present are 4k + 1 ≤ f(k) ≤ 10k − 3. The upper bound was proved by Klostermeyer
and Zhang, and lower bound follows from the lower bound for g(k).
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It follows from the definitions that f(k) ≥ g(k)+1. So Conjecture 1.3 is stronger than
Conjecture 1.2. In this paper, we improve the upper bound for f(k), which also yields a
better upper bound for g(k).

Theorem 1.4 For any integer k ≥ 2, every planar graph G of odd girth at least 8k − 3
has circular chromatic number at most 2 + 1

k
.

Note that Theorem 1.4 remains true for k = 1. The k = 1 case is exactly the Grötzsch
3-colour theorem [5]. However, the proof presented here does not work for this case.

The proof uses the discharging method. In Section 2, we shall give a family of un-
avoidable configurations in a counterexample of Theorem 1.4. In Section 3, we prove
that any graph containing one of the unavoidable configurations cannot be a minimum
counterexample.

2 Unavoidable configurations

Let G be a graph. A thread in G is a maximal subgraph of G which is a path whose
internal vertices all have degree 2 in G. For t ≥ 1, vertices x and y are loosely t-adjacent
(or loosely adjacent if t is irrelevant) if G contains an x, y-path P of length t lies in a
thread, i.e., P is a path whose internal vertices all have degree 2 in G. Let dl(x) be the
number of vertices that are loosely adjacent to x, and let d(x) the degree of x.

Lemma 2.1 Let G be a planar graph of minimum degree at least 2. If each facial cycle
of G has length at least 8k − 3, then one of the following holds:

(a) G has a vertex x such that dl(x) ≥ 2k(d(x) − 1).

(b) G has two loosely t-adjacent vertices x and y such that d(x) = d(y) = 3 and
dl(x) + dl(y) ≥ 6k + t.

(c) G has a vertex x of degree 3 which is loosely adjacent to a, b, c such that d(a) =
d(b) = d(c) = 3 and dl(a) = dl(b) = dl(c) = 4k − 1.

Proof. The proof uses the discharging method. Assume that G is a counterexample to
Lemma 2.1. We first assign a charge c(x) to each vertex x and prove that the total charge
∑

x∈V (G) c(x) is negative. Then by two rounds of discharging, each vertex x gets a new
charge c∗(x). We prove that the total charge is unchanged and yet c∗(x) ≥ 0 for each
vertex x. This is an obvious contradiction, which shows that the counterexample G does
not exist.

Since G is a counterexample, condition (a) does not hold. This implies that G has no
thread of length at least 2k. For otherwise, for any internal vertex x of a thread of length
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at least 2k, we have dl(x) ≥ 2k = 2k(d(x) − 1). Thus we may assume that each cycle
of G contains at least 3 vertices of degree at least 3 (otherwise G contains a cycle which
contains at most two vertices of degree at least 3. By appropriately embed the graph,
we may assume this cycle is a facial cycle, which then must have length at least 8k − 3.
Hence G has a thread of length at least 2k).

Let v, e, f be the numbers of vertices, edges and faces of G respectively. Since each
facial cycle of G has length at least 8k − 3, and the sum of the lengths of all the facial
cycles is equal to 2e, it follows that (8k − 3)f ≤ 2e. Plugging this into Euler’s formula
v + f − e = 2, we have

(8k − 5)e ≤ (8k − 3)(v − 2) < (8k − 3)v.

Assign to each vertex x of G a charge

c(x) = (8k − 5)d(x) − (16k − 6).

The total charge assigned to the vertices of G is

Σx∈V (G)c(x) = Σx∈V (G)((8k − 5)d(x) − (16k − 6))

= 2e(8k − 5) − (16k − 6)v

< 2(8k − 3)v − (16k − 6)v

= 0.

Discharging rule for the first round: Transfer a charge of amount 2 from each vertex
x of degree at least 3 to each vertex y of degree 2 that is loosely adjacent to x.

If y has degree 2, then y is loosely adjacent to two vertices of degree at least 3. Thus
the total amount of charge received by y is 4. So the new charge c′(y) at y is

c′(y) = 2(8k − 5) − (16k − 6) + 4 = 0.

By definition, each vertex x is loosely adjacent to d(x) vertices of degree at least 3. So
x is loosely adjacent to dl(x) − d(x) vertices of degree 2. As condition (a) does not hold,
dl(x) ≤ 2k(d(x) − 1) − 1. If d(x) ≥ 3, then the total amount of charge sent out from x is

2(dl(x) − d(x)) ≤ (4k − 2)d(x) − (4k + 2).

If d(x) ≥ 4, then the new charge c′(x) at x is

c′(x) ≥ d(x)(8k − 5) − (16k − 6) − ((4k − 2)d(x) − (4k + 2))

= d(x)(4k − 3) − (12k − 8)

= d(x) + d(x)(4k − 4) − (12k − 8)

≥ d(x).

If x has degree 3, then as condition (a) does not hold, dl(x) ≤ 4k − 1. The same
calculation shows the following:
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• If dl(x) = 4k − 1, then c′(x) = −1.

• If dl(x) = 4k − 2, then c′(x) = 1.

• If dl(x) ≤ 4k − 3, then c′(x) ≥ 3.

We call a vertex x critical if d(x) = 3 and dl(x) = 4k − 1. The critical vertices are
the only vertices having negative charge at this moment. We apply a second round of
discharging as follows:
Discharging rule for the second round: Suppose x has degree at least 4 or x has
degree 3 and dl(x) ≤ 4k − 3. If x is loosely adjacent to a critical vertex y, then transfer
a charge of amount 1 from x to y. Suppose x has degree 3 and dl(x) = 4k − 2. If x is
loosely adjacent to a critical vertex y, then transfer a charge of amount 1

2
from x to y.

The new charge at vertex x after the second round of discharging is denoted by c∗(x).
We shall prove c∗(x) ≥ 0 for all x.

If x has degree 2, then c∗(x) = c′(x) = 0.
If d(x) ≥ 4, then c′(x) ≥ d(x). There are at most d(x) critical vertices loosely adjacent

to x, so the amount of charge sent out from x (at the second round) is at most d(x).
Therefore c∗(x) ≥ 0.

If x has degree 3 and dl(x) ≤ 4k − 3, then c′(x) ≥ 3. The amount of charge sent out
from x (at the second round) is at most 2. Therefore c∗(x) ≥ 0.

Suppose x has degree 3 and dl(x) = 4k − 2. Then c′(x) = 1. As condition (c) does
not hold, there are at most two critical vertices that are loosely adjacent to x. Hence the
amount of charge sent out from x (at the second round) is at most 1. Therefore c∗(x) ≥ 0.

It remains to consider critical vertices. If a critical vertex w is loosely adjacent to a
vertex of degree at least 4 or loosely adjacent to a vertex a with d(a) = 3 and dl(a) ≤ 4k−3,
then w receives at least an amount 1 of charge in the second round of discharging. Hence
c∗(w) ≥ c′(w) + 1 = 0.

Assume that w is loosely adjacent to three vertices of degree 3, say a, b, c, such that
dl(a), dl(b), dl(c) ≥ 4k − 2. Suppose w is loosely t1-adjacent to a, loosely t2-adjacent
to b and loosely t3-adjacent to c. Then dl(w) = t1 + t2 + t3 = 4k − 1. Since G is a
counterexample, condition (b) does not hold, i.e., G does not have two loosely t-adjacent
vertices x and y such that d(x) = d(y) = 3 and dl(x) + dl(y) ≥ 6k + t. Therefore

dl(a) + dl(w) ≤ 6k + t1 − 1,

dl(b) + dl(w) ≤ 6k + t2 − 1,

dl(c) + dl(w) ≤ 6k + t3 − 1.

As dl(w) = 4k − 1 and dl(a), dl(b), dl(c) ≥ 4k − 2, we conclude that ti ≥ (4k − 2) + (4k −
1) − (6k − 1) = 2k − 2 ≥ 2 for i = 1, 2, 3. Hence 4k − 1 = t1 + t2 + t3 ≥ 6k − 6, which
implies that k = 2. As ti < 2k = 4, we have 2 ≤ ti ≤ 3. Since t1 + t2 + t3 = 7, without
loss of generality, we may assume that t1 = 3, t2 = t3 = 2. Now dl(b)+dl(w) ≤ 13 implies
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that dl(b) ≤ 6, and hence dl(b) = 6. Similarly, dl(c) = 6. By our discharging rule, each of
b and c transfer an amount of 1

2
of charge to w. Hence c∗(w) = c′(w) + 1 = 0.

So each vertex x of G has a nonnegative new charge c∗(x), contrary to the fact that
the total charge is negative.

3 Reducibility of the unavoidable configurations

This section proves Theorem 1.4, by showing that any minimal counterexample does not
contain any of those unavoidable configurations listed in Lemma 2.1. In the remainder of
this section, k ≥ 2 is a fixed integer, and we consider only (2k + 1, k)-colouring of graphs.
Thus the colour set is C = {0, 1, 2, · · · , 2k}.

First we consider extending partial colourings of paths. Let P be an x, y-path of length
n. Let S be a set of colours. Let φ(n, S) = {j ∈ C : there exists a (2k + 1, k)-colouring
f of P such that f(x) ∈ S and f(y) = j}.

Lemma 3.1 For any nonempty subset S of C, |φ(n, S)| ≥ min{2k + 1, |S| + n}.

Proof. It suffices to prove the claim for n = 1, since applying that for each successive
edge yields the full statement. Let S ′ = φ(1, S). We define an auxiliary bipartite graph H .
Introduce a vertex ai for each i ∈ S and a vertex bj for each j ∈ S ′. Let aibj be an edge if
and only if there is a (2k+1, k)-colouring f of the edge xy such that f(x) = i and f(y) = j.
In H , each ai has degree 2 (if i ∈ S, then i+k mod (2k+1), i+k+1 mod (2k +1) ∈ S ′),
and each bj has degree at most 2. Moreover, bj has degree 2 for all j ∈ S ′ only if S ′ = C.
Therefore |S ′| ≥ min{2k + 1, |S| + 1}.

Corollary 3.2 Let P1, P2, · · · , Pn be paths that are pairwise disjoint except for one com-
mon endpoint y. Let xi and ti be the other endpoint and the length of Pi. If 2(j −
1)k ≤ Σj

i=1ti ≤ 2jk for j = 2, 3, · · · , n, then any (2k + 1, k)-colouring f of the vertices
x1, x2, · · · , xk can be extended to a (2k + 1, k)-colouring of ∪n

i=1Pi.

Proof. For i = 1, 2, · · · , n, let Si = {j : there exists a (2k + 1, k)-colouring g of Pi such
that g(xi) = f(xi) and g(y) = j}. By Lemma 3.1, |Si| ≥ 1 + ti. Obviously f can be
extended to a (2k + 1, k)-colouring of ∪n

i=1Pi if and only if S1 ∩ S2 ∩ · · · ∩ Sn 6= ∅. Since
|S1∩S2| = |S1|+|S2|−|S1∪S2| and |S1∪S2| ≤ 2k+1, we know that |S1∩S2| ≥ t1+t2+1−2k,
where by assumption 1 ≤ t1 + t2 + 1 − 2k ≤ 2k + 1. By induction on i, it follows that

|S1 ∩ S2 ∩ · · · ∩ Si| ≥ t1 + t2 + · · ·+ ti + 1 − 2(i − 1)k,

and
1 ≤ t1 + t2 + · · · + ti + 1 − 2(i − 1)k ≤ 2k + 1.
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Lemma 3.3 If G has a vertex x such that dl(x) ≥ 2k(d(x) − 1), then G has proper
subgraph G′ such that any (2k + 1, k)-colouring of G′ can be extended to a (2k + 1, k)-
colouring of G.

Proof. Assume that x is a vertex of G with dl(x) ≥ 2k(d(x)−1). If d(x) = 2, then x is the
internal vertex of a thread P of length at least 2k. Let G′ be obtained from G by deleting
the internal vertices of G. Corollary 3.2 implies that any (2k + 1, k)-colouring of G′ can
be extended to a (2k + 1, k)-colouring of G. Thus we may assume that d(x) = n ≥ 3.
Let P1, P2, · · · , Pn be the n threads of G ending at x. Let ti be the length of Pi. Then
t1 + t2 + · · ·+ tn = dl(x) ≥ 2k(n − 1). Since each thread of G has length at most 2k − 1,
we have 2k(j − 1) ≤ t1 + t2 + · · ·+ tj ≤ 2kj for j = 2, 3, · · · , n,. Let G′ be obtained from
G by deleting x and the internal vertices of P1, P2, · · · , Pn. The conclusion follows from
Corollary 3.2.

Lemma 3.4 Assume x and y are two loosely t-adjacent vertices of G of degree 3. If
dl(x) + dl(y) ≥ 6k + t, then there is a proper subgraph G′ of G such that any (2k + 1, k)-
colouring of G′ can be extended to a (2k + 1, k)-colouring of G.

Proof. We may assume that G has no thread of length at least 2k. Let P be the thread
of length t joining x and y. Since d(x) = 3, we may let x1 and x2 be vertices of degree
at least 3 other than y that are loosely adjacent to x, with P1 and P2 being the threads
joining them to x. Similarly, let y be loosely adjacent to vertices y1 and y2 of degree at
least 3 via threads P3 and P4 other than P . Let G′ be obtained from G by deleting x, y
and the internal vertices of P1, P2, P, P3, P4. We shall prove that any (2k +1, k)-colouring
f of G′ can be extended to G.

Suppose Pi has length ti. Since t1 + t2 + t + t3 + t4 ≥ 6k and G contains no thread
of length at least 2k, it follows that t1 + t2 ≥ 2k + 1 and t3 + t4 ≥ 2k + 1. Let S = {j :
there is an extension g of f to P1 ∪ P2 such that g(x) = j}. By Corollary 3.2, |S| ≥
t1 + t2 + 1 − 2k > 0. Let S ′ = {j : there is an extension g of f to P1 ∪ P2 ∪ P such
that g(y) = j}. By Lemma 3.1, |S ′| ≥ t1 + t2 + t + 1 − 2k. Let S ′′ = {j : there is an
extension g of f to P3 ∪P4 such that g(y) = j}. By Corollary 3.2, |S ′′| ≥ t3 + t4 + 1− 2k.
Obviously, f can be extended to G if and only if S ′ ∩ S ′′ 6= ∅. This is so because
|S ′| + |S ′′| ≥ t1 + t2 + t + 1 − 2k + t3 + t4 + 1 − 2k ≥ 2k + 2.

Lemma 3.5 Suppose G has a vertex x of degree 3 which is loosely adjacent to three critical
vertices a, b, c. Then G has a proper subgraph G′ such that any (2k + 1, k)-colouring f of
G′ can be extended to a (2k + 1, k)-colouring of G.

Proof. Let P1, P2, · · · , P9 be the threads incident to a, b, c as shown in Figure 1, where
x1, x2, y1, y2, z1, z2 are vertices of degree at least 3.

Let G′ be obtained from G by deleting x, a, b, c and the internal vertices of P1, · · · , P9.
Let f be a (2k + 1, k)-colouring of G′. Let S1 = {j : there is an extension g of f to
P1 ∪ P2 ∪ P3 such that g(x) = j}, S2 = {j : there is an extension g of f to P4 ∪ P5 ∪ P6
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Figure 1: Threads incident to a, b, c

such that g(x) = j}, S3 = {j : there is an extension g of f to P7 ∪ P8 ∪ P9 such that
g(x) = j}. By the argument as in the proof of Lemma 3.4 (see the calculation of |S ′|),
|Si| ≥ 2k. It follows that S1 ∩ S2 ∩ S3 6= ∅. Therefore f can be extended to G.

To complete the proof of Theorem 1.4, we need one more lemma (the Folding Lemma)
from [9].

Lemma 3.6 [9] Suppose G is a planar graph of odd girth at least 8k − 3. Then either
every facial cycle of G has length at least 8k − 3, or there exists a planar graph G′ such
that

• |V (G′)| < |V (G)|.

• G admits a homomorphism to G′.

• G′ has odd girth at least 8k − 3 and, moreover, each facial cycle of G′ has length at
least 8k − 3.

Lemma 3.6 says that if G has a facial cycle of small length (which must be even), then
that face can be “folded” without creating short odd cycles.

Proof of Theorem 1.4 If the claim does not hold, we may consider a smallest
counterexample G. By Lemma 3.6, we may assume that each facial cycle of G has length
at least 8k − 3. By Lemma 2.1, one of the following holds:

• G has a vertex x such that dl(x) ≥ 2k(d(x) − 1).

the electronic journal of combinatorics 8 (2001), #R25 8



• G has two loosely t-adjacent vertices x and y such that d(x) = d(y) = 3 and
dl(x) + dl(y) ≥ 6k + t.

• G has a vertex x of degree 3 which is loosely adjacent to three critical vertices.

Since G is a minimal counterexample, any proper subgraph of G is (2k + 1, k)-
colourable. However, by Lemmas 3.3, 3.4, and 3.5, in each of the above cases G has
a proper subgraph G′ such that any (2k + 1, k)-colouring of G′ can be extended to a
(2k + 1, k)-colouring of G. This is a contradiction.

Corollary 3.7 If G is a planar graph of girth at least 8k − 4, then χc(G) ≤ 2 + 1
k
.

4 A remark on the relation between g(k) and f(k)

We observed earlier that it follows from the definition that f(k) ≥ g(k)+1. It is unknown
if equality holds for all k.

Question 4.1 For the functions g(k), f(k) defined above, is it true that f(k) = g(k) + 1
?

There is some evidence supporting a positive answer. (Also, Conjecture 1.3 implies
a positive answer). Firstly, all the presently known methods for proving upper bounds
for g(k) are based on Euler’s formula. The girth requirement is only used in the sense
that every facial cycle has length at least g(k). By the “folding lemma” of Klostermeyer
and Zhang [9], if a planar graph G has odd girth at least f(k), then (for the purpose of
investigating circular chromatic number) we may assume that it has large facial cycles as
well (cf. the proof of Theorem 1.4).

Secondly, based on a good understanding of the relationship between the circular
chromatic number and the girth (as well as the odd girth) of series-parallel graphs [1,
6, 11, 12], we can show that the analogue of Conjecture 4.1 for series-parallel graphs is
true. (Series-parallel graphs are graphs obtained from K2 by repeatedly applying two
operations: subdividing an edge and duplicating an edge.) The following results were
proved by Pan and Zhu [11, 12].

Theorem 4.2 [11] Suppose G is a series-parallel graph. If G has odd girth at least 6k−1,
then χc(G) ≤ 8k/(4k − 1). If G has odd girth at least 6k + 1, then χc(G) ≤ (4k + 1)/2k.
If G is has odd girth at least 6k + 3, then χc(G) ≤ (4k + 3)/(2k + 1).

Theorem 4.3 [12] Let k ≥ 1 be an integer, and let ε > 0. There exists a series-parallel
graph G of girth 6k− 1 with χc(G) > 8k/(4k− 1)− ε. There exists a series-parallel graph
G of girth 6k + 1 with χc(G) > (4k + 1)/2k − ε. There exists a series-parallel graph G of
girth 6k + 3 with χc(G) > (4k + 3)/(2k + 1) − ε.
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For any 0 < ε < 1, let g∗(ε) be the smallest integer such that every series-parallel
graph G of girth at least g∗(ε) has χc(G) ≤ 2 + ε; let f ∗(ε) be the smallest odd integer
such that every series-parallel graph G of odd girth at least f ∗(ε) has χc(G) ≤ 2 + ε.

Theorem 4.4 For any 0 < ε < 1, f ∗(ε) = g∗(ε) + 1.

Proof. For k = 0, 1, · · · , let s3k = 4k+3
2k+1

, s3k+1 = 8(k+1)
4(k+1)−1

, s3k+2 = 4(k+1)+1
2(k+1)

. Then
s0, s1, s2, · · · is a strictly decreasing sequence. For any 0 < ε < 1, let i be the integer such
that si ≤ 2+ε < si−1. Assume i = 3k for some k ≥ 0. By Theorem 4.3 4.2, f ∗(ε) ≤ 6k+3.
By Theorem, g∗(ε) > 6k + 1. Hence g∗(ε) ≥ 6k + 2 and f ∗(ε) ≤ g∗(ε) + 1. Therefore
f ∗(ε) = g∗(ε) + 1. The case i = 3k + 1 or i + 3k + 2 can be discusses similarly.
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[5] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wis-
senschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe, 8 (1958/1959), 109-120

[6] P. Hell and X. Zhu, The circular chromatic number of series-parallel graphs, J. Graph
Theory, 33(2000), 14-24.

[7] F. Jaeger, On circular flows in graphs, Finite and Infinite Sets (Eger, 1981), Colloquia
Mathematica Societatis János Bolyai 37, North Holland, (1984) 391-402.

[8] F. Jaeger, Nowhere-zero flow problems, Selected Topics in Graph Theory 3, (L. W.
Beineke and R. J. Wilson eds.), Academic Press, London, (1988) 71-95.

[9] W. Klostermeyer and C.Q.Zhang, (2+ε)-coloring of planar graphs with large odd girth,
J. Graph Theory, 33(2000), 109-119.

[10] D. Moser, The star chromatic number of planar graphs, J. Graph Theory, 24 (1997),
33-43

the electronic journal of combinatorics 8 (2001), #R25 10



[11] Z. Pan and X. Zhu, Circular chromatic number of series-parallel graphs of large odd
girth, Discrete Mathematics, to appear.

[12] Z. Pan and X. Zhu, Tight relation between the circular chromatic and girth of series-
parallel graphs, manuscript, 2000.
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