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Abstract

In this paper we present a time-polynomial recognition algorithm for certain
classes of circulant graphs. Our approach uses coherent configurations and Schur
rings generated by circulant graphs for elucidating their symmetry properties and
eventually finding a cyclic automorphism.
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1 Introduction

We consider graphs of the form G = (X, γ), where X is a finite set and γ is a binary
relation on X, the adjacency relation. For x ∈ X put γ(x) = {y : (x, y) ∈ γ}.
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Let G be a group and G = (X, γ) a graph with vertex set X = G and with adjacency
relation γ defined with the aid of some subset S ⊂ G by

γ = {(g, h) : g, h ∈ G ∧ hg−1 ∈ S}.
Then G is called Cayley graph over the group G and S is called connection set of G.

Let Zn, n ∈ N, stand for a cyclic group of order n, written additively. A circulant
graph G of order n (or a circulant, for short) is a Cayley graph over Zn. In this particular
case, the adjacency relation γ has the form

γ =

n−1⋃
i=0

{i} × {i+ γ(0)}

where γ(0) is the set of successors of the vertex 0. Evidently, the set of successors γ(i) of
an arbitrary vertex i satisfies γ(i) = i+ γ(0). All arithmetic operations with vertex num-
bers are understood modulo n. We do not distinguish by notation between the element
z ∈ Zn and the integer z ∈ Z. From the context, it will always be clear what is meant.
For a ∈ Zn and S ⊂ Zn we write aS for the set {as | s ∈ S}.

For a circulant G the connection set is γ(0). G is a simple undirected graph if 0 6∈ γ(0)
and if j ∈ γ(0) implies −j ∈ γ(0).

There are different equivalent characterizations of circulants. One of them is this: A
graph G is a circulant iff its vertex set can be numbered in such a way that the resulting
adjacency matrix A(G) is a circulant matrix. We call such a numbering a Cayley num-
bering. Still another characterization is: G is a circulant iff a cyclic permutation of its
vertices exists which is an automorphism of G. Such an automorphism we shall call a full
cycle.

Cayley graphs, and in particular circulants, have been studied intensively in the lit-
erature. These graphs are vertex-transitive. In the case of a prime vertex number n,
circulants are known to be the only vertex-transitive graphs. Because of their high sym-
metry, Cayley graphs are ideal models for communication networks. In this context,
recently particular interest has been awaken for so-called geometric circulants. A ge-
ometric circulant GC(n, d) is a circulant on the vertex set Zn possessing a connection
set

γ(0) = {±1,±d,±d2, . . . ,±dm},
consisting of a geometric progression in d and its inverses, where d is a natural number
satisfying 1 < d ≤ n

2
and m is such that dm + 1 < n ≤ dm+1 + 1.

Certain geometric circulant graphs have been proposed in [22] as a new topology for
multicomputer networks. The circulants in this paper have been called recursive circu-
lants, they are geometric circulants with vertex number n = cdm for some c, 1 < c ≤ d.
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The motivation for the attribute recursive, as pointed out in this paper, is the fact that
circulants GC(cdm, d) possess a hierarchical structure. If one drops all edges in GC(cdm, d)
which are of the form (v, v ± 1) then the remaining graph is a union of d graphs, each
isomorphic to GC(cdm−1, d). A hierarchy like this, however, may be observed also in more
general situations. Cayley graphs showing a hierarchical structure have been investigated
in [1] and [2] (and in many subsequent papers on Cayley graphs as models for intercon-
nection networks) in a more general setting. A review on this topic is found in [14].

The problem we deal with in this paper is the recognition problem for circulants,
in particular for geometric circulants. Assume that a graph G on the vertex set X =
{0, . . . , n− 1} is given by its diagram or by its adjacency matrix, or by some other data
structure commonly used in dealing with graphs. Our task is to decide whether G is a
circulant graph or not.

To our knowledge the first result towards recognizing circulants can be found in [23]
where circulant tournaments have been considered. In the paper [21] we have settled the
case of a prime number n of vertices, i. e. we have proposed a still somewhat complicated,
but nevertheless time-polynomial method for recognizing arbitrary circulants of prime
order.

In the present paper we first consider a reduction step which enables us to restrict our
considerations to circulants with connection sets the stabilizer of which is trivial. Then we
study the structure of geometric circulants in more detail and describe a time-polynomial
recognition method for this class of circulants. Our method exploits the properties of
algebraic-combinatorial structures which can be associated with graphs, namely coherent
configurations [15], respectively, coherent algebras [16], also called cellular algebra [24], and
Schur rings [25], and the interrelations between these structures when the automorphism
group Aut(G) of G contains a full cycle. Since the coherent configuration generated by
G has the same automorphism group as G, our method can be introduced as a method
for recognizing coherent configurations having a full cyclic automorphism. Coherent con-
figurations with this property will be called circulant (coherent) configurations.

As just mentioned, the method used for recognizing circulant graphs is based on the
notions of coherent configurations and Schur rings generated by graphs and on the in-
terrelations between these notions when the graph G possesses a cyclic automorphism.
For reaching our aims it is therefore unavoidable to call the reader’s attention to some
particular facts concerning the interrelation between these two algebraic structures. This
will be done in the appendix, part of the content of which has already been presented in
[21]. However, for the convenience of the reader, this material must be included here again.

The main body of our paper starts with Section 2 where we explain the algebraic-
combinatorial approach to the recognition problem for circulants we use and where the
reduction to the case of trivial stabilizers of the connection set is described. In Section
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3 basic properties of geometric circulants GC(n, d) are discussed. In most cases we can
prove that the Schur ring generated by a geometric circulant contains {1,−1} as a basic
set. In such cases we are done, because such a basic set defines a Hamiltonian cycle of the
graph under consideration, along which we can determine a Cayley numbering. The only
case in which this does not happen is when n and d are relatively prime and n|(dm+1±1),
in which case the connection set γ(0) is a subgroup of Z∗

n.

In Section 4 we give a formal description of the recognition algorithm. Section 5 con-
tains some concluding remarks.

2 An algebraic-combinatorial approach to the recog-

nition problem for circulants

Let G = (X, γ), X = {0, 1, . . . , n − 1}, be an arbitrary graph, 〈〈γ〉〉 = (X; Γ) its coherent
configuration with basic relations γ0, γ1, . . . , γs. The basis of (X; Γ) can be computed in
time O(n3 ln n) using an appropriate version of a so-called graph stabilization algorithm
first described in [24], see [3], [4], [7]1. If (X; Γ) is not a commutative association scheme,
then G is certainly not circulant.

If (X, γ) is an undirected circulant, then all basic relations γi in (X; Γ) are symmetric,
too. Hence, if starting with an undirected graph G we find a basic relation γi which is not
symmetric, then again G cannot be circulant. Checking (X; Γ) for being a commutative
association scheme and, in the undirected case, for having symmetric basic relations needs
time O(n2).

If G is a circulant with connection set γ(0), then we may assume X = Zn and, as
pointed out in the appendix (Subsections 6.2 and 6.3), there is a mapping logg : Γ −→ 2Zn

defined with the aid of a full cycle g ∈ Aut(X; Γ) relating the basic relations of the as-
sociation scheme to a partition T0 = logg(γ0), T1 = logg(γ1), . . . , Ts = logg(γs) of Zn such
that T0, T1, . . . , Ts are the basic quantities of the S-ring S = 〈〈γ(0)〉〉 of G. Since we do
not know this mapping, i. e. since we do not know a full cycle g (or a Cayley numbering
of G), we are not able to compute S. We only know the association scheme (X; Γ) for the
computation of which we do not need a Cayley numbering. Any numbering of the vertex
set using e. g. the numbers 0, 1, . . . , n − 1 is equally appropriate. To compute a Cayley
numbering we can try to use properties the association scheme (X; Γ) must have if G is
a circulant. In general, it is yet not known how to find a sufficient set of properties of
(X; Γ) which would enable us to find a Cayley numbering for arbitrary circulants G in
polynomial time. However, the search for such a sufficient set is simplified if we restrict

1The currently most efficient implementation can be obtained free of charge for non-commercial use
from http://www-m9.mathematik.tu-muenchen.de/~bastert/wl.html.
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the investigation to certain subclasses of circulants. It is in this context that S-ring the-
ory becomes useful. Subclasses of circulants can be characterized by properties of their
connection sets and/or the S-rings generated by them. For example, connection sets may
have non-trivial or trivial stabilizers (either additive or multiplicative ones), or they may
have other obvious structures, as it is the case for instance with geometric circulants.
These features imply particular features on the corresponding S-rings and, vice versa, on
the equivalent two-dimensional structures, i. e. the corresponding association schemes.
The idea of working with the interplay between association schemes and S-rings has been
successfully employed in [21] for the case of circulants on a prime number of vertices. In
this paper we are going to demonstrate its usefulness in other cases.

2.1 Hamiltonian cycles

Let us start with the situation in which a Cayley numbering can be found directly from
the shape of some basic graph (X, γi) of (X; Γ). The following statement seems to be
folklore. To be able to refer to it conveniently we present it as a proposition.

Proposition 2.1. Let G = (X, γ) be a graph such that its coherent configuration (X; Γ)
is an association scheme.

(i) Assume that some basic graph Gi = (X, γi) is connected and has outdegree 1. Let
g = (x0, x1, . . . , xn−1) where for 0 ≤ k ≤ n − 2 the vertex xk+1 is the only vertex
satisfying (xk, xk+1) ∈ γi. Then G is circulant and g ∈ Aut(X, γ).

(ii) Assume that some symmetric basic graph Gj = (X, γj) is connected and has degree
2. Let g = (y0, y1, . . . , yn−1) and g−1 be the two unique full cycles of Gj. Then, G is
circulant if and only if g ∈ Aut(X, γ).

Let Z∗
n denote the multiplicative group of units in Zn. Notice that if G is a circulant

then (X; Γ) has a connected basic graph Gi of outdegree 1 iff there is an a ∈ Z∗
n such that

the S-ring of G has basic set {a}, and that there is a symmetric connected basic graph
Gj of degree 2 iff there is a q ∈ Z∗

n such that the S-ring of G has a basic set {q,−q}.

Proof. (i) Under the hypothesis, the adjacency matrix A(γi) is a permutation matrix
and commutes with A(γ). This proves that g is a full cycle of G.

(ii) Here Gi is an undirected hamiltonian cycle which has exactly two full cycles g and
g−1 which can be found by starting at an arbitrary vertex y0 and traversing Gi first in
one and then in reverse direction. Since Aut(X, γ) is a subgroup of Aut(X, γi), each full
cycle of (X, γ) is a full cycle of (X, γi).
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2.2 A reduction step

Next we describe a reduction step which is possible whenever G happens to be a circulant
(directed or undirected) with a connection set the additive stabilizer of which is non-trivial.

Let τ ∈ Rel(Γ) be an equivalence of (X; Γ) and let C0, . . . , Cs−1 be the classes of τ.
Define a new graph Ĝ = (X̂, γ̂) by

X̂ = {0, . . . , s− 1},
(i, j) ∈ γ̂ ⇐⇒ (Ci × Cj) ∩ γ 6= ∅.

In other words, Ĝ is derived from G by replacing each class Ci by a single vertex i and
drawing an arc from i to j exactly if in G there is some arc from a vertex in Ci to a
vertex in Cj . The resulting graph Ĝ is called the factor graph of G modulo τ and is also
denoted by G/τ. It is the combinatorial analogue to the coset graph of a Cayley graph
over a group G with respect to some subgroup H.
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Example. Consider the graph G = (X, γ) on the vertex set X = {0, 1, . . . , 11}
and with relation γ being the union of the symmetric relation γ′ in Figure 1a and the
antisymmetric relation γ′′ in Figure 1b. The coherent configuration 〈〈γ〉〉 has five basic
relations γ0 = εX , γ1, γ2, γ3 and γ4, the latter four of them are shown in Figure 2. We
have γ1 = γ′, γ2 = γ′′, γ3 = γT

2 , γ4 = X ×X \ γ0 ∪ γ1 ∪ γ2 ∪ γ3.

It is obvious that the basic graphs (X, γ2) and (X, γ3) are connected. That means,
γ2 and γ3 do not generate a non-trivial equivalence relation. Thus, the only non-trivial
equivalences of 〈〈γ〉〉 are

τ1 = γ0 ∪ γ1 ∪ γ4 and τ2 = γ0 ∪ γ4.
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The factor graph of G modulo τ2 is shown in Figure 3.
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The graph G in our example and the equivalence τ2 have the following property:

(Ci × Cj) ∩ γ 6= ∅ =⇒ Ci × Cj ⊂ γ, i, j ∈ X̂.

This is a useful property to which we return in Proposition 2.2.

Now, let again G = (X, γ) be an arbitrary circulant of order n, (X; Γ) = 〈〈γ〉〉 its
association scheme and S = 〈〈γ(0)〉〉 its S-ring . According to Proposition 6.5(ii) the S-
subgroups of Zn are in one-to-one correspondence with the equivalence relations of (X; Γ).
Assume that F = 〈f〉 is an S-subgroup (f the smallest generator) and τ the corresponding
equivalence relation. Define γ̂(0) = {i mod(f) : i ∈ γ(0)}. Then the factor graph G/τ is
isomorphic to the graph (Y, γ̂) where Y = Zf and where by definition

(i, j) ∈ γ̂ ⇐⇒ j − i ∈ γ̂(0), i, j ∈ Zf

(Y, γ̂) is the coset graph of G modulo 〈f〉. From this observation we immediately find the
following fact: Let G be a graph and τ an equivalence of its coherent algebra. If G is a
circulant, then also G/τ is a circulant graph.

It may happen that we have to deal with the following situation: We choose a particu-
lar subgroup 〈f〉 of Zn and want to derive the factor graph G/〈f〉 from some input graph
G without knowing a Cayley numbering of G. This operation can be executed on G pro-
vided we can identify the classes of the equivalence τ corresponding to 〈f〉. These classes
are, however, easy to find. Different subgroups of Zn are distinguished by their orders,
hence, different equivalences of (X; Γ) can be distinguished by the number of elements in
their classes. In the appendix it will be discussed how the equivalences of (X; Γ) can be
listed in time O(n2). Thus, the graphG/τ can be constructed within this same time bound.

Now, given the circulant G = (X, γ), consider a particular subgroup of Zn, the stabi-
lizer

F = Stab+(γ(0)) = {z ∈ Zn : z + γ(0) = γ(0)}
of the connection set γ(0). Let again τ be the equivalence of (X; Γ) corresponding to F.
Note that in this particular case, if (i, j) is an arc of G then G contains every arc from
any vertex in i+F to any vertex in j+F. This simple fact can be used in order to reduce
the task of constructing a Cayley numbering of G to the task of finding such a numbering
for the factor graph G/τ and extending it to G.

Proposition 2.2. Let G = (X, γ) a graph, |X| = n, 〈〈γ〉〉 = (X; Γ) a homogeneous coher-
ent algebra, and τ an equivalence of (X; Γ). Let C0, . . . , Cs−1 be the equivalence classes of
τ . Assume that

γ ∩ Ci × Cj 6= ∅ =⇒ Ci × Cj ⊂ γ, 0 ≤ i, j ≤ s− 1.

Then
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(i) G is a circulant graph iff the factor graph G/τ is a circulant graph.

(ii) Any Cayley numbering ϕ̂ of G/τ can be lifted up to a Cayley numbering of G defining

ϕ(z) =
s−1∑
i=0

ϕi(z)ICi
(z)

where ICi
is the characteristic function of the set Ci and ϕi is an arbitrary bijection

from Ci onto the set

{ϕ̂(i), ϕ̂(i) + f, ϕ̂(i) + 2f, . . . , ϕ̂(i) + (
n

f
− 1)f}.

Proof. The necessity of (i) has already been shown above. The sufficiency follows
from (ii). (ii) is proved easily using the definition of a circulant and the property of τ
stated in the hypothesis of the proposition.

To finish our example, consider Figure 4 where on the left part a Cayley numbering
of the factor graph G/τ2 is indicated. This numbering is extended to a Cayley numbering
of the original graph G and indicated on the right part of the picture.
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Here, we have indicated the Cayley numbering
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z 0 1 2 3 4 5 6 7 8 9 10 11
ϕ(z) 0 6 1 2 9 10 5 4 8 3 11 7

However, every mapping ϕ satisfying

ϕ({0, 7, 8}) = {0, 4, 8}, ϕ({2, 4, 6}) = {1, 5, 9},

ϕ({1, 3, 5}) = {2, 6, 10}, ϕ({9, 10, 11}) = {3, 7, 11}
would be a Cayley numbering, too.

Replacing G by G/τ for finding a Cayley numbering, if such a numbering exists, is
an efficient step in the process of recognizing circulants, which can be applied to any
graph G, provided its coherent configuration is an association scheme and contains an
equivalence τ which satisfies the hypothesis of Proposition 2.2. Notice that τ corresponds
to a non-trivial stabilizer of the connection set γ(0) iff each set of neighbours γ(x) of the
input graph (X, γ) is a union of equivalence classes of τ . This shows that we can find τ or
prove that no such τ exists in time O(n2). Since a non-trivial stabilizer contains at least
two elements, each reduction step reduces the size of the input graph at least by a factor 1

2
.

We summarize the considerations in this subsection presenting the following complex-
ity statement.

Proposition 2.3. The recognition problem for arbitrary circulant graphs is polynomially
reducible to the recognition problem of circulants the connection set of which has trivial
additive stabilizer.

2.3 A simple recognition algorithm for exceptional cases

In a very few exceptional cases, when the connection set γ(0) is of a special type, a Cayley
numbering for a circulant graph G can be found without computing its coherent config-
uration. Since such exceptional cases appear also when dealing with geometric circulants
we discuss them here and present an appropriate recognition algorithm which in the gen-
eral case may be used as a subroutine.

Here we consider undirected graphs only. As before, let G = (X, γ) be the undirected
graph we want to test for being circulant and put

ψ = {(x, y) : (A(γ)2)xy = 1}.

Notice that ψ belongs to (X; Γ). Consider the following procedure.
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Algorithm 1

Input: An undirected graph G = (X, γ)

1. Compute ψ. If ψ is not regular of positive degree, then STOP with answer NO.

2. Choose x ∈ X and do:
Set ρ = γ(x);
2.1 If ρ = ∅ then STOP with answer NO

else choose y ∈ γ(x) and do:
Set x0 = x and x1 = y;

For 0 ≤ i < n− 2 do:
If |ψ(xi) ∩ γ(xi+1)| 6= 1, then delete y from ρ and goto 2.1.
If |ψ(xi) ∩ γ(xi+1)| = 1, then define xi+2 to be the unique
point in ψ(xi) ∩ γ(xi+1) .

3. Check whether (x0, x1, . . . , xn−1) is a full cycle for G;
In the positive case STOP with answer YES and output this cycle.
ϕ(xi) = i, 0 ≤ i ≤ n− 1, defines a Cayley numbering;
In the negative case STOP with answer NO.

Proposition 2.4. Let G = (X, γ), be a circulant the connection set S = γ(0) of which
contains 1 and satisfies the following conditions:

∀s,s′∈S s+ s′ = 2 ⇐⇒ s = 1 ∧ s′ = 1; (1)

∀t∈2S,s′∈S t− s′ = 1 ⇐⇒ t = 2 ∧ s′ = 1 (2)

where 2S = {s+ s | s ∈ S}. Then Algorithm 1 yields a Cayley numbering for G.

Proof. It follows from (1) that {(x, x+ 2) | x ∈ Zn} ⊆ ψ. Therefore (X,ψ) is a circulant
having some connection set T ⊆ Zn with 2 ∈ T . In particular, ψ 6= ∅. Arguing as in part
1 of Lemma 6.3, we obtain that T ⊂ 2S.

In order to prove the claim it is sufficient to show that for each x, y with y = x + 1
the following holds

ψ(x) ∩ γ(y) = {y + 1}.
We have x + 2 ∈ ψ(x), x + 2 ∈ γ(x + 1). Thus, y + 1 ∈ ψ(x) ∩ γ(y). Conversely, let
z ∈ ψ(x) ∩ γ(y). Then

z − x− (z − y) = y − x = 1,

z − x ∈ T ⊆ 2S, z − y ∈ S.
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Now by (2) z − y = 1. This shows that, once the vertices x0 and x1 are correctly
determined, the remaining numbering done by the algorithm is correct, too. Since a
Cayley numbering remains a Cayley numbering if we subtract a constant c from each
vertex x, we may choose x0 arbitrarily, x1 however must be a neighbor of x0. To find the
correct pair x0, x1 we have to try all possibilities for x1. Algorithm 1 does it.

As a corollary we have the following

Proposition 2.5. Let G = (X, γ) be a recursive circulant with connection set S =
{±1,±d, ...,±dm} and n = cdm for some c, 1 < c ≤ d. If d ≥ 4, then Algorithm 1
will determine a Cayley labeling of G.

Proof. It is sufficient to show that S satisfies (1)-(2). Consider the equation s+s′ = 2.
Since all the elements of S \ {1,−1} are contained in a subgroup of index d ≥ 4, we have
2 6∈ 〈d〉. Therefore at least one of the elements s, s′ is equal to ±1. Without loss of
generality s = ±1. If s = 1, then we are done. If s = −1, then s′ = 3 which is impossible,
since d ≥ 4. Thus (1) holds.

Consider now the equation 2s−s′ = 1, s, s′ ∈ S. As before, at least one of the elements
2s, s′ is not contained in 〈d〉. Therefore 2s ∈ {±1} or s′ ∈ {±1}. If 2s = 1, then s′ = 0
which is impossible. If 2s = −1, then s′ = −2 which is also impossible, since d ≥ 4. If
s′ = 1, then 2s = 2 and we are done. If s′ = −1, then 2s = 0, which is possible only in
the case c = 2, n = 2dm. But in this case 0 6∈ T , since 0 appears |S| times in S+S. Hence
the algorithm will work in this case as well.

Algorithm 1 involves matrix multiplication for the determination of ψ. However, since
we easily can transform an adjacency matrix A(γ) into a set of sorted adjacency lists for
γ, we can compute A(ψ) in time O(n2δ) where δ is the degree of the (regular) input graph
G. Let m be the edge number of G. We have 2m = nδ. Hence, using sorted adjacency
lists for ψ, too, the overall complexity of Algorithm 1 is O(nm).

3 Properties of geometric circulants

In the remaining part of the paper we restrict ourselves to geometric circulants GC(n, d) =
(X, γ). For such graphs, by definition,

γ(0) = ±{1, d, d2, . . . , dm} (3)

where
dm + 1 < n ≤ dm+1 + 1, 1 < d ≤ n

2
. (4)

For convenience, from now on we shorten the term geometric circulant graph to simply
gc-graph.
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Given numbers n and δ, in most cases, there are more than one gc-graphs with vertex
number n and degree δ. In particular cases, n and δ determine d andm uniquely. Unfortu-
nately, the knowledge of n, d and m, in general, does not simplify the recognition problem.

3.1 The association schemes of geometric circulants

Let again Z∗
n denote he multiplicative group of units in Zn. Our notation does not

distinguish between arithmetic modulo n and normal integer arithmetic. It will be
clear from the context which arithmetic is used. For B ⊂ Zn and k ∈ Zn define
{B}k = {b mod(k) | b ∈ B}. The following theorem shows the main features of the asso-
ciation schemes, respectively, the S-rings of gc-graphs and presents the basic knowledge
necessary for the construction of an efficient recognition algorithm for such graphs.

Theorem 3.1. Let (X, γ) be a gc-graph GC(n, d). Then either

(i) 〈〈γ〉〉 has basic set {1,−1} or

(ii) the stabilizer Stab+(γ(0)) is a non-trivial subgroup 〈f〉 of Zn

and {γ(0)}f = {1,−1} or

(iii) γ(0) is a subgroup of Z∗
n.

Proof. Let GC(n, d) and its S-ring S = 〈〈γ〉〉 be given. By (S7), aγ(0) is an S-set for
every a ∈ Z∗

n. Assume that there is an a ∈ Z∗
n \ {1}, satisfying ad = d. For such a we find

γ(0) \ aγ(0) = {1,−1}

is an S-set and therefore must be a basic set of S. Therefore, (i) happens if

xf = f

has a non-trivial solution x ∈ Z∗
n. Here, f = gcd(n, d). For x ∈ Z∗

n we have gcd(xf, n) = f .
The number of elements y ∈ Zn satisfying gcd(y, n) = f equals ϕ(n

f
) (where ϕ is the Euler

function). Therefore, if ϕ(n
f
) < ϕ(n), then xf = f has a non-trivial solution in Z∗

n. From

well-known properties of the Euler function it can be seen that ϕ(n
f
) < ϕ(n) always holds

except when f = 1 or when f = 2 and n
f

is odd. Thus, xf = f has a non-trivial solution
in Z∗

n except in the two following cases:

• Case 1: f = 2 and n = fq where q is odd.

• Case 2: f = 1.
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Assume that we are in Case 1 and m ≥ 2. The sets

[Zn]h = {x ∈ Zn : gcd(n, x) = h}
are the orbits of Z∗

n acting on Zn by multiplication. Thus, since d2 < n and gcd(n, d) =
gcd(n, d2) = 2 there exists an l ∈ Z∗

n satisfying dl = d2. Put K = γ(0) ∩ lγ(0). Then
±{d2, . . . , dm} ⊆ K ⊆ ±{d, d2, . . . , dm}. By (S7) and (S8) K is a non-empty S-set. Thus,
〈K〉 is an S-group. Since 〈d2〉 ≤ 〈K〉 ≤ 〈d〉 and 〈d2〉 = 〈d〉 = 〈2〉, we find 〈K〉 = 〈2〉.
Therefore γ(0) \ 〈2〉 = {−1, 1} is a basic set S-set.

If m = 1, then d2 ≥ n − 1 such that γ(0) = {1, d,−d,−1}. Here, we should consider
Table 1 which shows the entries in γ(0) + γ(0).

Table 1 1 −1 d −d
1 2 0 1 + d 1 − d
−1 0 −2 −1 + d −1 − d
d d+ 1 d− 1 2d 0
−d −d + 1 −d − 1 0 −2d

Note that, since d and n are even numbers,

{2,−2, 2d,−2d} ∩ {1 + d, 1 − d,−1 + d,−1 − d} = ∅.
Thus, unless 2d = −2 (2d = 2 would contradict d ≤ n

2
), the elements of Table 1

determine two simple quantities K and L of S with K = {2,−2, 2d,−2d} and L =
{d + 1,−d − 1, d − 1,−d + 1} (since the frequency of the elements in K is 1, while the
elements of L appear exactly twice). Since 2 ∈ K, the subgroup 〈2〉 = 〈K〉 is an S-group.
Therefore, {1,−1} = γ(0) \ 〈2〉 is a basic set of S.

Finally, consider the case 2d = n− 2. We have

γ(0) + γ(0) = 4 · {0} + 4 · {q} + 2 · {2,−2, q + 2, q − 2}
and Stab+(γ(0)) = 〈d+ 1〉 = 〈q〉, which implies γ(0) = {1,−1}+ 〈q〉. This proves that in
Case 1 we meet one of the situations (i) or (ii).

Notice that m = 1, 2d = n−2 always leads to case (ii), no matter whether xf = f, x ∈
Z∗

n has a non-trivial solution or not.

Finally, assume gcd(n, d) = 1 (Case 2). Then either

γ(0) \ (dγ(0)) = {1,−1},
and is therefore a basic set of S, or dγ(0) = γ(0) which implies that γ(0) is a subgroup of
Z∗

n and that either n|(dm+1 − 1) or n|(dm+1 + 1). This observation completes the proof of
the theorem.
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3.2 Cyclotomic geometric circulants

We call a circulant (X, γ) a cyclotomic circulant if its connection set γ(0) is a subgroup H
of Z∗

n. The term cyclotomic was introduced in [10] in connection with association schemes,
see also [8], p. 66. Let a1H, a2H, . . . , arH, a1 = 1, be the orbits of H acting on Zn by
multiplication. Then

T0 = {0}, T1 = a1H, . . . Tr = arH

are the basic quantities of an S-ring S, and

{(x, y) : y − x ∈ Ti}, 0 ≤ i ≤ r,

are the basic relations of an association scheme.

The S-ring S is not necessarily generated by H. In general, 〈〈H〉〉 is some fusion of
S. However, it is known that 〈〈H〉〉 = S iff Stab+(H) is trivial (see [19]). Therefore,
with the help of Proposition 2.2, the recognition problem for general cyclotomic circu-
lants coincides with the recognition problem for cyclotomic association schemes. This is a
challenging problem on its own with which we plan to deal in a forthcoming paper. Here
we restrict our attention to the case of cyclotomic geometric circulants, for which subclass
recognition is much easier than for general cyclotomic circulants.

In this section we assume that the parameters of the graph GC(n, d) satisfy the con-
ditions

dm + 1 < n ≤ dm+1 + 1

1 < d ≤ n
2
, m > 0, n ≥ 4,

n | (dm+1 + 1) or n | (dm+1 − 1),

GC(n, d) is not complete.

(5)

such that the connection set

H = ±{1, d, . . . , dm}
is a subgroup of Z∗

n. Our assumptions imply that |H| > 2. Otherwise the graph
GC(n, d) would be a Hamiltonian cycle and the recognition problem would be trivial.
If Stab+(H) 6= {0}, then let f be its smallest generator. A simple calculation shows
that Hf = ±{1, . . . , da−1} for some a ∈ {1, 2, . . . , m}. Thus, the factor graph of GC(n, d)
modulo the equivalence τ which corresponds to Stab+(H) is again a cyclotomic geometric
circulant. So we may assume that Stab+(H) is trivial.

For each i ∈ Zn we set γi = {(x, y) ∈ Zn × Zn | x − y ∈ iH}. Obviously, in the
current context, γ1 = γ. The S-ring of GC(n, d) has basic sets iH, i ∈ J , and its circulant
association scheme has basic relations γi, i ∈ J, where J = {0, 1, a2, . . . , ar} is a set of
representatives of the orbits of H considered as acting on Zn by multiplication.
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Remark: It is easy to see that, if ϕ : Zn −→ Zn is a Cayley numbering for a
cyclotomic circulant G = GC(n, d), then for b ∈ Zn and a ∈ H also ϕa,b defined by
ϕa,b(z) = a ·ϕ(z)+ b is a Cayley numbering. For this reason, if (x, y) ∈ γ is arbitrary and
if a Cayley numbering for the candidate graph G exists, then there is also one which as-
signs 0 to x and 1 to y. We shall make freely use of this property in this subsection. Note
that each ϕa,b(z) is an automorphism of G, hence, a cyclotomic circulant is arc-transitive.

For the discussion of cyclotomic geometric circulants we need some auxiliary state-
ments the proof of which is moved to the appendix.

Lemma 3.1. If (m, d, n) satisfies (5), then

(i) n ≥ 1 + d+ ...+ dm and

(ii) if d = 2, then n = 2m+1 ± 1.

Lemma 3.2. If (m,n) 6= (1, 2d+ 2) and satisfies (5), then |2H| = |H|.

Lemma 3.3. If (m, d, n) 6∈ {(1, d, 2d+ 2), (2, 3, 14)} and satisfies (5), then

(i) the structure constant pγi
γ1,γ1

is odd if and only if γi = γ2;

(ii)

pγ2
γ1,γ1

=

{
1, if d ≥ 4;
3, if d = 2, 3.

(iii)

2H ∩ (1 + H) =




{2} if d ≥ 4;
{2, 2

3
,−2}, if d = 3;

{2, 1
2
,−1}, if d = 2

(where 1
3

= ±3m and 1
2

= ±2m, the signs ± distinguishing the two cases n | (dm+1−1)
and n | (dm+1 + 1), respectively).

Note that If (m, d, n) = (1, 2, 2d+ 2), then we are in the case discussed at the end of
the proof of Theorem 3.1 in which Stab+(γ(0)) is non-trivial.

The first part of Lemma 3.3 implies that γ2 is uniquely determined by γ1. More pre-
cisely, γ2 = {(x, y) | (A(γ1)A(γ1))xy ≡ 1 (mod 2)}.

Consider at first the case when d ≥ 4. In this case pγ2
γ1γ1

= 1. Since γ1 and γ2 are of
the same valency Lemma 3.2 implies that pγ1

γ2γ1
= 1. Pick an arbitrary pair (x0, x1) ∈ γ1

and define the sequence xk, 2 ≤ n− 1, recursively as follows:
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{xk} = γ2(xk−2) ∩ γ1(xk−1). (6)

This definition is correct, since |γ2(xk−2) ∩ γ1(xk−1)| = pγ1
γ2γ1

= 1.

Proposition 3.4. If (X, γ) is a cyclotomic geometric circulant with d ≥ 4 and x0 =
0, x1 = 1, then xk = k, 2 ≤ k ≤ n− 1.

Proof. The proof is by induction on k. The statement holds by assumption for
k = 0, 1. Hence let k ≥ 2. Assume that xk−2 = k − 2 and xk−1 = k − 1. Set
a = xk − xk−2, b = xk − xk−1. By construction a ∈ 2H, b ∈ H and 1 + b = a. Clearly
that b = 1, a = 2 is a solution of this equation. By Lemma 3.3 it is unique. Hence
xk = xk−2 + 2 = k, as desired.

Note that the proof just given shows that S = γ(0) fulfills the conditions (1)-(2) of
Proposition 2.4.

Proposition 3.4 enables us to reconstruct a Cayley numbering of a cyclotomic gc-graph,
provided d ≥ 4. Recall that according to the remark above the pair (x0, x1) ∈ γ1 may be
chosen arbitrarily. The remaining cases are more complicated. The problem is that the
point xk cannot be determined by (6), since γ2(xk−2)∩ γ1(xk−1) contains three points. In
this case xk should be separated by using a configuration with more than three points.
The method we propose is based on the following proposition. It does not work in the
case of a few small exceptional graphs defined by triples (m, d, n) in the set

K = {(1, 3, 8), (1, 3, 10), (2, 2, 9), (2, 3, 13), (2, 3, 14),

(2, 3, 26), (2, 3, 28), (3, 2, 15)}.

Proposition 3.5. Assume d ∈ {2, 3} and (m, d, n) 6∈ K. Let (x, y) ∈ γ1 be arbitrary.
Then z1 = 2y − x is the unique point of X which satisfies the following conditions:

z1 ∈ γ2(x) ∩ γ1(y);
Min{|γ2(y) ∩ γ1(z1) ∩ γ1(z2)|, |γ2(y) ∩ γ1(z1) ∩ γ1(z3)|} >

|γ2(y) ∩ γ1(z2) ∩ γ1(z3)|
(7)

where z2 and z3 are defined by {z2, z3} = γ2(x) ∩ γ1(y) \ {z1}.
Proof. The proof is given in the appendix.

Remarks.
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1. If (m, d, n) = (1, 3, 8), then G = K4,4, the complete bipartite graph on two sets of
four vertices each.

2. If (m, d, n) = (2, 3, 13), then G is a Paley graph (see [9], p. 35).

3. If (m, d, n) = (2, 3, 26), then G is a bipartite graph the coherent configuration of
which contains an equivalence with 13 classes of size 2. The factor graph with respect
to this equivalence is isomorphic to the Paley graph on 13 vertices just mentioned.

4. If (m, d, n) = (3, 2, 15), then G is a tensor product of K3 and K5.

5. The remaining exceptional graphs have a similar simple structure.

In analogy to the case d ≥ 4 we may construct a Cayley labeling for a cyclotomic gc-
graph with d ∈ {2, 3} proceeding in the following way. Pick an arbitrary pair (x0, x1) ∈
γ = γ1 and define the sequence xk, 2 ≤ k ≤ n− 1, recursively as follows:

xk is the unique vertex z1 which satisfies (7) in Proposition 3.5 with
x = xk−2 and y = xk−1.

The following proposition completes our discussion of cyclotomic gc-graphs.

Proposition 3.6. Let (X, γ) be a cyclotomic gc-graph satisfying the assumption of Propo-
sition 3.5. If x0 = 0, x1 = 1, then xk = k, 2 ≤ k ≤ n− 1.

4 The algorithm

Since there are only a finite number of exceptional graphs, given an arbitrary input graph
G, we can decide in a preprocessing phase whether G is exceptional or not, and if yes,
determine a Cayley numbering for G. This preprocessing needs constant time and does
not influence the theoretical complexity of our recognition method. Therefore we formu-
late the following recognition algorithm for processing non-exceptional graphs only.

Algorithm 2

Input: A connected undirected regular non-exceptional graph G = (X, γ) of degree
δ, 2 ≤ δ < |X| − 1;

Step 1:
1.1 Compute the coherent configuration (X; Γ) = 〈〈γ〉〉;
1.2 If (X; Γ) is not a symmetric association scheme, then goto 6.2;
1.3 Otherwise let γ0 = εX , γ1, . . . , γs be the basic relations of (X; Γ)

with γi ⊆ γ for 1 ≤ i ≤ t and γi ∩ γ = ∅ for t+ 1 ≤ i ≤ s;
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Put i = 1;

Step 2:
2.1 If i < s compute the connected components C0, C1, . . . , Cf−1 of the

basic graph Gi = (X, γi) else goto 4.1;
2.2 If Gi is connected, then

If Gi has degree 2, then do:
Choose arbitrarily x0 and one of the two possible orientations
of the undirected cycle Gi, determine its sequence
of vertices (x0, x1, . . . , xn−1) and consider this as cyclic permutation g;
If g is a full cycle for G, then define ϕ(xj) = j, 0 ≤ j ≤ n− 1,
and goto 6.1 else goto 6.2;

Otherwise, put i = i+ 1 and goto 2.1;
2.3 If Gi is not connected, then

for 0 ≤ k ≤ f − 1 do:
Choose x ∈ Ck and compute γ(x);
Put γ̂k = ∅;
For 0 ≤ j ≤ f − 1 do

If γ(x) ∩ Cj 6= ∅ and Cj 6⊂ γ(x) then put i = i+ 1 and goto 2.1;
If Cj ⊆ γ(x), then put γ̂k = γ̂k ∪ {j};

Step 3:
3.1 Define

X̂ = {0, . . . , f − 1}; γ̂ =

f−1⋃
k=0

{k} × γk;

3.2 If |γ̂(0)| > 2, then goto 6.2;
3.3 Let (X̂, γ̂) be the undirected cycle (i0, i1, . . . , if−1) and

define ϕ̂(is) = s, 0 ≤ s ≤ f − 1;
3.4 For 0 ≤ k ≤ f − 1 renumber all vertices of Ck

arbitrarily using the numbers in ϕ̂(k) + 〈f〉;
3.5 For x ∈ X denote its new number by ϕ(x) and goto 6.1;

Step 4:
4.1 Compute ψ = {(x, y) |(A(γ)2)x,y = 1};

If ψ is not regular of positive degree, then goto 5.1;
4.2 Choose (x, y) ∈ X and do:

Set x0 := x, x1 := y.
For 0 ≤ i < n− 2 do:

If |ψ(xi) ∩ γ(xi+1)| 6= 1, then goto 5.1;
If |ψ(xi) ∩ γ(xi+1)| = 1, then define xi+2 as the unique point in
ψ(xi) ∩ γ(xi+1)

4.3 If g = (x0, x1, . . . , xn−1) is a full cycle of (X, γ), then
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define ϕ(xi) = i, 0 ≤ i ≤ n− 1, and goto 6.1;

Step 5:
5.1 Compute ψ = {(x, y) |(A(γ)2)x,y = 3};

If ψ is not regular of positive degree, then goto 6.2;
5.2 Choose (x, y) ∈ X and do:

Set x0 := x, x1 := y.
For 0 ≤ i < n− 2 do:

If |ψ(xi) ∩ γ(xi+1)| 6= 3, then goto 6.2;
If |ψ(xi) ∩ γ(xi+1)| = 3, then do

if there is a unique vertex in ψ(xi) ∩ γ(xi+1)
which satisfies condition (7) in Proposition 3.5,
then denote this vertex by xi+2 else goto 6.2;

5.3 If g = (x0, x1, . . . , xn−1) is a full cycle of (X, γ), then
define ϕ(xi) = i, 0 ≤ i ≤ n− 1, and goto 6.1
else goto 6.2;

Step 6:
6.1 STOP with answer YES and output the Cayley numbering ϕ;
6.2 STOP with answer NO;

5 Concluding Remarks

The most time consuming step of Algorithm 2 is Step 1, thus, this algorithm has time
complexity O(n3 ln n). If in Step 2 a connected basic graph Gi of degree 2 is found, then
we are in Case (i) of Theorem 3.1, Gi is an undirected cycle which possibly determines a
full cycle Aut(G). If in Step 2 an equivalence relation is found such that each γ(x) is a
union of equivalence classes, then we are in Case (ii) of Theorem 3.1. From the proof of
this theorem it follows that the reduction step leads to a quotient graph which is a cycle.
Therefore, in Step 3, Algorithm 2 checks whether a cycle has been found, and if yes, then
it constructs the corresponding Cayley numbering. If this case does not happen, then
the algorithm continues with Step 4, which is basically Algorithm 1, with the difference
that here, because of the arc transitivity of cyclotomic gc-graphs, we need only consider
a single choice for (x0, x1). If this step does not lead to a Cayley numbering, then Step 5
is entered in which the case of Proposition 3.5 is checked. This step is analogous to Step
4, only the search for the next vertex in the sequence is more involved. Finally, if Step
5 does not end with the determination of a Cayley numbering, then Algorithm 2 stops
with answer NO. A stop with answer NO is also reached, when (X,Γ) is not a symmetric
association scheme or when the reduction in Step 3 leads not to a cycle, a situation which
cannot happen for a gc-graph. In all other cases, Algorithm 2 yields a Cayley numbering
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for the input graph G. Summarizing we can now state the main result of our paper in the
following theorem.

Theorem. Geometric circulants can be recognized in time O(n3 ln n) using the above
Algorithm 2.

Algorithm 2 solves not only the recognition problem for gc-graphs but also for all
graphs generating an association scheme having a connected basic graph (X, γi) of degree
≤ 2 and for graphs having a factor graph which is a cycle. The algorithm could easily be
extended to recognize all circulants having a coset graph which is a gc-graph.

While the cases (i) and (ii) of Theorem 3.1 can be handled in a straightforward manner,
the treatment of case (iii), where the connection set is a subgroup of Z∗

n, needs additional
knowledge of the structure of the association scheme, respectively, the S-ring generated
by cyclotomic circulants. Every recognition algorithm for a class of circulants containing
cyclotomic circulants will need such knowledge, too. For this reason it seems reasonable
to look more closely to the structure of general cyclotomic circulants and try to find a
polynomial time recognition algorithm for them. In our eyes, this is a challenging task
which we plan to undertake in a forthcoming publication.

6 Appendix

6.1 Coherent configurations

We now summarize briefly the properties of coherent configurations and Schur rings which
we have used in the main body of this paper. Most of them have been developed basically
in earlier papers of the first author and have already been used in [21]. We use the same
notation as in this latter publication.

Let X be a finite set. We use small Greek letters for binary relations on X and capital
Greek letters for sets of such relations. A set Γ of binary relations onX is called a coherent
configuration [16] if it satisfies the following axioms:

• (CC1) There exists a subset Π ⊂ Γ such that the identical relation εX = {(x, x) | x ∈
X} is a union of π ∈ Π, εX =

⋃
π∈Π π.

• (CC2) The relations from Γ form a partition of X2;

• (CC3) ∀γ ∈ Γ, γt = {(x, y) | (y, x) ∈ γ} ∈ Γ;

• (CC4) For each triple α, β, γ ∈ Γ and a pair (x, y) ∈ γ the number

pγ
α,β = |{z ∈ X | (x, z) ∈ α, (z, y) ∈ β}|
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does not depend on the choice of the pair (x, y) ∈ γ.

The elements of Γ are called basic relations, their graphs basic graphs, and the numbers
pγ

α,β are called the structure constants of the coherent configuration (X; Γ).

For any relation γ ∈ Γ and a point x ∈ X we set

γ(x) = {y ∈ X | (x, y) ∈ γ}.
For Π ⊂ Γ, let Π(x) =

⋃
π∈Π π(x).

A coherent configuration (X; Γ) is called homogeneous if

• (CC5) ∀γ∈Γ∀x,y∈X(|γ(x)| = |γ(y)|).

An adjacency matrix A(γ), γ ∈ Γ, is an X × X matrix whose (x, y)-entry is 1 if
(x, y) ∈ γ and 0 otherwise. The complex vector subspace of MX(C) spanned by the
adjacency matrices A(γ), γ ∈ Γ, is a complex matrix algebra of dimension |Γ| which is
known as the Bose-Mesner algebra of (X; Γ).

The automorphism group Aut(X; Γ) of a coherent configuration is a subgroup of the
symmetric group S(X) defined as follows

Aut(X; Γ) = {g ∈ S(X) | ∀γ∈Γ(γg = γ) }.
We set Rel(Γ) = {⋃γ∈Π γ | Π ⊂ Γ}. In other words, Rel(Γ) is the set of all binary

relations that may be obtained as unions of those belonging to Γ.

If Φ is any set of binary relations defined on X, then by 〈〈Φ〉〉 we denote the mini-
mal coherent configuration (X; Γ) satisfying the property: Φ ∈ Rel(Γ). We say that this
configuration is generated by Φ. It is uniquely determined by Φ and may be found by an
appropriate version of the Weisfeiler-Leman method in time O(|X|3 log(|X|)) (see [3]).
A version of this algorithm with much higher worst case time-complexity, but which is
nevertheless very efficient in the range up to n = 1000, is presented in [4].

An equivalence relation τ ⊂ X×X is said to be an equivalence of (X; Γ) if τ ∈ Rel(Γ).
It is called non-trivial if the number of equivalence classes is strictly greater than 1 and
less than |X|. A homogeneous coherent configuration (X; Γ) is called imprimitive if Rel(Γ)
contains a non-trivial equivalence relation. If Rel(Γ) does not contain such a relation, then
(X; Γ) is said to be primitive.

The equivalence classes of an equivalence relation τ coincide with the connected com-
ponents of the graph (X; τ). If (X; Γ) is homogeneous, then each equivalence class of τ has
the same number of elements (see for example [24], page 48). Denote this number by ν(τ).
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Every basic relation γ of a homogeneous coherent configuration (X; Γ) generates an
equivalence relation τ(γ) ∈ Rel(Γ). Let V1, . . . , Vp(γ) be the components of (X, γ) and put

Π(γ) = {γ′ : γ′ ∩ (Vi × Vi) 6= ∅}

for some i ∈ {1, . . . , p(γ)}. Then Π(γ) is independent of i and

τ(γ) =
⋃

γ′∈Π(γ)

γ′.

The connected components of (X, γ) can be found in time O(|X|+ |γ|). This implies the
validity of the following lemma, which we present here for easy reference in later sections.

Lemma 6.1. For a homogeneous coherent configuration (X; Γ) a list of all equivalence
relations generated by basic relations can be computed in time O(n2).

We say that a coherent configuration (X; Γ) is circulant if its automorphism group
contains a full cycle, i.e., a permutation of the form g = (x1, ..., xn), where n = |X|. The
cyclic group 〈g〉 generated by g acts transitively on X. Therefore, if (X; Γ) is circulant
then Aute(X; Γ) is a transitive permutation group and (X; Γ) is homogeneous.

For any graph G = (X, γ) the coherent configuration generated by Φ = {γ} is called
the coherent configuration of G and denoted by 〈〈γ〉〉. Note that a graph G = (X, γ) is a
circulant graph iff its coherent configuration 〈〈γ〉〉 is circulant. In particular, each basic
graph of 〈〈γ〉〉 is a circulant graph. For this reason, we have to prepare ourselves to deal
conveniently with circulant coherent configurations.

6.2 Properties of circulant coherent configurations.

Let (X; Γ) be a circulant coherent configuration and g ∈ Aut(X; Γ) be a full cycle. Fix
an arbitrary point x ∈ X and consider the mapping

logg,x : Γ → 2Zn

defined as follows:
logg,x(γ) = {k ∈ Zn | (x, xgk

) ∈ γ}.
It is easy to see ([21]) that logg,x does not depend on the choice of the point x ∈ X.

Thus we shall write logg(γ) instead of logg,x(γ). Obviously, logg(εX) = {0}.

It should be mentioned that in general logg(γ) depends on the choice of the full cycle
g ∈ Aut(X; Γ).
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Given a subset T ⊂ Zn, we define a binary relation expg(T ) as follows:

expg(T ) = {(z, zgk

) | k ∈ T, z ∈ X}.

The following proposition is easy to check (see [21]).

Proposition 6.2. (i) expg(logg(γ)) = γ, logg(expg(T )) = T ;

(ii) Let γ 6= σ ∈ Γ be two arbitrary relations. Then logg(γ) ∩ logg(σ) = ∅;
(iii) For arbitrary γ ∈ Γ we have logg(γ

t) = −logg(γ);

(iv) If A(γ), γ ∈ Γ, is the adjacency matrix of γ ∈ Γ and Pg is the permutation matrix
of g, then A(γ) =

∑
k∈logg(γ) P

k
g ;

(v)
⋃

γ∈Γ logg(γ) = Zn;

(vi) γ ∈ Rel(Γ) is an equivalence relation if and only if logg(γ) is a subgroup of Zn. The
classes of an equivalence γ are the connected components of (X, γ). They correspond
bijectively to the cosets of logg(γ) in Zn.

The mapping logg assigns to a circulant coherent configuration a certain partition of
Zn. To characterize all partitions obtainable in this way from coherent configurations we
need the notion of a Schur ring.

6.3 Schur rings.

Let H be a finite group written multiplicatively and with identity e. Let ZH be the group
algebra over the ring Z of integers. Given any subset T ⊂ H, we denote by T the follow-
ing element of ZH: T =

∑
t∈T t. According to [25] we call such elements simple quantities.

Definition.[25] A Z-subalgebra S ⊂ ZH is called Schur ring (briefly S-ring) over H
if it satisfies the following conditions:

• (S1) There exists a basis of S consisting of simple quantities T 0, T 1, ..., T r;

• (S2) T0 = {e} and ∪r
i=0Ti = H;

• (S3) Ti ∩ Tj = ∅ if i 6= j;

• (S4) For each i ∈ {0, 1, ..., r} there exists i′ ∈ {0, 1, ..., r} such that Ti′ = {t−1|t ∈ Ti}.
The basis T 0, ..., T r is called the standard basis and the simple quantities T i (resp. the

sets Ti) are called basic quantities (resp. basic sets) of S. The notation S = 〈T 0, ..., T r〉
means that T 0, ..., T r is the standard basis of S.

the electronic journal of combinatorics 8 (2001), #R26 24



Assume now that an S-ring S over H is given. A subset (or subgroup) B of H is called
S-subset (S-subgroup) if B ∈ S. It is clear that the set of S-subsets is closed under all
set-theoretical operations.

For any subset C of the group H let 〈〈C〉〉 denote the S-ring generated by C, i. e. the
smallest S-ring containing C. An S-ring S ′ over the group H is an S-subring of S defined
over the same group H if S ′ ⊂ S.

For a circulant graph G = (X, γ) the S-ring 〈〈γ(0)〉〉 which is generated by the connec-
tion set of G is called the S-ring generated by G, or shortly, the S-ring of G.

For convenient reference we list here some fundamental properties of S-rings which are
proved elsewhere in the literature. Since in the next sections we have to deal with S-rings
over Zn exclusively, we formulate these properties under the assumption that H = Zn.

(S5) For any B ⊆ Zn let

Stab+(B) = {h ∈ Zn : h+B = B}

(the stabilizer of B). If B is an S-subset, then Stab+(B) is an S-subgroup.

(S6) For any B ⊆ Zn let 〈B〉 denote the subgroup of Zn generated by B. If B is an
S-subset, then 〈B〉 is an S-subgroup.

(S7) For any S-subset B and any a ∈ Z∗
n also aB = {ab : b ∈ B} is an S-subset.

(S8) If two subsets K and L of Zn are S-sets then their intersection K ∩ L and their
differences K \ L and L \K are S-sets, too.

Proofs of (S5) - (S8) can be found in [25] (Proposition 23.5, Proposition 23.6, Propo-
sition 23.9).

The connection between Schur rings and cyclic coherent configurations is given by the
following statement.

Lemma 6.3. Let g be an arbitrary cyclic permutation of X. Then the map Γ 7→ logg(Γ) is
a bijection between g-invariant coherent configurations and Schur rings over Zn. Moreover,
the map A(γ) 7→ logg(γ) defines an isomorphism between the Bose-Mesner algebra of

(X; Γ) and the Schur ring 〈logg(γ)〉γ∈Γ.

Proof. See [21]

As a first consequence of this claim we obtain the following property of circulant co-
herent configurations.
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Proposition 6.4. If (X; Γ) is a circulant coherent configuration, then its Bose-Mesner
algebra is commutative.

A coherent configuration the Bose-Mesner algebra of which is commutative is known
as association scheme [5]. For this reason we shall call a circulant coherent configuration
a circulant association scheme.

Proposition 6.5. Let (X; Γ) be a non-trivial circulant association scheme and let g ∈
Aut(Γ) be a full cycle. Then the following statements hold:

(i) (X; Γ) is primitive iff |X| is prime.

(ii) Assume that (X; Γ) is imprimitive and let π ∈ Rel(Γ) be a non-trivial equivalence
relation. Then each equivalence class π(x), x ∈ X is an orbit of a subgroup 〈gn/d〉
where d = |π(x)|.

(iii) If (X; Γ) is an imprimitive circulant scheme, then it has a unique non-trivial equiv-
alence relation τ ∈ Rel(Γ) with a maximal number of classes.

Proof. (i) follows from Theorem 25.3 of [25]. (ii) π is an equivalence relation invariant
under Aut(X; Γ). Therefore, π is invariant under the action of Cn = 〈g〉 which acts
regularly on X. Now the claim becomes evident. Part (iii) is a direct consequence of the
previous part.

Proposition 6.6. Let G = (X, γ) be a circulant graph and g one of its full cycles. Let
γ0, . . . , γr be the basic relations of its circulant association scheme 〈〈γ〉〉 and T0, . . . , Tr

the basic quantities of S-ring its 〈〈γ(0)〉〉. Then

(i) 〈〈γ(0)〉〉 = logg(〈〈γ〉〉), respectively, 〈〈γ〉〉 = expg(〈〈γ(0)〉〉).
(ii) If G is an undirected graph, then all basic relations are symmetric, i. e. all basic

graphs are undirected circulants, and all basic quantities satisfy Ti = −Ti.

Proof. (i) is obvious. (ii) follows easily from the definition of 〈〈γ〉〉.

6.4 Proofs

Proof of Lemma 3.1.

1. Since n | (dm+1 ± 1), dm+1±1
n

is an integer. By assumption dm + 1 < n. Therefore

dm+1 ± 1

n
<
dm+1 ± 1

dm + 1
< d
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which implies
dm+1 ± 1

n
≤ d− 1 ⇒ n ≥ dm+1 ± 1

d− 1
.

Thus,
n ≥ 1 + d+ d2 + . . .+ dm.

2. (ii) is a direct consequence of (i) which implies n ≥ 2m+1±1. If n is a proper divisor
of 2m+1 ± 1, then n < 2m ± 1 = dm ± 1, a contradiction to (5).

Proof of Lemma 3.2.

Assume |2H| < |H|. Then obviously d ≥ 3, n is even and 2εad
a ≡n 2 for some

εa ∈ {1,−1} with εad
a 6= 1. Therefore n | 2(εad

a − 1) 6= 0.

If n is a proper divisor of 2(εad
a − 1), then n ≤ |εad

a − 1| ≤ dm + 1, which contradicts
(5). Hence, n = 2|εad

a − 1|.

If a ≤ m − 1, then n ≤ 2(dm−1 + 1) < dm + 2, again a contradiction. Hence a = m
and either n = 2(dm − 1) or n = 2(dm + 1).

If n = 2(dm − 1), n | (dm+1 − 1), then n
2
| gcd(dm − 1, dm+1 − 1) = d− 1, which implies

m = 1, n = 2(d− 1), a contradiction to d ≤ n
2
.

If n = 2(dm − 1), n | (dm+1 + 1) or n = 2(dm + 1), n | (dm+1 ± 1) , then we have
n
2
| gcd(dm − 1, dm+1 + 1) | d + 1. Due to (5) this yields n | 2(d + 1) which implies m =

1, n = 2(d+ 1), a contradiction to (m,n) 6= (1, 2d+ 2).

Proof of Lemma 3.3.

1. Assume iH 6= 2H. Take an arbitrary t ∈ iH and let (x, y) ∈ H2 be a pair with
x + y = t. Since iH ∩ 2H = ∅, x 6= y and, therefore, since the pair (y, x) also satisfies
y + x = t, we always have an even number of solutions which implies pγi

γ1,γ1
≡2 0.

2. The structure constant pγ2
γ1,γ1

is equal to the number of ordered pairs (x, y) ∈ H2

which satisfy x+ y = 2. Let εad
a + εbd

b ≡n 2 where εa = ±1, εb = ±1. Since

|εad
a + εbd

b − 2| ≤ 2dm + 2,

and |εad
a + εbd

b − 2| = kn, we have

k ≤ 2dm + 2

n
≤ 2dm + 2

dm + 2
< 2.

Therefore either |εad
a + εbd

b − 2| = n or εad
a + εbd

b − 2 = 0.
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Case 1. |εad
a + εbd

b − 2| = n.

If d = 2, then by Lemma 3.1 n is odd, and, therefore, either a or b is zero. This implies
2m+1±1 = n = |εad

a +εbd
b−2| ≤ 2m +3. Since m = 1 would imply n = 2m+1 +1 = 5 and

since (1,2,5) defines the complete graph K5, it follows that m = 2, n = 2m+1 −1 = 7. But
(m, d, n) = (2, 2, 7) defines the complete graph K7. This shows that d = 2 contradicts the
hypothesis if the lemma.

Assume now that d ≥ 3. If both a and b are at most m−1, then n = |εad
a+εbd

b−2| ≤
2dm−1+2 < dm+2, a contradiction. Assume therefore a = m. This implies n = dm±db±2.
If b = m, then 2(dm ± 1) = n | (dm+1 ± 1) which implies m = 1, n = 2d± 2, contradicting
either d ≤ n

2
or (m, d, n) 6= (1, d, 2d+ 2). Thus we may assume that b ≤ m− 1.

If m = 1, then n = d±1±2 ∈ {d+3, d+1, d−1, d−3} which together with n ≥ dm+2
implies n = d + 3. But (d + 3) | (d2 − 1) ⇐⇒ d = 5 ⇐⇒ (m, d, n) = (1, 5, 8), whereas
(d + 3) | (d2 + 1) ⇐⇒ d = 7 ⇐⇒ (m, d, n) = (1, 7, 10), such that in both cases we get
a contradiction to d ≤ n

2
.

In the remaining case the triple (m, d, n) satisfies the conditions

1 + d+ ...+ dm−1 + dm ≤ n = dm ± db ± 2, b ≤ m− 1,

m ≥ 2, d ≥ 3

which imply m = 2 and n = d2 + d+ 2 = 14, such that n | dm+1 + 1 for d = 3. This case
is excluded by assumption.

Case 2. εad
a + εbd

b − 2 = 0.

We may assume that εa = 1. If εb = 1, then a = 0, b = 0 is the unique solution. If
εb = −1, then da = db + 2 which implies that a > b, and consequently 2 = db(da−b − 1).
If d ≥ 4, then this equation has no solution. If d = 3, then it has the unique solution
b = 0, a = 1, if d = 2, then it has the unique solution b = 1, a = 2.

Thus we see that under the assumptions of the lemma the equation 2 = x+ y, (x, y) ∈
H2 has the following solutions:

(1, 1) if d ≥ 4;
(1, 1), (3,−1), (−1, 3) if d = 3;
(1, 1), (4,−2), (−2, 4) if d = 2.

3. x ∈ 2H∩ (1 + H) if and only if there exists h1, h2 ∈ H such that x = 2h1 = 1 + h2.
Therefore, we have to find all pairs (h1, h2) ∈ H2 which satisfies 1 = 2h1 − h2, or,
equivalently, 2 = h−1

1 + h−1
1 h2. Since H is a multiplicative group, h1, h2 ∈ H implies

h−1
1 ∈ H, h−1

1 h2 ∈ H. All solutions of the equation 2 = x1 + x2, xi ∈ H were found in the

the electronic journal of combinatorics 8 (2001), #R26 28



previous part. Using these solutions one can easily finish the proof.

Proof of Proposition 3.5.

We distinguish two cases d = 2 and d = 3.

Case 1. d = 3.

According to the remark at the beginning of Subsection 3.2 we may assume x = 0,
y = 1. Then, by Lemma 3.3, γ2(0) ∩ γ1(1) = {2, 2

3
,−2}.Now

γ2(1) ∩ γ1(2) =

{
3,

5

3
,−1

}

γ2(1) ∩ γ1(2/3) =

{
7

9
,
1

3
,
5

3

}

γ2(1) ∩ γ1(−2) = {−1,−5, 7}
If U = γ2(1) ∩ γ1(

2
3
) ∩ γ1(−2) = ∅, then z1 = 2 is the unique point which satis-

fies (7). Hence, consider the case when U is not empty. Then at least one of the following
congruences hold:

7
9
≡n −1 1

3
≡n −1 5

3
≡n −1

7
9
≡n −5 1

3
≡n −5 5

3
≡n −5

7
9
≡n 7 1

3
≡n 7 5

3
≡n 7

Therefore, n divides one of the numbers 4, 8, 16, 20, 52, 56 which implies

n ∈ {2, 4, 5, 7, 8, 10, 13, 14, 16, 20, 26, 28, 52, 56}.
The conditions 3m + 1 < n, n|(3m+1 − 1) or n | (3m+1 + 1) and 3 ≤ n

2
imply n ∈

{8, 10, 13, 14, 26, 28}. Since, in our case, m is uniquely determined by n, the set U is
empty unless

(m, d, n) ∈ {(1, 3, 8), (1, 3, 10), (2, 3, 13), (2, 3, 14), (2, 3, 26), (2, 3, 28)}.
Thus, our assertion is true for d = 3.

Case 2. d = 2.

We note that in this case 2H = H. Therefore γ2 = γ1. Again, we may assume that
x = 0, y = 1. Then, by Lemma 3.3, γ2(x) ∩ γ1(y) = {2, 1

2
,−1}. Now

γ2(1) ∩ γ1(2) =

{
3

2
, 3, 0

}

γ2(1) ∩ γ1(−1) = {−3, 3, 0}
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γ2(1) ∩ γ1(1/2) =

{
0,

3

2
,
3

4

}

Our statement is correct if

|γ1(1) ∩ γ1(
1

2
) ∩ γ1(−1)| ≤ 1.

If this number is larger than 1, then at least one of the following congruences holds:

3
2
≡n −3 3

2
≡n 3

3
4
≡n −3 3

4
≡n 3.

Therefore, n divides one of the numbers 9 and 15, and, consequently, since n = 3 is
excluded by (5), we have

n ∈ {5, 9, 15}.
Since n = 2m+1 ± 1, the possible triples (m, d, n) are (1,2,5), (2,2,9) and (3,2,15). The
first triple defines the complete graph K5. The remaining two are excluded by assumption.
This proves the assertion for d = 2.
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