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To think in a computerized way is an important matter . . . to go with it to the end
of the limit of possibilities, and there to develop new, unpredictable ones. — David
Avidan

(Free translation of an excerpt from the Hebrew original of Avidan’s poem lakhshov
betsura memukhshevet [To Think In a Computerized Way].)

Abstract: This is the fourth installment of the five-part saga on the Umbral
Transfer-Matrix method, based on Gian-Carlo Rota’s seminal notion of the umbra. In
this article we describe the Maple packages USAP, USAW, and MAYLIS. USAP automati-
cally constructs, for any specific r, an Umbral Scheme for enumerating, according to
perimeter, the number of self-avoiding polygons with ≤ 2r horizontal edges per ver-
tical cross-section. The much more complicated USAW does the analogous thing for
self-avoiding walks. Such Umbral Schemes enable counting these classes of self-avoiding
polygons and walks in polynomial time as opposed to the exponential time that is re-
quired by naive counting. Finally MAYLIS is targeted to the special case of enumerating
classes of saps with at most two horizontal edges per vertical cross-section (equivalently
column-convex polyominoes by perimeter), and related classes. In this computationally
trivial case we can actually automatically solve the equations that were automatically
generated by USAP. As an example, we give the first fully computer-generated proof
of the celebrated Delest-Viennot result that the number of convex polyominoes with
perimeter 2n + 8 equals (2n + 11)4n − 4(2n + 1)!/n!2.

The Third (and Ultimately Most EFFICIENT) Way of Using MAPLE
The great combinatorial enumerator, Mireille Bousquet-Mélou, in her fascinating

Rapport ([B], p. 20), writes about the two ways she uses Maple. The first, more tradi-
tional one, is en aval (downstream, i.e. after the research), which consists of verifying
or correcting an already proven identity. The second, beaucoup plus enthousiasmante,
is en amont (upstream, i.e. during the research). And indeed Bousquet-Mélou, and the
other members of the celebrated école bordelaise (Xavier Viennot, Maylis Delest, and
their academic descendants), are real whizzes in this interactive mode of research.

But, there is yet another way of using Maple, which is my own personal favorite,
and that is exemplified in the project described in this article. This, third way, of using
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Maple, is to let the computer do everything all by itself. The human’s role in such an
endeavor is two-fold. First one has to invent a fruitful concept, that may be turned into
an algorithm. This part was done, in the present case, by Gian-Carlo Rota (see [Z1])
who invented the umbra. Then the task remains to design an algorithm, and write a
program implementing it, that will guide the computer to ‘do research’. Of course, once
the computer knows what to do, it can go much further than any human.

So this is neither down- nor up- stream, but above-stream. We take a general
problem, say, of enumerating certain classes of self-avoiding polygons, and use Maple,
not just to solve the humanly-derived equations, that we “cleverly” found by doing
combinatorial reasoning, but let the computer do everything! (except, at this time
of writing, the programming). This consists of having the computer first derive the
equations, and then, whenever, possible, solve them. To take a dramatic example, the
Delest-Viennot [DV] result, mentioned in the abstract, can now be proved in less than
15 seconds of CPU time. Just type, in MAYLIS: ProveDelestViennot();. Moreover,
for the same effort of writing a program to find a specific generating function, we can
write a much more general program, and get thousands of new results. Also, our much
faster machine colleagues, can easily surpass us. For example, the computer-generated
set of equations for enumerating saps with at most 4 horizontal edges per vertical cross-
section, occupies seven pages (see the appendix), and it probably can’t be “solved”
in any reasonable way, but, as was pointed out by Herb Wilf, an “answer” is just an
algorithm, and it is a “good answer” if the algorithm is fast (or at least polynomial-time),
and from this perspective, the set of equations says it all.

Granted, even computers have their limits, and, for example, my computer, Shalosh
B. Ekhad, ran out of memory when it tried to find the set of equations for the next-in-
line case of finding an Umbral Scheme for enumerating self-avoiding polygons with at
most six horizontal edges per vertical cross-section. But, who cares about output? It
would not be humanly-readable in any case, since it would probably occupy more than
a hundred pages. The program to find the equations can be enjoyed for its own sake, so
an even more enlightened definition of answer is the computer program that would find
the answer if you had a sufficiently large and fast computer.

I believe that most of us humans would do well to retire from proving, and take up
programming. Of course, we still need a handful of humans, of the caliber of prophets like
Gian Carlo-Rota, to invent new concepts, that could be turned into computer programs,
but the day-to-day activity of proving, even computer-assisted, should, and would, be-
come passé.

What makes this third way of using Maple so hard, at present, is that Maple
is really geared to be used interactively. We need higher-and-higher level program-
ming languages, that would make the Maple packages described in this article look like
assembly-language code. Hence, perhaps the most important potential impact of this
modest effort is as a guide for these future super-Maple designers.
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Required Reading
The reader is expected to be familiar with [Z1]. It would also help to read the parts

of [Z0] concerned with finding generating functions for counting self-avoiding polygons
and walks with vertical cross-sections of bounded width. The present treatment is
inspired by the finite case described in detail in [Z0], but with the Umbral twist, getting
matrices whose entries are operators rather than mere polynomials, as transfer matrices.

The Alphabet For Self-Avoiding Polygons

A self-avoiding polygon (henceforth sap) on the square lattice is a finite connected
induced subgraph of the square lattice with every vertex having degree 2. Of course we
identify two saps that are translations of each other. From now on, we will take the
smallest x coordinate of any of the lattice points participating in the sap, to be 0. We
may also take the smallest y coordinate to be 0, but this is irrelevant to our approach.

We can “read” a sap from left to right, by considering, for k = 0, 1, 2, . . ., the edges
that belong to the vertical cross-sections k ≤ x < k + 1. There are two kinds of edges:
vertical, and horizontal.

Consider the horizontal edges, i.e. edges joining (k, y) and (k + 1, y), for some y.
It is immediate that there are always an even number of such horizontal edges.

Here we will undertake the task of enumerating saps with at most 2r such horizontal
edges (per vertical cross-section), where r is prescribed in advance. In particular the case
r = 1 is the much studied case of column-convex polyominoes according to perimeter.

Note that these horizontal edges arrange naturally into pairs that are “reachable
from one side”, i.e. one of the two portions of the sap that are between them is entirely
to the left of x = k, (and hence the other portion is entirely to the right of x = k). For
each such pair of edges, we will assign the letter L to the bottom one, and the letter
R to the top one. It is immediate that the resulting word is a legal parentheses (a.k.a.
Dyck word) where L stands for “(” and R stands for “)”. Recall that a legal parentheses
is a word in {L, R} with as many as L’s as R’s, and such that any prefix has at least as
many L’s as R’s. Conversely, every such Dyck word may show up, eventually, in some
sap.

As we said above, we are interested in enumerating, according to the perimeter,
for any fixed r, the subfamily of saps that have at most r L − R pairs in every vertical
cross-section. When r = 1, we have the so-called vertically convex animals according
to perimeter. Unlike [Z0], where we also restricted the width of the cross-sections, and
hence always obtained rational generating functions (because of the finite Markovity),
now we allow arbitrary width, and the transfer matrices will contain Rota operators
rather than mere polynomials.

The size of the alphabet for saps with at most r L−R pairs is C1 + C2 + . . . + Cr,
where Ci =

(
2i
i

)
/(2i + 1) are the Catalan numbers. For example, where r = 1, we only

have one letter: LR, while when r = 2, the alphabet is {LR, LRLR, LLRR}, when
r = 3 it is

{LR, LRLR, LLRR,LRLRLR,LRLLRR,LLRRLR,LLRLRR,LLLRRR} , etc.
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The Umbral Letters for SAPs
However, each of these letters is really a parameterized family of letters. For a

letter with s L-R pairs (1 ≤ s ≤ r), there are 2s−1 gaps between the edges, and we will
denote the generic lengths of these gaps by A1, A2, . . . , A2s−1. The corresponding x-
weight of such a letter is the generic monomial xA1

1 xA2
2 . . . x

A2s−1
2s−1 . Note that the x’s are

but catalytic variables, and we will soon also introduce q to keep track of the perimeter.

The Leftmost Letters For SAPs
In addition to the above-introduced genuine letters, it will be convenient to intro-

duce two extra letters: START, and END, depending on no x-variables (i.e. they only
depend on q).

The first letter (right after the fictitious START) may be LR, or LRLR, . . ., up
to (LR)r, i.e. (LR)s, for s = 1, . . . , r. Since for the leftmost vertical cross-section
0 ≤ x < 1, the only way that two paired edges can reach each other from the left is via
the vertical line x = 0, hence every such LR pair must be adjacent.

Now these leftmost letters can be of arbitrary size. If the immediate follower of
START is (LR)s then its generic x- weight is xA1

1 . . . x
A2s−1
2s−1 . But the first L is connected

(on x = 0) to the first R (contributing a stretch of A1 to the perimeter), the second L
is connected to the second R (contributing A3 to the perimeter), etc. . In addition, the
2s horizontal edges joining x = 0 and x = 1 contribute 2s to the perimeter. Hence, we
have that the pre-umbra acting on START is:

Z[START ] →

q2 qx1

1 − qx1
Z[LR] + q4 qx1

1 − qx1

x2

1 − x2

qx3

1 − qx3
Z[LRLR] + . . .+

q2r qx1

1 − qx1

x2

1 − x2

qx3

1 − qx3
. . .

x2r−2

1 − x2r−2

qx2r−1

1 − qx2r−1
Z[(LR)r] .

There Are Many Ways to Continue to the Next Vertical Cross-Section
The continuation from one vertical cross-section, say k − 1 ≤ x < k, to the next,

k ≤ x < k + 1 takes place in three phases.
Phase I: The PrePreFollowers

Suppose that the pattern of the horizontal edges in the vertical cross-section k−1 ≤
x < k is a certain legal L−R word. It may be continued in many ways. The first phase
is to decide how to unite some of L’s and R’s by joining them on x = k, thereby creating
new vertical edges. We will denote by C these “closed-up” former L’s and R’s.

There are three legal moves:
(i) JoinLL, obtained by joining two adjacent L’s, making them both C’s, and chang-

ing the R-mate of the upper L into an L, thereby preserving the balance of L’s and R’s.
For example, there is only one way to apply a JoinLL operation to the SAP-Umbral

letter LLRR, turning it into CCLR. For LLLRRR there are two legal JoinLL operations,
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one obtained by joining the first 2 L’s, turning LLLRRR into CCLRLR, and the other
obtained by joining the second and third L, getting LCCLRR. We may apply as many
JoinLL operations as we want, as long as they don’t interfere with each other.

(ii) JoinRR, obtained by joining two adjacent R’s, making them both C’s, and
changing the L-mate of the lower R into an R, hence preserving the balance of L’s and
R’s.

For example, there is only one way to apply a JoinRR operation to the SAP-Umbral
letter LLRR, turning it into LRCC. For LLLRRR there are two legal JoinRR operations,
one obtained by joining the first 2 R’s, turning LLLRRR into LLRCCR and the other
obtained by joining the second and third R, getting LRLRCC. We may apply as many
JoinRR operations as we want, as long as they don’t interfere with each other.

(iii) JoinRL, obtained by joining an R to an L immediately above it, and changing
them both to C’s. This does not change any of the other L’s or R’s, but the widowers
of the deceased R and L now are “married” to each other. For example, there is only
one way to perform a JoinRL operation to the SAP letter LRLR, resulting in LCCR,
while for LRLRLR we may get LCCRLR and LRLCCR. If we operate on both adjacent
RL pairs, we get LCCCCR.

To get all the PrePreFollowers of a given SAP-letter, we apply JoinLL, JoinRR,
and JoinRL in any conceivable order, except that, right now, we want to leave at least
one LR pair, and not turn them all to C’s.

For example, the set of PrePreFollowers of LRLLRR is

{LRCCLR, LRLRCC, LCCLRR}.

For future reference, we also need to record those portions of x = k that have been
“closed to traffic”, because of the above joining operations. If the input SAP-letter
(i.e. the one whose continuations we are investigating) has s LR pairs, and hence 2s
L’s and R’s combined, let’s number them by the integers 1 through 2s, and denote the
resulting consecutive intervals by {[0, 1], [1, 2], [2, 3], . . . , [2s − 1, 2s], [2s, 2s + 1]}. Here
[0, 1] and [2s, 2s + 1] are the “infinite” intervals below the bottom L and above the top
R, respectively. Now some of these intervals are currently closed for business because
of the joining operation, and we need to record it. The full PrePreFollower also records
this information. Hence the set of PrePreFollowers of LRLLRR are:

{[LRCCLR, {[3, 4]}], [LRLRCC, {[5, 6]}], [LCCLRR, {[2, 3]}]} .

I apologize for the redundant information, but when one programs, it is often
convenient to have data structures with redundancy.

Phase II: The PreFollowers

The next decision is how to continue the surviving L’s and R’s from x < k into k ≤
x < k + 1. Each of the L’s and R’s that survived Phase I has to decide, independently,
whether to cross the x = k road straight away (we will call this option 0), or to walk
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some distance up x = k before crossing (option 1), or to walk some distance down x = k
before crossing to x > k (option −1). If a PrePreFollower has t LR-pairs left (all the
other L’s and R’s having turned into C’s) then there are 32t possibilities altogether.

We will denote each PreFollower by a list each of whose elements is either C, or
[L,−1], or [L, 0], or [L, 1], or [R,−1], or [R, 0], or [R, 1]. For example, the PrePreFollower
[CCLR, {[1, 2]}] of LLRR gives rise to the following 9 = 32 PreFollowers:

{[[C, C, [L,−1], [R,−1]], {[1, 2]}], [[C, C, [L,−1], [R, 0]],
{[1, 2]}], [[C, C, [L,−1], [R, 1]], {[1, 2]}],

[[C, C, [L, 0], [R,−1]], {[1, 2]}], [[C, C, [L, 0], [R, 0]], {[1, 2]}], [[C,C, [L, 0], [R, 1]], {[1, 2]}],
[[C, C, [L, 1], [R,−1]], {[1, 2]}], [[C, C, [L, 1], [R, 0]], {[1, 2]}], [[C,C, [L, 1], [R, 1]], {[1, 2]}]}.

Phase III: The Followers

Every vertical cross-section k ≤ x < k + 1 is allowed up to r LR pairs. If the
examined PreFollower has less, then the sap may decide to insert new LR pairs, in the
remaining open slots, as long as the total number does not exceed the maximal allowed
number, r. Of course, these new pairs behave like the ones at the very beginning,
they come in adjacent LR pairs. Also they may only be inserted in the ”open space”
intervals, which consists of the complement of the second component of the PreFollower
with respect to the set of all available intervals

{[0, 1], [1, 2], . . . , [2s− 1, 2s], [2s, 2s + 1]} .

Recall that a PreFollower is a list of length two. A Follower will be a list of length
four. To construct the set of Followers stemming from a given PreFollower, we retain
the two components of the PreFollower. To this we append a third component: the list
of available open intervals (listed in the natural, increasing order), followed by another
list that codes our decision where to insert new LR pairs, as described below.

Consider, for example, the following PreFollower of LLRR:

[[C, C, [L, 1], [R, 1]], {[1, 2]}]

(obtained by performing a JoinLL operation). The totality of intervals of the source-
SAP-letter, LLRR, is the set

{[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]} ,

and removing the “closed for traffic” interval [1,2], gives us, as the set of available
intervals:

[[0, 1], [2, 3], [3, 4], [4, 5]],

but, we store it as a list rather than a set, so that we can refer to its entries conveniently.
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Since we are doing the language of SAP (r), i.e. saps with at most r LR-pairs for
each vertical cross-section, and the PreFollower in question has t LR-pairs, this means
that we may insert up to r − t (adjacent!) LR pairs in the open intervals. We denote
this choice by a list of integers [a1, a2, . . . , am], where m is the number of intervals open
to traffic (the length of the above-mentioned third component of the current Follower),
and the meaning is that we inserted a1 new adjacent LR pairs in the first available open-
interval, a2 in the second, and so on. Of course we must have a1 +a2 + . . .+am ≤ r− t.

Thus, if r = 3, the PreFollower

[[C, C, [L, 1], [R, 1]], {[1, 2]}]
of LLRR, gives rise to the following Followers, among many others

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [2, 0, 0, 0]] ,

where we decided to place two new adjacent LR pairs at the semi-infinite bottom inter-
val, or

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [1, 1, 0, 0]] ,

where we decided to put one new adjacent LR pair at the semi-infinite bottom interval,
and one in the interval between the second C and the L, or

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 0, 2]] ,

where we decided to place two new adjacent LR pairs at the semi-infinite top interval,
and so on. We may also choose not to insert any new LR pairs (since we are allowing
a vertical cross-section to have less than the maximum allotment of horizontal edges),
hence the following PreFollower is also OK:

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 0, 0]] ,

as is
[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]] ,

where we inserted only one new LR pair between the L and the R of the PreFollower.
The total number of Followers stemming from the above PreFollower (still with

r = 3) is the number of vectors of non-negative integers, [a1, a2, a3, a4] with a1 + a2 +
a3 + a4 ≤ 2.

The Emerged Letter

It soon becomes very clear that there are lots of ways to continue a given SAP-
letter from one vertical cross-section to the next, but many different continuations will
produce the same SAP-letter in the next vertical cross-section. To find the induced
letter, simply ignore the C’s, and take note of the newly inserted LR pairs. Hence the
following Follower of LLRR

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]] ,
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gives rise to the letter LLRR, while

[[C, C, [L, 1], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 0, 2]] ,

gives rise to LRLRLR, etc.

A Very Important Polynomial In This Algorithm
Let A be a symbol denoting an integer, and let z1, z2, . . . , zm be variables, we let

PA(z1, . . . , zm) =
∑

zi1
1 zi2

2 · · · zim
m ,

where the sum extends over all m-tuples of positive integers (i1, . . . , im) satisfying i1 +
. . . + im = A. Note that PA(z1, . . . , zm) = z1 · · · zmhA−m(z1, . . . , zm), where hi is the
usual complete homogeneous symmetric polynomial of degree i.

If Z = {z1, . . . , zm} is a set of variables, we will sometimes write the above as
PA(Z), which is legitimate, since PA is a symmetric function of its arguments.

We have, of course,

PA(z1, . . . , zm) =
A−1∑

i=1

PA−i(z1, . . . , zm−1)zi
m .

Since PA(z1) = zA
1 , we can repeatedly use this inductive formula to get PA(z1, . . . , zm)

for any m. All that is involved is summing geometric series, that Maple does very well.
For example

PA(z1, z2) =
zA
1 z2 − z1z

A
2

z1 − z2
.

Note that the evaluated expression of PA(z1, . . . , zm) is a linear combination of
zA
1 , zA

2 , . . . , zA
m with coefficients that are rational functions of z1, z2, . . . , zm.

The Umbral Evolution
Each SAP-letter with s L’s and s R’s, (1 ≤ s ≤ r) is associated with the generic

monomial
xA1

1 xA2
2 . . . x

A2s−1
2s−1 ,

where the generic positive integers A1, A2, . . . , A2s−1 denote the lengths of the intervals
between consecutive horizontal edges corresponding to the entries of the SAP-letter.

For any of the (many) Followers of a letter, it is possible to predict the totality
(i.e. the generating function) of the contribution to the (q, x) weight coming from the
transition under discussion. For any given SAP-letter LET and any given Follower
PreLET , we denote by APU(LET, PreLET ) this generating function. APU stands
for Atomic Pre-Umbra. How to find it?

First, we treat the special case where all the second components of the L’s and R’s
of the first component are 0, i.e. all the L’s and R’s that survived the joining process
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of phase I, decide not to dawdle by wondering vertically on x = k, but rather walk the
inevitable horizontal edge straight away. Then we insert the new LR pairs as prescribed
by the fourth component of the Follower. Now we number the resulting new intervals
(of the emerged SAP-letter), by 0, 1, . . . , 2m−1, 2m, assuming that there are m L’s and
m R’s in the emerging successor SAP-letter.

Next we look how the 2s + 1 intervals of the original SAP-letter interface with the
2m + 1 intervals of its successor. Some of the intervals of the successor SAP-letter are
those coming from newly inserted LR pairs, hence contribute also to the q-weight. If
the ith interval (of length Ai) of the originating letter, overlaps with intervals ji through
ji +pi (for some pi ≥ 0), of the successor letter, and we set ai,s = 1 or ai,s = 0 according
to whether the interval ji + s is due to a newly-inserted LR-pair, (s = 0, 1, . . . , pi), or
not, respectively, then the new contribution to the weight, only stemming from that Ai

is
PAi

(qai,0xji
, qai,1xji+1, . . . , q

ai,pi xji+pi
) .

Note that ai,0 and ai,pi
must always be zero. In addition, to take care of the q-part of

the weight (that keeps track of the perimeter, our primary concern), we multiply this by
q2m (for the 2m horizontal edges of the successor SAP-letter), and by qAi1+Ai2+...+Aiv ,
if the “closed for traffic” intervals were the intervals i1, i2, . . . , iv.

Summarizing, the atomic pre-Umbra, in this (no vertical dawdling) case, is

qAi1+Ai2+...+Aiv +2m
2s+1∏

i=0

PAi
(qai,0xji

, qai,1xji+1, . . . , q
ai,pi xji+pi

) . (Monster)

Here we set A0 = A2s+1 = ∞. Also later we will remove x0 from the argument of
PA0 , remove x2m from the argument of PA2s+1 , and then set x0 and x2m to 1 (since
they contribute to the bottom and top infinite intervals, that do not have x-weight
contribution).

For example,

APU(LLRR, [[C, C, [L, 0], [R, 0]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]])

is the pre-Umbra

xA1
1 xA2

2 xA3
3 → qA1+4PA0(x0)PA1(x0)PA2(x0)PA3(x1, qx2, x3)PA4(x4) .

Now we are ready to treat the Atomic Pre-Umbra coming from the case where some
(or all) the L’s and R’s of the PreFollower decide to wonder up or down on x = k before
venturing into x > k. Suppose that the horizontal edge consisting of the bottom of the
interval whose length is Ai is an L or R, that goes down (denoted by [L,-1], or [R,-1])
in the first component of the PreFollower. This means that the interval (of the source-
LETTER) immediately below it (of length Ai−1) gets to overlap Ai’s bottom-interfaced
successor SAP-letter interval, ji. In other words, Ai is generous and shares its bottom

the electronic journal of combinatorics 8 (2001), #R28 9



interfaced interval with its neighbor below. Not only that, Ai−1 gets q-credit. So, if
this is the case, in (Monster), we have to replace

PAi−1(xji−1 , q
ai−1,1xji−1+1, . . . , q

ai−1,pi−1−1xji−1+pi−1−1, xji−1+pi−1)

by

PAi−1(xji−1 , q
ai−1,1xji−1+1, . . . , q

ai−1,pi−1−1xji−1+pi−1−1, xji−1+pi−1 , qxji
) ,

(of course ji = ji−1 + pi−1 + 1).
Similarly, suppose that the entry corresponding to the horizontal edge consisting

of the top of the source-letter interval whose length is Ai is an L or R, that goes up
(denoted by [L,1] or [R,1]) in the PreFollower. This means that the interval right below
it (of length Ai−1) is willing to share its top successor-letter interval, ji−1 + pi−1. In
other words, Ai−1 is generous and shares its top interfaced interval with its neighbor
above. Not only that, Ai gets q-credit. So if this is the case, in (Monster), we have to
replace

PAi
(xji

, qai,1xji+1, . . . , xji+pi
)

by
PAi

(qxji−1+pi−1 , xji
, qai,1xji+1, . . . , xji+pi

) .

We do these adjustments for each and every time an L or R is not attached to
0. It is easy to see that these adjustments are disjoint, i.e. do not interfere with each
other, and can be carried in any order. The final outcome is the Atomic Pre-Umbra
corresponding to this particular SAP-letter and particular Follower.

For example,

APU(LLRR, [[C, C, [L, 0], [R, 1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]])

is the pre-Umbra

xA1
1 xA2

2 xA3
3 → qA1+4P∞()PA1(x0)PA2(x0)PA3(x1, qx2, x3)P∞(qx3) .

while

APU(LLRR, [[C, C, [L, 0], [R,−1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]])

is the pre-Umbra

xA1
1 xA2

2 xA3
3 → qA1+4P∞()PA1(x0)PA2(x0)PA3(x1, qx2, x3, qx4)P∞()

= qA1+4PA3(x1, qx2, x3, q)

and

APU(LLRR, [[C, C, [L, 1], [R,−1]], {[1, 2]}, [[0, 1], [2, 3], [3, 4], [4, 5]], [0, 0, 1, 0]])
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is the pre-Umbra

xA1
1 xA2

2 xA3
3 → qA1+4P∞()PA2(x0)PA3(qx0, x1, qx2, x3, qx4)P∞()

= qA1+4PA3(q, x1, qx2, x3, q).

At the end we also set x0 = 1 and x4 = 1.

Keeping Track of the Emerged Letter
Each of the many Followers induces a clear-cut SAP-letter to the right, so to keep

track of it we will use yet another indexed variable, Z[EmergedLetter], and write, for
example, the Atomic Pre-Umbra given above, as

xA1
1 xA2

2 xA3
3 Z[LLRR] → qA1+4PA3(q, x1, qx2, x3, q)Z[LLRR] .

(in this randomly chosen example the initial and final SAP letters coincided (both being
LLRR), of course this is not generally the case).

At Long Last: The Preumbra

To get the action of the evolution Umbra on a generic monomial

xA1
1 xA2

2 . . . x
A2s−1
2s−1 Z[LETTER],

we first find all the Followers of LETTER, and for each and every one of them, we
compute the Atomic Pre-Umbra, and finally add all these atomic pre-Umbras up.

Calling It Quits: How to End a SAP
We need one more letter, END. We can only end a SAP if the current letter is

either LR, or LLRR, or LLRLRR, and in general L(LR)s−1R, for s ≥ 1. Then we close
all the odd-numbered intervals, and call it a sap. Of course the function corresponding
to END has 0 arguments, and the q-credit that it gets is qA1+A3+...+A2s−1 . When this
is the case we add qA1+A3+...+A2s−1Z[END] to the above total.

The Pre-Umbral Matrix

Now we form a square matrix whose dimension is the size of the SAP alphabet
(i.e. C1 + C2 + . . . + Cr), both of whose rows and columns are labelled by letters
(legal parentheses with ≤ r LR pairs). The entry corresponding to the row labelled
by LETTER and column labelled by LETTER′ is the coefficient of Z[LETTER′] in
the pre-umbra constructed above, which is our umbra applied to the generic monomial
xA1

1 xA2
2 . . . x

A2s−1
2s−1 Z[LETTER], where s is the number of LR-pairs of LETTER.

The Umbral Matrix

We now convert, as described in [Z1], each of the entries of the pre-Umbral matrix
into a full-fledged umbra. (this is accomplished by procedure ToUmbra in ROTA, that has
been transported to USAP).
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The Umbral Scheme
Recall that ([Z1]) in addition to the Umbral matrix, an Umbral Scheme also needs

a subset of starting letters, ending letters, and the initial generating functions for the
starting letters. In this case things are easy. There is only one starting letter, START,
one ending letter, END, and the initial vector consists of the unit vector with all 0’s
except for the component corresponding to START, that has a 1.

A User’s Manual For The Maple package USAP

The reader is urged to study the source code of the Maple package USAP that for any
fixed, but arbitrary positive integer r, automatically finds Umbral Schemes for SAPS
with ≤ 2r horizontal edges per vertical cross-section. It does not require the Maple
package ROTA (described in [Z1]), since all the necessary procedures of the latter were
transported.

The main procedures of USAP are SAPUmSc and ApplyUmSc. If you want to get
the Umbral Scheme for enumerating SAPs with ≤ 2r horizontal edges on each ver-
tical cross-section, type SAPUSr:=SAPUmSc(r,x,q);. Here r is a specific positive in-
teger (r=1, 2, . . .), while x is an indexed variable-name that will carry the lengths
of the intervals between consecutive horizontal edges, and q is the variable of in-
terest, that carries the perimeter. For example SAPUS1:=SAPUmSc(1,x,q); and SA-
PUS2:=SAPUmSc(2,x,q); give the Umbral Schemes for r = 1 and r = 2 respectively.
Unfortunately, the case r = 3 would have to wait for a bigger computer and/or a
more efficient implementation, since our computers ran out of memory. Since comput-
ing SAPUS2:=SAPUmSc(2,x,q); takes awhile, I decided to include the pre-computed
SAPUS2. Thus typing SAPUS2; would display it. So see it in humanese, type:
YafeUmSc(SAPUS2,F,D); , For the sake of completeness I also included SAPUS1; , even
though it is instantaneous.

Once Maple gave you the Umbral Scheme (SAPUS1 and SAPUS2), to get the first
n/2 − 1 terms in the enumerating sequence (what physicists call “series expansions”)
type ApplyUmSc(SAPUSr,q,n,var):, where var is the set of catalytic variables:

{x[1], x[2], . . . , x[2 ∗ r − 1]}.

For example try,
ApplyUmSc(SAPUS1,q,20,{ x[1]}):
and
ApplyUmSc(SAPUS2,q,20,{ x[1],x[2], x[3] }): .
Typing ApplyUmSc(SAPUS2,q,44,{ x[1],x[2],x[3] }): and waiting for a few

days computes the sequence of self-avoiding polygons with at most 4 horizontal edges
per vertical cross-section to 21 terms (i.e. the number of such saps with perimeter up to
44). This sequence was not in Neil Sloane and Simon Plouffe’s Encyclopedia[SP], and
we reported it for inclusion in Sloane’s database.

The sequence starts with:
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1, 2, 7, 28, 124, 588, 2938, 15266, 81770, 448698, 2510813, 14277838, 82286365, 479610362,

2822332127, 16745262798, 100058822258, 601588809890, 3636591773529,

22088370875438, 134733261281038, . . .

It fits between M1779 (the sequence for ApplyUmSc(SAPUS1,q,n,{ x[1]}):, first
introduced by Temperley[T]) and M1780, the exponentially difficult enumerating se-
quence for all saps.

It’s Not My Fault That It is Sooo COMPLICATED, Even For a Com-
puter

USAP can, in principle, find an Umbral Scheme for the class of saps with at most
2r horizontal edges per vertical cross-section, for any fixed, but arbitrary r. But the
number of interfaces grows so fast with r that Maple ran out of memory even for the case
r = 3. In other words, it refused to perform the command: SAPUS3:=SAPUmSc(3,x,q);.

I am almost sure that with a more careful implementation, and/or by transport-
ing to numeric programming languages such as C, SAPUS3:=SAPUmSc(3,x,q); is still
feasible, but frankly, I doubt whether it is worth the effort.

The most important point is that there exists a program that can generate (at least
in principle) a polynomial-time (in n), scheme for enumerating saps with at most 2r
horizontal edges per vertical cross-section, with perimeter ≤ n, for any fixed given r. So
what if the ‘polynomial’ is so big as to make it impractical? I will be very impressed if
you can just write a program for Satisfiability, that takes O(n1000000000000000) time and
memory. I am not asking for sample output.

Self-Avoiding Walks

A self-avoiding walk (henceforth saw) on the square-lattice is a finite connected
induced subgraph of the square lattice with two vertices of degree 1, and all the other
vertices of degree 2. Of course we identify two saws that are translations of each other.
Note that except for the length-0 saw, every one of our saws gives rise to two usual saws,
since it can be walked in two opposite directions, and here we identify them, making a
saw a static object.

The analogous program, USAW, for self-avoiding walks, is much more complicated,
but goes along the same lines. Just as in [Z0], the SAW alphabet consists, in addition to
the SAP alphabet, letters obtained from them by inserting one or two A’s, denoting the
“open ends”. The three phases of following: PrePreFollower, PreFollower, and Follower,
still hold, but there are many more possibilities, because of the open ends.

We urge the reader to carefully study the source code of USAW. We omit the hu-
manese narrative, since the readers should be able to figure everything out by them-
selves. Note that USAW is an adaptation of USAP, and all the main procedures of the
latter (except for the principal SAWUmSc) have the name of their USAP counterparts, with
a “W” attached. For example, FollowersW is the SAW-adaptation of USAP’s Followers.
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A User’s Manual For The Maple package USAW
The main procedure of USAW is SAWUmSc. If you want to get the Umbral Scheme

for enumerating SAWs with ≤ r L-R pairs on each vertical cross-section (and zero, one
or two A’s for the open ends) type SAWUSr:=SAWUmSc(r,x,q);. Here r is a specific
non-negative integer (r=0, 1, 2, . . .), while x is an indexed variable-name that will carry
the lengths of the intervals between consecutive horizontal edges, and q is the variable
of interest, that carries the length. For example SAWUS0:=SAWUmSc(0,x,q); gives the
Umbral Scheme for enumerating initially-East-bound saws with at most one ‘U-turn’ in
the East-West direction. This is a superset of the ‘up-side’ saws enumerated by Lauren
Williams ([Wi]).

Typing ApplyUmSc(SAWUS0,q,20,{x[1]}): would give the first 20 terms, and mul-
tiplying all the terms, except the first by 2, gives the first 20 terms of the enumerating
sequence for self-avoiding walks whose initial first horizontal edge is East-bound and
whose projection on the x-axis performs at most one U-turn.

1, 4, 12, 34, 90, 238, 614, 1584, 4028, 10246, 25818, 65076,
162940, 408074, 1016962, 2534848, 6294268, 15631572, 38703172, 95838918, . . . .

You are welcome to try SAWUS1:=SAWUmSc(1,x,q); on your computer, but on my
computer, it ran out of memory. So it seems that SAWUS2:=SAWUmSc(2,x,q); would be
really hopeless, but so what? Once again the program is the message, not the output.
For any given r I have an effective program that finds a polynomial-time scheme for
enumerating saws with up to r LR-pairs. And sometimes, having the program is our only
substitute to seeing the output. I would be very impressed if you can write a program,
that in finite time and memory, is guaranteed to output true or false, depending on
whether the Riemann Hypothesis is true or false, I am not asking you to show me the
output.

MAYLIS: a Targeted Package for Generalizing the case r = 1 of USAP
The case r = 1 of SAPUmSc corresponds to enumerating column-convex polyominoes

(lattice animals) by perimeter, solved implicitly by Temperley, and completed by Brak,
Guttmann, and Enting ([BGE]). MAYLIS is capable of not only doing the Temperley
part (that is already done in USAP) but also the part done in [BGE].

All you have to do is type

Xavier({[−1,−1], [−1, 0], [−1, 1], [0,−1], [0, 0], [0, 1], [1,−1], [1, 0], [1, 1]}, q); .

SSUE automatically tries to solve the equations implied by the Umbral scheme that
turn out to have the form

A(x, q)F (x, q) + B(x, q)F (q, q) + C(x, q)
∂F

∂x
(q, q) + D(x, q) = 0 , (Doron)
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for some polynomials A, B, C, D in (x, q). In the fortunate case, plugging in x = q and
then differentiating with respect to x, and then plugging x = q, produces two linear
equations for the two unknowns F (q, q) and ∂F

∂x (q, q), that must be rational functions
in this lucky case. F (q, q) is the desired generating function. In the unfortunate case,
plugging x = q produces the tautology 0 = 0. In this case we can solve the algebraic
equation A(x(q), q) = 0, pick those x(q) that define a formal power-series, and plug into
(Doron) and its derivative w.r.t. x. We obtain linear equations for the two unknowns
F (q, q) and ∂F

∂x
(q, q) that can be solved, yielding this time algebraic generating functions.

Because of what Gregory Chaitin calls programmer’s fatigue, I only treated the cases
where A(x, q) is either linear, quadratic, or a product of these, but two more hours of
programming would have done the general case.

Xavier can do many more cases, just as fast (and often faster). The first argument
to procedure Xavier is a set of “allowed interfaces” between one vertical cross-section
to the next. We use the same conventions as in PreFollowers. ‘1’ means up, ‘0’ means
straight ahead, and ‘-1’ means down. For example, the interface [1,1] means both the
(sole) L and the (sole) R go up, [0,0], means they both continue horizontally, etc. there
turned out to be 271 inequivalent cases to consider (about half of 29, the number of
subsets of all the nine possible interfaces). For example try Xavier({[0, 0]},q); for
the trivial case of enumerating rectangles, and Xavier({[0, 0], [1, 0]},q); for enumerat-
ing Ferrers diagrams by perimeter. Surprisingly, the generating function for ‘strictly-
upwards’ convex polygons, gotten by typing Xavier({[1, 1]},q); gives the generating
function for Generalized Catalan Numbers M1141 of Sloane-Plouffe[SP], that enumer-
ates secondary structures of RNA ([Wa]).

To see all the successful outputs of Xavier, type: DoThemAll(q); . With the
current version of SSUE, Ekhad succeeded in doing 81 cases and failed in the remaining
190, but I am sure that an improved version of SSUE would give a %100 success rate.

Variety is the spice of life. An r = 1 sap may first follow one set of interfaces, then
another, then yet another, and so on. So every word in the alphabet whose letters are
all the 511 non-empty subsets of the set of nine interfaces {0,−1, 1}2, introduces yet
another combinatorial family. This is computed, automatically, of course, by procedure
Delest1 (if you are not allowed to quit), or Delest (if you are allowed to quit).

It is easy to see that a convex polygon has three parts, first ‘weakly outwards’ with
allowed interfaces {[−1, 0], [−1, 1], [0, 0], [0, 1]}, then ‘weakly upwards’ with allowed in-
terfaces {[0, 0], [0, 1], [1, 0], [1, 1]} (or ‘weakly downwards’ with the negative of the above),
then ‘weakly inwards’, with allowed interfaces {[0, 0], [0,−1], [1, 0], [1,−1]}]. The gen-
erating function enumerating the weakly upwards convex polyominoes, where you are
also allowed to quit in the middle is gotten by typing

Delest([{[−1, 0], [−1, 1], [0, 0], [0, 1]}, {[0, 0], [0, 1], [1, 0], [1, 1]},
{[0, 0], [0,−1], [1, 0], [1,−1]}], q);

and the generating function for convex polyominoes by perimeter is roughly twice that.
To get the exact count, we have to account for some trivial over-counting. This is done
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in ProveDelestViennot(); , that, as we already boasted above, proves the Delest-
Viennot formula in about 10 seconds of CPU time.

Multi-Parameter Counting

MAYLIS also contains procedures to find Umbral Schemes for counting saps (for
arbitrary r, not just r = 1), according to area and width as well as perimeter. It
is procedure SAPUmScg whose syntax is: SAPUmScg(r,q,x,t,w); . It can also handle
restricted interfaces with SAPUmScgR. See the on-line help by typing ezra(SAPUmScgR); .

To Do List

1. Extend MAYLIS’s procedure SSUE to solve more general equations, that also
involve the q− dilation operation f(x) → f(qx), thereby finding computer-generated
proofs to the amazing results summarized in [B], for enumerating various families of
convex polyominoes according to area, width and perimeter.

2. Use the methodology of [Z3] and [Z4] (this paper), to study ‘toy models’ for the
Ising model with magnetic field, Percolation, and other venerable models of statistical
physics.

3. One of the applications of an Umbral Scheme is to actually crank out numbers,
obtaining series expansions for the toy-model, that give lower bounds for the ‘real thing’.
For that application, it seems wasteful to have the full Umbral Scheme, since we only
need to know the first prescribed terms of the Taylor expansions of the coefficients that
feature in the scheme. Adapt procedures SAPUmSc of USAP and SAWUmSc of USAW to find
‘approximate’ schemes that will take advantage of the above observation, and produce
many more terms before running out memory.

4. Translate everything to Fortran or C, hopefully getting much more impressive
output.

5. Physicists are most interested in critical exponents. Find an algorithm that
inputs an Umbral Scheme, and outputs the critical exponent for the desired generating
function.

Appendix: The Umbral Scheme For Saps With At Most 2 Horizontal
Edges Per Vertical Cross-Section

The desired quantity is F3().

F1() = 1,

F2(x) = − F1()q3x

−1 + qx1
+

F ′
2(q)q

2x

−x + q
+

F2(x)q2x2(q − 1)2(q + 1)2

(−x + q)2(−1 + qx)2

− F2(q)q2x2(−qx + 2 q2 − 1)
(−x + q)2(−1 + qx)

,

F3() = F2(q).
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The corresponding much larger output for at most 4 horizontal edges can be seen
on the home page of Zeilberger: http://www.math.temple.edu/~zeilberg/ .
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