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Abstract
The queen’s graph Qn has the squares of the n × n chessboard as its vertices;

two squares are adjacent if they are in the same row, column, or diagonal. Let
γ(Qn) and i(Qn) be the minimum sizes of a dominating set and an independent
dominating set of Qn, respectively. Recent results, the Parallelogram Law, and a
search algorithm adapted from Knuth are used to find dominating sets. New values
and bounds:
(A) γ(Qn) = dn/2e is shown for 17 values of n (in particular, the set of values for
which the conjecture γ(Q4k+1) = 2k + 1 is known to hold is extended to k ≤ 32);
(B) i(Qn) = dn/2e is shown for 11 values of n, including 5 of those from (A);
(C) One or both of γ(Qn) and i(Qn) is shown to lie in {dn/2e, dn/2e + 1} for 85
values of n distinct from those in (A) and (B).

Combined with previously published work, these results imply that for n ≤ 120,
each of γ(Qn) and i(Qn) is either known, or known to have one of two values.

Also, the general bounds γ(Qn) ≤ 69n/133 + O(1) and i(Qn) ≤ 61n/111 + O(1)
are established.
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1 Introduction

The queen’s graph Qn has the squares of the n×n chessboard as its vertices; two squares
are adjacent if they are in the same row, column, or diagonal. A set D of squares of Qn is
a dominating set for Qn if every square of Qn is either in D or adjacent to a square in D.
If no two squares of a set I are adjacent then I is an independent set. Let γ(Qn) denote
the minimum size of a dominating set for Qn; a dominating set of this size is a minimum
dominating set. Let i(Qn) denote the minimum size of an independent dominating set for
Qn.

The problems of finding values of γ(Qn) and of i(Qn) are given as Problem C18 in [10],
and have interested mathematicians for well over a century. De Jaenisch [13] considered
these problems in 1862. In 1892, Rouse Ball [16] gave dominating sets and independent
dominating sets of Qn for n ≤ 8. Ahrens [1] extended this in 1910 to n ≤ 13 and n = 17
for γ(Qn) and to n ≤ 12 for i(Qn). In most cases, proof that these sets were minimum
dominating sets had to wait for recent work on lower bounds.

Spencer proved [7, 17] that

γ(Qn) ≥ (n − 1)/2. (1)

The only values for which equality is known to hold in (1) are n = 3, 11, so researchers
have sought better bounds. Weakley showed [17] that

γ(Q4k+1) ≥ 2k + 1 (2)

and that i(Q4k+1) = γ(Q4k+1) = 2k + 1 for k ≤ 6 and k = 8. Other researchers [2, 5, 9]
have gone further, showing γ(Q4k+1) = 2k +1 for k ≤ 15 and k = 17, 19. Later we extend
this to k ≤ 32.

Burger and Mynhardt showed [3] that γ(Q4k+3) ≥ 2k + 2 for 3 ≤ k ≤ 7, with equality
for k = 4, 7. Weakley proved [19] the following theorem.

Theorem 1 Define a sequence of integers by n1 = 3, n2 = 11, and ni = 4ni−1 − ni−2 − 2
for i > 2. If γ(Qn) = (n − 1)/2 then n = ni for some i.

The first four values in the sequence of Theorem 1 are 3, 11, 39, 143. As γ(Q39) = 20
was shown in [19, Proposition 7], Theorem 1 and (1) imply the following bound.

Corollary 2 If n < 143 and n 6= 3, 11, then γ(Qn) ≥ n/2.

In this paper, we employ dominating sets called p-covers (defined below), with slight
variations. A p-cover of Qn is required to occupy certain lines (rows, columns, diagonals),
and also occupies a few other lines if its size exceeds (n− 1)/2. For these other lines, the
Parallelogram Law (Theorem 4 below) allows us to greatly restrict the possibilities that
need be considered. For n ≤ 35, straightforward hand calculation suffices to either find
corresponding dominating sets, or show that none exists. For larger n, we use computer
search with the algorithm described in Section 4. The resulting dominating sets are given
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in Section 5, as are the values and bounds for γ(Qn) and i(Qn) implied by the sets and
Corollary 2.

We devote considerable effort to proving for various n that one or both of γ(Qn), i(Qn)
lies in {dn/2e, dn/2e+1}. Of course, exact values would be preferable. However, it is our
belief that often dn/2e+1 is correct, but that it will be quite difficult to prove that dn/2e
cannot be achieved. For example, current knowledge that γ(Qn) > dn/2e for n = 8, 14–16
and that i(Qn) > dn/2e for n = 4, 6, 8, 12, 14–16 comes from exhaustive search, which is
not feasible for large n.

Also, we use dominating sets found for Q131 and Q109 and work from [18] to give
improved upper bounds for γ(Qn) and i(Qn).

2 Preliminaries

For odd positive integers n, we will identify the n × n chessboard with a square of side
length n in the Cartesian plane, having sides parallel to the coordinate axes. We place the
board with its center at the origin of the coordinate system, and refer to board squares by
the coordinates of their centers. The square (x,y) is in column x and row y. Columns and
rows will be referred to collectively as orthogonals. The difference diagonal (respectively
sum diagonal) through square (x,y) is the set of all board squares with centers on the
line of slope +1 (respectively −1) through the point (x,y). The value of y−x is the same
for each square (x,y) on a difference diagonal, and we will refer to the diagonal by this
value. Similarly, the value of x + y is the same for each square on a sum diagonal, and
we associate this value to the diagonal. The long diagonals of Qn are difference diagonal
0 and sum diagonal 0.

For even n, we obtain Qn by adding a row and column to Qn−1.
The square (x,y) is even if x + y is even, odd if x + y is odd. We divide the even

squares of Qn into two classes: (x,y) is even-even if both x and y are even, odd-odd if
both are odd.

We now describe the dominating sets which have proven most useful in recent work
[2, 3, 4, 5, 6, 8, 9, 14, 17, 18, 19] on queen domination.

Definitions. Let n be an odd positive integer, let D be a set of squares of Qn, and let
p ∈ {0, 1}. Say that D is a p-orthodox set if every orthogonal of parity p contains a square
of D.

If D is a 0-orthodox set and every odd-odd square of Qn shares a diagonal with some
square of D, we will say that D is a 0-cover. If D is a 1-orthodox set and every even-even
square shares a diagonal with some square of D, we say D is a 1-cover.

It is clear from the definition that a p-cover dominates every even square, and every
odd square is on one orthogonal of parity p, so is also covered: a p-cover is a dominating
set.

Definitions. Let n be an odd positive integer and suppose that D is a set of squares of
Qn containing a square of each long diagonal.
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Define e = e(D) to be the largest integer such that for each i with |i| ≤ e, D contains
a square of difference diagonal 2i.

Define f = f(D) to be the largest integer such that for each i with |i| ≤ f , D contains
a square of sum diagonal 2i.

Define u = u(D) to be the largest integer such that for each i with 1 ≤ i ≤ u, D
contains squares of difference diagonals ±(2e+4i) and squares of sum diagonals ±(2f+4i).

The following characterization of p-covers was proved in [18].

Theorem 3 Let n be an odd positive integer and let p ∈ {0, 1}. Let D be a p-orthodox set
for Qn that contains at least one square from each of the long diagonals, and let e = e(D),
f = f(D), and u = u(D). The following are equivalent:

(1) D is a p-cover of Qn;

(2) Either (A) e + f ≡ p (mod 2) and e + f + 2u ≥ (n − 5)/2,
or (B) e + f ≡ 1 − p (mod 2) and e + f ≥ (n − 3)/2.

Definition. We say a p-cover is type A or type B depending on whether it satisfies
condition (2A) or (2B) of Theorem 3.

Type A 0-covers have been used [6, 8, 17] to produce upper bounds for γ(Qn) and
i(Qn). Also, most of the work [2, 5, 9, 14, 17] done to establish γ(Q4k+1) = 2k + 1 for
k ≤ 15 and k = 17, 19 used type A p-covers.

Type B p-covers are denser central packings than type A, and are less useful for
producing small dominating sets, so we only use type A.

We require the following theorem from [19].

Theorem 4 (Parallelogram Law) Let S be a set of k squares of Qn occupying columns
numbered (xi)

k
i=1, rows (yi)

k
i=1, difference diagonals (di)

k
i=1, and sum diagonals (si)

k
i=1.

Then

2
k∑

i=1

x2
i + 2

k∑
i=1

y2
i =

k∑
i=1

d2
i +

k∑
i=1

s2
i .

Our general upper bounds derive from the next theorem, which was proved in [18].

Theorem 5 Let n be an odd positive integer, let p ∈ {0, 1}, and let D be a type A p-cover
of Qn that contains d squares, including a square of each long diagonal.

If p = 0 and n ≡ 1 (mod 4), or p = 1 and n ≡ −1 (mod 4), then for all k, γ(Qk) ≤
d+3
n+2

k + O(1); if also D is independent, then for all k, i(Qk) ≤ d+6
n+2

k + O(1).
If p = 1 and n ≡ 1 (mod 4), or p = 0 and n ≡ −1 (mod 4), and D contains no edge

squares, then for all k, γ(Qk) ≤ d+1
n

k + O(1); if also D is independent, then for all k,
i(Qk) ≤ d+2

n
k + O(1).

the electronic journal of combinatorics 8 (2001), #R29 4



Below we will give a type A 1-cover of size 66 for Q131 and an independent type A
0-cover of size 55 for Q109. By Theorem 5, these imply the following bounds.

Corollary 6 γ(Qn) ≤ 69n/133 + O(1) and i(Qn) ≤ 61n/111 + O(1).

The best previously published upper bound for γ(Qn) is 8n/15 + O(1) from [4], and
69/133 is about 43% of the way from 8/15 to the 1/2 of the lower bound (1). The best
previously published upper bound for i(Qn) is 19n/33 + O(1) from [18], and 61/111 is
about 34% of the way from 19/33 to 1/2.

3 Constructions

Our constructions are all on Qn with n odd; the long diagonals are occupied, so e and
f are defined. By rotating the board if necessary, we will always take e ≥ f . All of our
dominating sets have size in {dn/2e, dn/2e+1}, and all but one are type A p-covers. The
following generalizes Theorem 3 of [5].

Proposition 7 Let D be a type A p-cover of Qn, with (n+1)/2 members. If p = 0, then
either e = f or e = f + 2. If p = 1, then e = f + 1.

Proof. Counting occupied difference diagonals, we have 2e + 1 + 2u ≤ (n + 1)/2. Sub-
tracting this from inequality (2A) of Theorem 3 gives e − f ≤ 2. Then e ≥ f and
e + f ≡ p (mod 2) imply the conclusion. 2

For each construction we use, there are specific lines that must be occupied; we will
refer to these as required lines, and to other lines occupied by the dominating set as excess
lines. Complicating the picture slightly is the fact that a line may be occupied m times,
with m > 1. If such a line is required, we also regard it as an excess line occurring m− 1
times.

Although the excess lines do not contribute to domination, their values are strongly
restricted, both by the linear constraints

(
∑

yi) − (
∑

xi) =
∑

(yi − xi) and (
∑

yi) + (
∑

xi) =
∑

(yi + xi), (3)

and by the quadratic constraint due to the Parallelogram Law.
We now describe four constructions that gave us exact values of γ(Qn) or i(Qn);

the first two constructions generalize those of [5]. As all the constructions are similar,
we go into detail only for the first, which gave more exact values than the others. The
constructions we used to establish bounds of the type γ(Qn) or i(Qn) in {dn/2e, dn/2e+1}
are also like the ones described here.

Type A 0-cover of size 2k + 1 for Q4k+1 with e = f + 2.
Here the required row numbers and column numbers are the members of {2j : −k ≤ j ≤
k}; as there are 2k + 1 of these, we have no excess rows or columns. From e = f + 2,
n = 4k + 1, and (2A) of Theorem 3, we see u ≥ k − e. The number of required difference
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diagonals is at most the size 2k + 1 of the dominating set, so 2e + 1 + 2u ≤ 2k + 1, which
implies that u = k−e and that there are no excess difference diagonals. Then the number
of required sum diagonals is 2f +1+2u = 2k− 3, so there are four excess sum diagonals,
which we will denote by (si)

4
i=1.

Let D = {(xi, yi)}2k+1
i=1 be our 0-cover, with the squares numbered so that excess sum

diagonal si is occupied by (xi, yi) for 1 ≤ i ≤ 4. As the required sum diagonals other than
0 come in pairs with sum 0, we have

∑
i>4(yi+xi) = 0, so

∑
i≥1(yi+xi) =

∑4
i=1 si. Looking

at the required orthogonal numbers, we see
∑

i≥1 xi =
∑

i≥1 yi = 0, so
∑

i≥1(yi + xi) = 0
and thus

s1 + s2 + s3 + s4 = 0. (4)

The Parallelogram Law implies

2

(
2

k∑
i=1

(2i)2

)
+ 2

(
2

k∑
i=1

(2i)2

)
=

(
2

e∑
i=1

(2i)2 + 2
u∑

i=1

(2e + 4i)2

)
+


s2

1 + s2
2 + s2

3 + s2
4 + 2

f∑
i=1

(2i)2 + 2
u∑

i=1

(2f + 4i)2


 ,

and using f = e − 2 and u = k − e, we can simplify this to

s2
1 + s2

2 + s2
3 + s2

4 = 8 − 8(2k − 1)
[
e2 − (2k + 1)e + 2k(k − 1)/3

]
. (5)

For each k ≤ 32, we found all values of e and sequences (si)
4
i=1 satisfying (4) and (5).

(This can easily be extended to larger k, but the remaining problem of finding D then
has too large a search space for our approach.) It is interesting that for each k, e must
be near (1 − 1√

3
)k; we sketch a proof.

Let g(k, e) denote the right side of (5). From (5), we see that g(k, e) ≥ 0, and then
that the form of g(k, e) implies g(k, e) ≥ 8, so e2 − (2k + 1)e + 2k(k − 1)/3 ≤ 0. This
implies

e ≥ emin = k + 0.5 −
√

[(k + 2.5)2 − 5.5]/3 > (1 − 1√
3
)k − 5 −√

3

2
√

3
.

Since no row, column, or difference diagonal can contain more than one square of D, (5)
implies (4k)2 + 2(4k − 2)2 + (4k − 6)2 ≥ g(k, e). For k > 5, this gives

e ≤ emax = k + 0.5 −
√

[(k − 3.5)2 − 4]/3,

and also emax − emin < 2
√

3 ≈ 3.46. Thus there are at most four values of e satisfying (4)
and (5), all near (1− 1√

3
)k. Quite similar bounds can be proved for the other constructions

below.
The search method described in Section 4 allowed us to find the dominating sets for k =

6, 11, 14, 17–20, 22–24, 27, 29–32 given later. If the excess sum diagonals are all distinct
and different from the required sum diagonals, as with those given for k = 6, 11, 14, 17–20,
22–24, 27, the resulting dominating set is independent.

As we show next, if the excess sum diagonals include certain values, we get information
about Q4k+2 and possibly Q4k+3.
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Proposition 8 Suppose there is a 0-cover D of size 2k + 1 for Q4k+1 with e = f + 2.
(Thus γ(Q4k+1) = 2k +1.) Let S be the set of numbers of excess sum diagonals of D, and
let L = {±(2f + 2),±(4k − 2f − 4)}.
(A) If S ∩ L has two members with the same sign, then

γ(Q4k+2) = 2k + 1. If also D is independent, then
i(Q4k+2) = 2k + 1.

(B) If |S ∩ L| ≥ 1 and D is independent, then
i(Q4k+2) ∈ {2k + 1, 2k + 2}.

(C) If |S ∩ L| ≥ 2 and D is independent, then
i(Q4k+3) ∈ {2k + 2, 2k + 3}.

Proof. Two ways to obtain a copy of Q4k+2 from Q4k+1 are by adjoining either row and
column 2k+1 of Q4k+3 or row and column −(2k+1) of Q4k+3; adjoining all of these gives
Q4k+3. We ask which squares of these orthogonals are not covered by the required lines
for a 0-cover D of size 2k +1 for Q4k+1 with e = f +2; since the set of required lines of D
is symmetric across each of the long diagonals, it suffices to examine row 2k +1. Suppose
square s = (x, 2k + 1) is a square of Q4k+3 not covered by D.

Since |x| ≤ 2k + 1, if x is even then column x is occupied by D, so we may conclude
s is an odd-odd square, and thus lies on an empty difference diagonal with even number
(say) m.

If m ≡ 2e (mod 4), then by the definition of e and u, we have m = 2e + 4u + 4 + 4i
for some i ≥ 0. Above it was shown that u = k − e, and we are assuming that f = e− 2,
implying that s lies on sum diagonal 2f +2−4i, which is a required diagonal unless i = 0.
Thus s is on sum diagonal 2f + 2 in this case.

Otherwise m ≡ 2e + 2 (mod 4), so m = 2e + 2 + 4i for some i ≥ 0, and a similar
argument shows that s lies on sum diagonal 4k − 2f − 4.

Thus if the excess sum diagonals of D include 2f + 2 and 4k − 2f − 4, then D covers
row and column 2k + 1 and therefore dominates a copy of Q4k+2; likewise if −(2f + 2)
and −(4k − 2f − 4) are excess sum diagonals of D. This establishes (A).

Now suppose D is independent and S contains (say) one but not both of sum diagonals
2f + 2 and 4k− 2f − 4. Then the other of these meets row 2k + 1 in a square D does not
cover, and adding this square to D gives an independent dominating set of Q4k+2. The
rest is similar. 2

Type A 0-cover of size 2k + 1 for Q4k+1 with e = f .
The required row and column numbers are as in the previous case, so again there are no
excess rows or columns. By (2A) of Theorem 3, the minimum value of u for a 0-cover is
u = k − e − 1; then for each kind of diagonal, there are 2e + 1 + 2u = 2k − 1 required
values, leaving excess difference diagonals d1, d2 and excess sum diagonals s1, s2. The
linear constraints (3) give d1 + d2 = 0 and s1 + s2 = 0. The Parallelogram Law gives

d2
1 + s2

1 = −4[(2k − 1)e2 − (2k − 1)2e + 2k(2k2 − 9k + 1)/3].

This construction is much less versatile than the previous one. It led to the dominating
sets for k = 26, 28 given later, with the one for k = 26 being independent.
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Type A 1-cover of size 2k + 1 for Q4k+1 with e = f + 1.
Here the required row and column numbers are ±1,±3, . . . ,±(2k − 1), so there is an
excess column a and an excess column b. By (2A) of Theorem 3, the minimum possible
value of u is k − e, and then there are no excess difference diagonals and two excess sum
diagonals, say s1 and s2. From (3), we have b − a =

∑
yi − ∑

xi =
∑

(yi − xi) = 0, so
a = b, and also s1 + s2 = 2a. From the Parallelogram Law,

s2
1 + s2

2 − 4a2 = −16
[
e2 − (2k + 1)e + (k + 1)(2k + 1)/3

]
.

This method produced dominating sets for k = 1–11, 14, 15, 17, 19–22, 25–27. Of these,
only the set for k = 21 gives a value not supplied by the previous constructions. However,
if |a| 6= 2k, as with all of ours, these sets have no squares in edge rows or columns, thus
giving information about Q4k and Q4k−1. For k = 21, 25, 26 we get new bounds.

Type A 1-cover of size 2k + 2 for Q4k+3 with e = f + 1.
The required row and column numbers are ±1,±3, . . . ,±(2k − 1), so there are no excess
rows or columns. By Theorem 3 (2A), the minimum possible value of u is k − e, which
gives an excess difference diagonal d1 and excess sum diagonals s1, s2, s3. Then (3) implies
d1 = 0, so dominating sets of this kind are not independent, and s1 + s2 + s3 = 0. The
Parallelogram Law gives

s2
1 + s1s2 + s2

2 = 4 − 8k
[
e2 − (2k + 1)e + (k + 1)(2k − 5)/3

]
.

This yielded dominating sets for k = 1, 2, 4, 5, 7, confirming values already known, and
also for new values k = 17, 22, 28, 32, as given later.

4 The Search Algorithm

We shall here describe a computer search for covers discussed in the previous section.
Once we have chosen the size of the board and the type of cover, the theory developed is
first used to find admissible values of the parameter e and positions of the excess lines.
We shall first discuss the case of independent dominating sets, and then briefly look at
the search for dependent dominating sets.

The precalculations give a set L of the lines to be occupied; queens can only be placed
in squares that occupy four such lines. These squares are called eligible. We now list all
eligible squares and to each square i associate the set Si of the lines that it occupies. For
independent dominating sets, the computational problem is now to find a set of eligible
squares whose sets Si partition L. This problem is known as the exact cover problem.

Knuth [15] has recently developed a very fast program for the exact cover problem.
The program, which can be downloaded from Knuth’s web page, in particular uses an idea
of Hitotumatu and Noshita [12] for efficiently handling pointers in backtrack programs.

This approach is orders of magnitude faster than searching for dominating sets from
scratch. Of course, the approach only works if there are dominating sets of the given
types. The results of this work, however, are encouraging. We must remark, though, that
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for a given size of the board there are many parameter sets that can be tried, and we
often had to try several of these before finding a solution (if any).

There is also a limit for this approach. For the smallest instances, a complete search
only takes seconds. For somewhat larger instances, when a complete search is not feasible,
one can hope that the first solution of the backtrack search is encountered within a
reasonable time. We stopped the search at board sizes for which days of cpu time are
needed to find a solution. (But note that although larger boards generally lead to longer
computer runs, there is a big variation in the cpu time needed for different instances.)

If the parameter set admits, one can try to impose more structure on the dominating
set, such as requiring a solution to have a 180◦ rotational symmetry. This approach, which
reduces the search space considerably, was successful only in a few cases.

If we search for a dominating set that is not independent, we have a problem slightly
different from the exact cover problem. Fortunately, Knuth’s program can be slightly
modified to handle such instances also. Without going into details, the main idea is to
associate a positive integer to each element in L telling how many times the element must
occur in the sets of a solution. These values are incremented and decremented during the
search, and elements with value 1 are treated as in the original algorithm. Especially when
all sets Si have at least one element with value 1, which is the case in all our instances,
this modification is straightforward.

5 The Dominating Sets

Below are given the dominating sets that, along with Corollary 2, establish new values
or bounds for γ(Qn) and i(Qn). Each description begins with the new bounds or values
implied (other than those due to the elementary fact γ(Qn+1) ≤ γ(Qn)+1); any previously
published value that is implied is given parenthetically. The kind of dominating set is
given (all p-covers used are type A), then the values of e, f , u, the excess lines, and finally
the squares of the set.

i(Q26) ∈ {13, 14} and γ(Q27) = 14 (and i(Q25) = 13): begin with a 0-cover of size 13
for Q25 with e = 3, f = 1, u = 3 and excess sum diagonals −22, −4, 8, 18. For even
x from −12 to 12, y-values are 6, −12, −6, 8, 0, −8, 10, −2, 4, 12, −10, −4, 2. By
Proposition 6(B), adding the square (−9,13) gives i(Q26) ∈ {13, 14}. If instead we add
the square (−9,−9), we obtain a 0-orthodox set that misses being a 0-cover of Q27 with
e = f = u = 3 only by failing to occupy sum diagonal 4. However, every even-even square
of sum diagonal 4 is orthogonally covered, and the only odd-odd squares of sum diagonal
4 not covered along their difference diagonals are (−9,13) and (13,−9), which are covered
by (−9,−9). Thus the set dominates Q27.

i(Q27), i(Q28) ∈ {14, 15}: 1-cover of size 15 for Q27 with e = 6, f = 5, u = 0, excess
difference diagonals ±24, excess sum diagonals −22, −16, 14, 20. For odd x from −13 to
13, y-values are −9, 13, −7, −1, 5, 9, −5, −11, 11, 3, −3, 1, −13, 7; additional square
(−2,−2). All squares of row and column 14 of Q29 are covered, so a copy of Q28 is
dominated.
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i(Q29), i(Q30) ∈ {15, 16}: 0-cover of size 16 for Q29 with e = 4, f = 2, u = 3, excess
difference diagonal 18, excess sum diagonals −24, −20, 10, 14, 20. For even x from −14
to 14, y-values are −10, −4, 6, 12, −14, −8, 4, −2, 14, −12, 8, 2, 10, 0, −6; additional
square (−9,9). All squares of column −15 and row 15 of Q31 are covered, so a copy of
Q30 is dominated.

i(Q34) ∈ {17, 18}: 0-cover of size 18 for Q33 with e = f = 4, u = 3, excess difference
diagonals −24, 24, 28, excess sum diagonals −32, 10, 24. For even x from −16 to 16,
y-values are −16, −6, 4, 10, 16, −10, 2, −4, −12, 14, 6, 0, 12, −14, −8, −2, 8; additional
square (−13,15). All squares of row and column 17 of Q35 are covered, so a copy of Q34

is dominated.
i(Q35), γ(Q35), i(Q36), γ(Q36) ∈ {18, 19}: 1-cover of size 19 for Q35 with e = 6, f = 3,

u = 3, excess sum diagonals −32, −22, −8, 12, 22, 32. For odd x from −17 to 17, y-values
are 3, −17, −9, 13, 7, −11, 1, 9, −7, 11, −13, −5, 15, −15, −1, 5, 17, −3; additional
square (2,2). All squares of row and column −18 of Q37 are covered, so a copy of Q36 is
dominated.

i(Q37), i(Q38) ∈ {19, 20}: 0-cover of size 20 for Q37 with e = 5, f = 3, u = 4, excess
difference diagonal 12, excess sum diagonals −28, −26, 8, 26, 30. For even x from −18
to 18, y-values are −8, 6, −14, 14, 8, −10, 2, −18, −12, 4, −2, 18, 12, 0, −16, −6, 16,
10, −4; additional square (−1,11). All squares of Q39 except (11, −19) are covered, so a
copy of Q38 is dominated.

i(Q39), i(Q40) ∈ {20, 21}: 1-cover of size 21 for Q39 with e = 4, f = 3, u = 5, excess
difference diagonals ±30, excess sum diagonals −20, 8, 12, 20. For odd x from −19 to 19,
y-values are 9, −9, −3, 17, 5, 15, −13, 1, −19, 19, −1, −17, 7, −5, 13, 3, −15, 11, −7,
−11; additional square (10,10). All squares of row and column 20 of Q41 are covered, so
a copy of Q40 is dominated.

i(Q41), i(Q42) ∈ {21, 22}: 0-cover of size 22 for Q41 with e = 5, f = 3, u = 5, excess
difference diagonal 34, excess sum diagonals −30, −28, 8, 20, 30. For even x from −20
to 20, y-values are 10, 4, −14, −4, −16, −12, 18, −20, 0, 16, 8, 2, −6, 20, 14, −8, −18,
6, −10, 12, −2; additional square (−17,17 ). All squares of Q43 except (13, −21) are
covered, so a copy of Q42 is dominated.

i(Q43), γ(Q43), i(Q44), γ(Q44) ∈ {22, 23}: 1-cover of size 23 for Q43 with e = 6, f = 3,
u = 5, excess sum diagonals −36, −30, 8, 12, 20, 30. For odd x from −21 to 21, y-values
are −9, 13, 3, −21 − 5, −15, 15, 21, 5, −19, −3, 7, 19, −7, −17, 11, 1, 17, −13, 9, −1,
−11; additional square (2,2). All squares of row and column 22 of Q45 are covered, so a
copy of Q44 is dominated.

i(Q46) ∈ {23, 24} (and i(Q45) = γ(Q45) = 23): begin with a 0-cover of size 23 for Q45

from [2] with e = 5, f = 3, u = 6, excess sum diagonals −34, −12, 8, 38. For even x from
−22 to 22, y-values are 12, −10, 0, 10, −12, −22, 20, 14, −6, 4, −20, −4, 6, −18, −2,
22, 16, −14, 8, 2, −16, 18, −8. By Proposition 8 (B), adding the square (15,−23) gives
i(Q46) ∈ {23, 24}.

i(Q47), γ(Q47), i(Q48), γ(Q48) ∈ {24, 25}: 1-cover of size 25 for Q47 with e = 4, f = 3,
u = 7, excess difference diagonals 10, 22, excess sum diagonals ±28, ±12. For odd x from
−23 to 23, y-values are −3, 15, −11, 7, −13, −21, −1, −9, 21, 17, −19, 5, −5, 19, 1, 11,
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−23, 23, −15, 13, −7, −17, 9, 3; additional square (−16,16). All squares of column −24
and row 24 are covered, so a copy of Q48 is dominated.

i(Q49), i(Q50) ∈ {25, 26}: 0-cover of size 26 for Q49 with e = 6, f = 4, u = 6, excess
difference diagonal 14, excess sum diagonals −36,−30, 10, 36, 40. For even x from −24 to
24, y-values are 12, 6, −12, −2, −20, −10, −18, 14, 24, 0, −24, 8, 2, 22, −6, 4, 20, −14,
−4, −22, −16, 18, −8, 10, 16; additional square (3,17). All squares of row and column
25 of Q51 are covered, so a copy of Q50 is dominated.

i(Q51), γ(Q51), i(Q52), γ(Q52) ∈ {26, 27}: 1-cover of size 27 for Q51 with e = 5, f = 4,
u = 7, excess difference diagonals −12, 20, excess sum diagonals −40, 10, 14, 40. For odd
x from −25 to 25, y-values are −7, −13, 9, −5, 21, −25, 7, −9, 25, 15, −23, 23, 3, −3,
−19, 5, −1, −17, 17, 1, −15, −21, 13, 19, −11, 11 additional square (8,16). All squares
of Q53 except (16, −26) are covered, so a copy of Q52 is dominated.

i(Q53), i(Q54) ∈ {27, 28}: 0-cover of size 28 for Q53 with e = 7, f = 5, u = 6, excess
difference diagonal 16, excess sum diagonals −46, −38, 12, 42, 44. For even x from −26
to 26, y-values are −12, −6, 16, −26, 4, 14, 20, −10, −24, −18, 6, 0, 24, −8, 10, −22,
2, −4, −20, 18, 12, 26, −16, −2, 22, −14, 8; additional square (−1,15). All squares of
column −27 and row 27 of Q55 are covered, so a copy of Q54 is dominated.

i(Q55), γ(Q55), i(Q56), γ(Q56) ∈ {28, 29}: 1-cover of size 29 for Q55 with e = 7, f = 6,
u = 6, excess difference diagonals −48, 54, excess sum diagonals −40, −14, 18, 38. For
odd x from −27 to 27, y-values are 27, 9, 3, 17, 11, −19, −13, −27, 1, −15, −25, −9, −3,
21, 15, 7, −7, 25, 19, −23, 5, 23, −5, −11, −17, 13, −1, −21; additional square (−2, 4).
All squares of row and column −28 of Q57 are covered, so a copy of Q56 is dominated.

i(Q57) = 29, i(Q58) ∈ {29, 30} (and γ(Q57) = 29): 0-cover of size 29 for Q57 with
e = 7, f = 5, u = 7, excess sum diagonals −42, −40, 28, 54. For even x from −28 to 28,
y-coordinates are 14, 8, −10, −16, −20, −8, −26, 24, −18, 2, 10, 20, 4, 28, 22, −6, 0,
−28, −14, −2, 16, −24, 18, −12, −22, −4, 6, 12, 26. By Proposition 8 (B), adding the
square (17, −29) shows i(Q58) ∈ {29, 30}.

i(Q59), γ(Q59), i(Q60), γ(Q60) ∈ {30, 31}: 1-cover of size 31 for Q59 with e = 8, f = 5,
u = 7, excess sum diagonals −48, −42, −12, 20, 42, 44. For odd x from −29 to 29,
y-values are −19, 1, −17, 17, −1, −15, 27, 21, 11, −27, 5, −5, −13, 29, −29, −9, 19, 3,
−7, −23, 23, 7, −25, 13, 25, −3, −21, −11, 15, 9; additional square (2,2). All squares of
row and column −30 of Q61 are covered, so a copy of Q60 is dominated.

i(Q62) ∈ {31, 32}: 0-cover of size 32 for Q61 with e = f = u = 7, excess difference
diagonals −44, −16, 60, excess sum diagonals −44, 16, 58. For even x from −30 to 30,
y-values are 30, −6, −16, 18, 12, −24, 20, −2, −8, −26, 16, 4, 24, −22, 6, −30, −10,
−18, 10, 26, 2, −4, 8, −28, −20, 22, −12, 14, 0, −14, 28; additional square (15,15). All
squares of Q63 except (−31,−15) are covered, so a copy of Q62 is dominated.

i(Q63), γ(Q63), i(Q64), γ(Q64) ∈ {32, 33}: 1-cover of size 33 for Q63 with e = 8, f = 5,
u = 8, excess sum diagonals −46, −36, −16, 12, 44, 46. For odd x from −31 to 31,
y-values are −7, 3, −19, 23, 13, −9, −17, 27, −27, −21, 29, 1, 7, 11, 25, −15, −5, 9,
−23, −29, −1, 31, −11, 19, −31, −25, 17, 21, 5, −13, −3, 15; additional square (2,2).
All squares of row and column 32 are covered, so a copy of Q64 is dominated.

i(Q65), i(Q66) ∈ {33, 34}: 0-cover of size 34 for Q65 with e = 8, f = 6, u = 8, excess
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difference diagonal 52, excess sum diagonals −48, −42, −14, 48, 58. For even x from −32
to 32, y-values are −4, 18, −16, −6, 0, −18, 20, 26, −32, −28, 2, 22, −20, 30, −10, 8,
−2, −8, 6, 14, −24, −30, 28, −22, −12, 10, 16, −26, 24, 32, 4, −14, 12; additional square
(−25,27). All squares of Q67 are covered except (33, −19), so a copy of Q66 is dominated.

i(Q67), γ(Q67), i(Q68), γ(Q68) ∈ {34, 35}: 1-cover of size 35 for Q67 with e = 7, f = 6,
u = 9, excess difference diagonals −20, 24, excess sum diagonals −52, −14, 38, 52. For
odd x from −33 to 33, y-values are 5, −1, −7, −21, −27, 11, 25, −25, 33, 27, 13, −9,
−31, 17, 3, 9, −5, −11, −17, −3, −23, −33, 29, 23, −19, 31, 19, −29, −15, 7, 1, 15, 21,
−13; additional square (10,14). All squares of row and column −34 of Q69 are covered,
so a copy of Q68 is dominated.

i(Q69) = 35 (and γ(Q69) = 35): 0-cover with e = 8, f = 6, u = 9, excess sum diagonals
±38, ±56. For even x from −34 to 34, y-values are −22, −8, 18, 8, −10, −24, 30, −18,
22, 28, −30, −16, 10, 6, 26, −28, 4, −6, −12, 2, 34, −32, 0, −20, 24, 20, −34, 12, −26,
32, −2, 16, −14, −4, 14.

i(Q70) ∈ {35, 36}: 0-cover of size 36 for Q69 with e = f = 7, u = 9, excess difference
diagonals −52, 16, 40, excess sum diagonals −44, 16, 62. For even x from −34 to 34, y-
values are −12, 6, −14, −2, 4, −26, 28, 22, 16, 30, 26, −22, −28, −34, 2, 14, 10, −8, −20,
0, −6, 8, 20, −18, −24, −30, 32, −32, 24, 18, 12, 34, −4, −10, −16; additional square
(15,19). All squares of Q71 except (±19, 35) are covered, so a copy of Q70 is dominated.

γ(Q71) = 36: 1-cover with e = 6, f = 5, u = 11, excess difference diagonal 0, excess
sum diagonals 0, ±2. For odd x from −35 to 35, y-values are −19, −13, −3, 15, 25, −25,
17, 35, −11, 19, 33, −29, 21, −17, −31, 5, −5, 1, 7, −7, −1, 31, −27, 11, −35, 27, −15,
−21, 9, −33, 29, 23, −23, 3, 13, −9.

i(Q71), i(Q72) ∈ {36, 37}: 1-cover of size 37 for Q71 with e = 7, f = 6, u = 10, excess
difference diagonals −16, 28, excess sum diagonals −56, 14, 42, 56. For odd x from −35
to 35, y-values are −9, 9, −21, −27, 11, 21, −5, 33, −29, 17, 35, −19, −25, 19, 15, −35,
−3, 3, 31, −13, −7, −1, 5, −31, 27, −23, 25, −15, −33, 29, 23, 1, 7, 13, −17, −11;
additional square (22,34). All squares of Q73 but (−36, 22) are covered, so a copy of Q72

is dominated.
i(Q73) = 37 (and γ(Q73) = 37): 0-cover with e = 8, f = 6, u = 10, excess sum

diagonals ±18, ±60. For even x from −36 to 36, y-values are −24, 14, 24, −6, 0, 26, 12,
−30, −20, 22, −28, −34, 32, −8, −2, 4, 10, 30, −32, −26, −10, −4, 2, 8, 28, 18, 36, −22,
−36, −14, 20, 34, −16, 6, 16, −18, −12.

i(Q74) ∈ {37, 38}: 0-cover of size 38 for Q73 with e = f = 7, u = 10, excess difference
diagonals −36, 16, 24, excess sum diagonals −48, 16, 70. For even x from −36 to 36,
y-values are −14, 8, 22, 0, −20, 20, −30, −12, −22, 32, 18, −32, 12, 6, 30, −16, −34,
−6, 26, 14, 4, 24, −4, 2, −24, −28, −10, −36, 34, 28, −26, −8, −18, 16, 10, 36, −2;
additional square (17,21). All squares of Q75 except (±21,−37) are covered, so a copy of
Q74 is dominated.

i(Q75), γ(Q75), i(Q76), γ(Q76) ∈ {38, 39}: 1-cover of size 39 for Q75 with e = 10,
f = 7, u = 9, excess sum diagonals −68, −54, −16, 36, 54, 60. For odd x from −37 to
37, y-values are −31, −15, −5, 13, 27, −19, −29, 25, 15, 33, 23, 3, −21, 21, 1, −23, −37,
−13, −3, −27, 5, −1, 31, −9, −33, 17, −25, 29, 35, −35, 37, 11, 7, −7, 19, 9, −17, −11;
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additional square (6,6). All squares of row and column −38 of Q77 are covered, so a copy
of Q76 is dominated.

i(Q77) = 39 (and γ(Q77) = 39): 0-cover with e = 9, f = 7, u = 10, excess sum
diagonals −62,−48, 44, 66. For even x from −38 to 38, y-values are −24, −18, −4, 2, 24,
14, −22, −26, 36, 30, −28, 22, 32, −30, −16, 4, −6, 12, 6, −34, −2, −12, 28, 34, 16, 0,
−36, −14, −20, −38, −32, 26, 18, 38, 8, −10, 20, 10, −8.

i(Q78) ∈ {39, 40}: 0-cover of size 40 for Q77 with e = f = 8, u = 10, excess difference
diagonals −38, 18, 38, excess sum diagonals −68, 18, 74. For even x from −38 to 38,
y-values are −30, −20, −10, −4, 22, −24, 30, 24, 10, 18, 26, −16, −34, 28, 4, −32, −14,
32, 8, −28, −12, −2, 12, 6, 0, −26, −38, 36, −22, −36, 34, 20, 14, −8, −18, 16, 2, 38,
−6; additional square (3,21). All squares of Q79 except (±21, 39) are covered, so a copy
of Q78 is dominated.

i(Q79), γ(Q79), i(Q80), γ(Q80) ∈ {40, 41}: 1-cover of size 41 for Q79 with e = 10,
f = 7, u = 10, excess sum diagonals −64, −58, −16, 40, 44, 58. For odd x from −39
to 39, y-values are −25, −21, −15, −1, −23, 31, 25, −13, 33, 15, −27, 23, 29, −29, 7,
39, −19, −7, 3, 9, −17, −11, −35, 35, 13, 1, 37, −37, −31, 21, −39, −33, 19, −9, −3,
27, 5, 11, 17, −5; additional square (2,2). All squares of row and column −40 of Q81 are
covered, so a copy of Q80 is dominated.

i(Q81) = 41 and i(Q82) ∈ {41, 42} (and γ(Q81) = 41): 0-cover with e = 9, f = 7,
u = 11, excess sum diagonals −62,−36, 28, 70. For even x from −40 to 40, y-values are
−22, 24, −10, 8, −26, 28, 6, 20, −12, 32, −30, −24, −38, 36, 26, −28, −4, 2, 12, −32,
−8, −2, 34, −36, 22, −6, 0, 14, 38, 16, −18, −40, −34, −20, 30, 40, 18, −16, 10, 4, −14.
By (B) of Proposition 8, adding the square (25, −41) shows i(Q82) ∈ {41, 42}.

i(Q83), γ(Q83), i(Q84), γ(Q84) ∈ {42, 43}, i(Q85) = 43 (and γ(Q85)= 43): 1-cover of
size 43 for Q85 with e = 10, f = 9, u = 11, a = 6, excess sum diagonals −44, 56. For odd
x from −41 to 41, y-values are −21, 25, 11, −3, −9, −15, 27, 33, −33, −27, 15, −25, −37,
29, 39, −5, 31, 3, 9, −31, −11, −1, 5, −13, −29, −39, 23, 41, 1, 21, 37, −19, −41, −35,
35, 13, 19, −23, −17, −7, 7, 17, and additional square (6,6). As the set has no squares
on the edges of Q85, it is also a dominating set of Q83 and Q84.

i(Q86) ∈ {43, 44}: 0-cover of size 44 for Q85 with e = 10, f = 8, u = 11, excess
difference diagonal 26, excess sum diagonals −64, −62, 18, 64, 68. For even x from −42
to 42, y-values are 18, −8, −18, 8, −28, 16, −6, −16, −38, 40, 14, −12, −42, 36, 42, −40,
4, 10, −4, −36, 38, −14, 12, 2, 34, −10, 0, 6, −34, 32, −22, −32, 22, −20, 30, 24, −30,
−24, −2, 28, −26, 20, 26; additional square (−1,25). All squares of Q87 except (25,−43)
are covered, so a copy of Q86 is dominated.

i(Q87), γ(Q87), i(Q88), γ(Q88) ∈ {44, 45}: 1-cover of size 45 for Q87 with e = 9, f = 8,
u = 12, excess difference diagonals ±40, excess sum diagonals −68, 18, 22, 68. For odd
x from −43 to 43, y-values are −9, −19, 15, 9, −21, 17, −1, 33, −37, −43, 43, 21, −25,
41, 23, −35, 5, 31, −33, 3, −7, −13, 13, −39, −3, 11, 19, −5, 39, −23, −29, 37, −41, 25,
−15, −31, 35, 29, −17, 1, 7, −27, 27, −11; additional square (20,20). All squares of row
and column 44 of Q89 are covered, so a copy of Q88 is dominated.

i(Q89) = γ(Q89) = 45 and i(Q90) ∈ {45, 46}: 0-cover with e = 11, f = 9, u = 11,
excess sum diagonals −80, −70, 66, 84. For even x from −44 to 44, y-values are −36,
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−28, −22, −16, −2, −24, 22, 0, 38, 20, −18, 36, 42, 24, 34, −32, 4, −40, 12, 6, −8, −14,
−34, 40, 30, −10, 8, 2, −30, −6, −42, −20, 10, −44, −38, 28, −26, 16, 26, 32, 14, −12,
44, −4, 18. By (B) of Proposition 8, adding the square (−25, 45) shows i(Q90) ∈ {45, 46}.

γ(Q91) = 46: 1-cover with e = 9, f = 8, u = 13, excess difference diagonal 0, excess
sum diagonals −70, 8, 62. For odd x from −45 to 45, y-values are 13, −27, −15, 27, 9,
15, −35, −9, 41, 35, 17, −21, −39, −45, −31, 19, −1, −41, 45, −3, 33, 5, −5, −37, 3,
−7, 7, 1, 29, 43, −19, −33, −43, 31, −23, 39, 21, −13, 37, 11, 25, −29, 23, −17, −11,
−25.

i(Q91), i(Q92) ∈ {46, 47}: 1-cover of size 47 for Q91 with e = 11, f = 10, u = 11,
excess difference diagonals ±88, excess sum diagonals −68, −22, 38, 68. For odd x from
−45 to 45, y-values are 43, 15, −7, −17, 17, 27, −19, −1, 13, −33, −39, −45, 45, −21,
21, 1, −5, 39, −35, −15, 41, 9, 19, −11, 7, −41, −13, 5, 37, −37, −27, 35, 25, −9, 33,
−29, 11, 31, −31, −25, −3, 3, 29, 23, −23, −43; additional square (8,8). All squares of
row and column −46 of Q93 are covered, so a copy of Q92 is dominated.

i(Q93) = γ(Q93) = 47: 0-cover with e = 11, f = 9, u = 12, excess sum diagonals −82,
−60, 52, 90. For even x from −46 to 46, y-values are −36, −22, −8, 30, −24, 6, −26,
−14, 28, 38, 20, −30, 40, −38, 32, 22, −28, 42, 2, −4, 10, 16, −32, 0, −18, −42, −10, 34,
−2, 4, 44, −34, −44, 18, −20, −46, −40, 24, 36, −6, 12, 26, −16, 14, 8, 46, −12.

i(Q94) ∈ {47, 48}: 0-cover of size 48 for Q93 with e = 11, f = 9, u = 12, excess
difference diagonal 74, excess sum diagonals −70, −48, −36, 70, 88. For even x from −46
to 46, y-values are −24, 6, −16, −6, 20, 10, 32, −30, 40, 34, 28, −26, −32, −46, −18, 4,
−34, 30, 2, 22, −28, −12, 14, −4, −44, 12, 44, −8, −2, −42, −36, −22, 24, 38, 16, −38,
36, 42, −40, −10, 0, 18, 8, 26, 46, −14, −20; additional square (−35,39). All squares of
column −47 and row 47 of Q95 are covered, so a copy of Q94 is dominated.

i(Q95), γ(Q95), i(Q96), γ(Q96) ∈ {48, 49}: 1-cover of size 49 for Q95 with e = 12,
f = 9, u = 12, excess sum diagonals −70, −64, −40, 20, 70, 92. For odd x from −47 to
47, y-values are 25, 19, 13, −5, 29, −33, −29, 27, −35, −21, −13, −37, −31, 31, −39, 23,
17, 35, −27, 9, 3, −11, 41, 21, −9, −45, −17, 5, 37, −7, −47, 1, 33, 43, −23, −41, 45, 39,
−43, −1, −19, 7, −3, 15, −15, −25, 47, 11; additional square (4,4). All squares of row
and column 48 of Q97 are covered, so a copy of Q96 is dominated.

i(Q97) = γ(Q97) = 49 and i(Q98) ∈ {49, 50}: 0-cover with e = 12, f = 10, u = 12,
excess sum diagonals −90, −78, 72, 96. For even x from −48 to 48, y-values are −42,
−32, −24, −18, 0, −26, −20, −2, 36, −22, 24, 46, 32, 38, 44, 18, 28, −30, 6, 12, 40,
−8, −44, −16, −10, −34, 14, 8, 2, −12, −6, 42, −36, −46, −28, −38, −48, 22, −40, 34,
20, 10, 4, 30, −4, −14, 16, 26, 48. By (B) of Proposition 8, adding the square (−27, 49)
shows i(Q98) ∈ {49, 50}.

γ(Q99), γ(Q100) ∈ {50, 51} and γ(Q101) = 51: 1-cover of size 51 for Q101 with e = 11,
f = 10, u = 14, a = 29, excess sum diagonals 8, 50. For odd x from −49 to 49, y-values
are −27, 31, 17, −29, 5, −13, −31, 39, −23, 27, 37, −33, 45, −21, 21, −45, 33, 1, −35,
43, 11, −3, 3, −15, −39, 13, 41, −11, −1, −41, 7, 47, −5, 35, 49, 19, −47, 25, −19, −49,
−43, 23, −7, −25, 9, −17, 29, −9, 29, 15; additional square (29, −37). As the set has no
squares on the edges of Q101, it is also a dominating set for Q99 and Q100.

i(Q99), i(Q100) ∈ {50, 51}: 1-cover of size 51 for Q99 with e = 12, f = 9, u = 13,
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excess sum diagonals −74, −52, −36, 20, 74, 84. For odd x from −49 to 49, y-values are
27, 17, −29, 29, −1, −27, 31, 1, −37, −21, 19, 33, −33, 21, 35, −35, −19, 37, −49, 11,
−41, −5, 13, −13, −45, −39, 9, −9, −15, 41, −7, 7, 43, −43, 23, 45, 3, −23, 47, −47, 39,
5, 49, 25, 15, −31, −25, −11, −17, −3; additional square (8,8). All squares of row and
column 50 of Q101 are covered, so a copy of Q100 is dominated.

i(Q101), i(Q102) ∈ {51, 52}: 0-cover of size 52 for Q101 with e = f = 10, u = 14, excess
difference diagonals −66, 22, 46, excess sum diagonals −62, 22, 80. For even x from −50
to 50, y-values are −26, −12, −18, 16, −20, 0, −6, 36, −34, 44, 14, 20, 30, −8, −50, 48,
28, −36, 50, −44, 42, −2, 4, 10, −46, 18, −16, −10, −4, 6, −30, −48, 8, −40, 26, −32,
−14, −42, 46, 40, 34, 24, −38, 12, 22, −24, 38, 32, −22, −28, 2; additional square (19,21).
All squares of row and column 51 of Q103 are covered, so a copy of Q102 is dominated.

i(Q103), γ(Q103), i(Q104), γ(Q104) ∈ {52, 53}, i(Q105) = γ(Q105) = 53: 1-cover of size
53 for Q105 with e = 12, f = 11, u = 14, a = 4, excess sum diagonals −52, 60. For odd
x from −51 to 51, y-values are −27, 31, −7, −29, 13, 7, −31, 35, 29, −13, −21, 39, −39,
51, 37, −37, 25, −25, −47, 9, 3, 43, −43, −11, 15, −19, −1, −41, −17, −3, 11, 47, 41, 1,
49, 23, 17, −49, −35, 33, −51, −45, 45, −33, −15, −9, −23, 19, 5, 27, 21, −5; additional
square (4,4). As the set has no squares on the edges of Q105, it is also a dominating set
for Q103 and Q104.

i(Q106) ∈ {53, 54}: 0-cover of size 54 for Q105 with e = 12, f = 10, u = 14, excess
difference diagonal 26, excess sum diagonals −84, −62, 22, 80, 92. For even x from −52
to 52, y-values are −32, 30, 16, −14, 32, −34, 0, 34, −36, −28, 36, −38, −24, 26, −40,
−26, 40, 4, 28, −42, 44, 8, −10, 42, 6, −8, −44, 38, 18, −12, 10, −4, 2, −50, −6, 46,
−48, −30, −16, 50, −52, −46, 48, 22, −20, 14, 52, −18, 24, −2, 12, −22, 20; additional
square (11,37). All squares of row and column 53 of Q107 are covered, so a copy of Q106

is dominated.
i(Q107), γ(Q107), i(Q108), γ(Q108) ∈ {54, 55}: 1-cover of size 55 for Q107 with e = 10,

f = 9, u = 16, excess difference diagonals 22, 42, excess sum diagonals −36, −28, 20, 48.
For odd x from −53 to 53, y-values are 23, 33, −33, 21, 35, 5, −5, −35, −25, 37, −45,
−39, 27, −31, −41, 29, −15, −9, −37, −1, 47, 11, 31, −43, 13, 41, −7, −13, 45, 7, −11,
−51, 9, 3, −49, 49, 39, −27, 51, 25, −17, 53, −53, −47, 43, −19, 15, 1, −29, 17, −21,
−3, 19, −23; additional square (−30,34). All squares of column −54 and row 54 of Q109

are covered, so a copy of Q108 is dominated.
i(Q109) = γ(Q109) = 55: 0-cover with e = 13, f = 11, u = 14, excess sum diagonals

−94, −86, 72, 108. For even x from −54 to 54, y-values are −40, −34, −28, 34, −4, 2,
36, −30, −36, 26, 40, −26, −32, −38, 24, 46, 32, 38, 48, −22, −6, 0, −44, 8, 14, −12, 22,
−46, −10, 42, 10, 4, −14, −8, 44, −50, 52, −42, −52, 50, −24, −54, −48, 18, −20, 6, 16,
−2, −16, 28, 20, 30, 12, −18, 54.

i(Q110) ∈ {55, 56}: 0-cover of size 56 for Q109 with e = f = 11, u = 15, excess
difference diagonals −60, 36, 44, excess sum diagonals −84, 24, 86. For even x from −54
to 54, y-values are −16, −10, −34, 18, 32, 6, 16, −14, −4, −30, 48, 22, −48, −54, 4,
46, −52, 54, −28, 20, 30, 0, 52, −50, −44, 42, −2, 8, −18, −12, −6, 12, 2, −46, 10, 34,
40, −40, −24, −42, 28, −26, −20, −38, 44, 50, 36, 26, −36, 38, 24, 14, −32, −22, −8;
additional square (3,23). All squares of row and column 55 of Q111 are covered, so a copy
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of Q110 is dominated.
i(Q111), γ(Q111), i(Q112), γ(Q112) ∈ {56, 57}: 1-cover of size 57 for Q111 with e = 13,

f = 12, u = 14, excess difference diagonals −100, 108, excess sum diagonals −84, −26,
50, 84. For odd x from −55 to 55, y-values are 27, 55, −5, −19, 11, 33, 19, −23, 31, 37,
15, −27, −49, −55, 39, −47, −53, 3, −21, 25, 1, −13, 9, −43, −15, −1, −41, 53, 13, −51,
−37, −17, 47, 7, −7, 49, 5, 41, 23, −39, 51, 21, 43, −35, 17, 45, −33, 29, −9, −3, −29,
−11, 35, −31, −25, −45; additional square (8,16). All squares of row and column −56 of
Q113 are covered, so a copy of Q112 is dominated.

γ(Q113) = 57: 0-cover with e = f = 11, u = 16, excess difference diagonals ±88,
excess sum diagonals ±20. This set is symmetric by a half-turn about board center, so
we only give the y-values for even x from 0 to 56: 0, −48, −12, 44, −4, 52, 8, 6, −42, −2,
22, 56, 50, −20, −46, 36, −54, 24, 18, −40, −30, 28, −10, −16, −34, −38, −14, 32, 26.

i(Q113), i(Q114) ∈ {57, 58}: 0-cover of size 58 for Q113 with e = 13, f = 11, u = 15,
excess difference diagonal 90, excess sum diagonals −92, −86, 36, 76, 86. For even x from
−56 to 56, y-values are −36, −32, 34, −24, 14, −12, 6, 16, 30, 36, −26, −20, 50, −40,
−54, 20, 54, −56, 22, −48, −34, 52, −4, 44, 8, 18, −42, −6, 4, −22, −16, −10, 0, −52,
24, 2, 46, 56, −50, −44, −18, 32, 26, 48, −46, 12, −14, 38, 42, 28, −30, 40, −38, −8, −2,
−28, 10; additional square (−35,55). All squares of column −57 and row 57 of Q115 are
covered, so a copy of Q114 is dominated.

γ(Q115) = 58: 1-cover with e = 11, f = 10, u = 17, excess difference diagonal 0, excess
sum diagonals 0, ±54. For odd x from −57 to 57, y-values are −31, −25, −19, 15, 29,
−9, 13, 43, −35, 11, −17, 55, −15, 31, 53, −57, −27, 51, −43, 27, −1, −53, 57, −3, −51,
47, −5, 9, 3, −7, −47, 5, 49, −11, 7, 1, −55, −41, 33, −33, 45, −21, 21, −37, 41, −49,
19, 39, 25, −45, 17, −29, 37, −13, −39, 35, −23, 23.

i(Q115), i(Q116) ∈ {58, 59}: 1-cover of size 59 for Q115 with e = 14, f = 11, u = 15,
excess sum diagonals −104, −86, −24, 56, 72, 86. For odd x from −57 to 57, y-values are
−47, −31, −25, −19, −33, −27, 43, 1, −5, 25, 31, −23, 47, 53, 19, 33, −37, −43, 51, 57,
35, 41, −11, −39, −3, 15, 9, −17, −53, −9, −41, −21, 5, −13, −45, 7, 55, −1, 37, 29,
49, −55, −49, 13, −57, −51, 27, −35, −29, 45, 39, 21, 11, −15, 3, −7, 23, 17; additional
square (0,0). All squares of row and column −58 of Q117 are covered, so a copy of Q116 is
dominated.

γ(Q117) = 59: 0-cover with e = 13, f = 11, u = 16, excess sum diagonals −80, −78,
58, 100. For even x from −58 to 58, y-values are −16, −22, −24, −6, −12, 18, 4, 26, 44,
50, −32, 42, 28, −18, −56, −52, 56, −58, −44, 54, 36, −30, −2, 12, 48, −46, 14, −4, 6,
−20, −14, −8, 10, −42, 2, 8, −40, −54, 40, 46, −36, 34, 24, −50, 32, 22, 52, −38, −48,
−26, 58, 38, 0, 30, 20, −10, −28, −34, 16.

i(Q117), i(Q118) ∈ {59, 60}: 0-cover of size 60 for Q117 with e = f = 12, u = 16, excess
difference diagonals −102, 26, 92, excess sum diagonals −62, 34, 50. For even x from −58
to 58, y-values are −30, 36, −22, −32, 38, 4, −10, −36, −20, 0, −34, 48, 34, 40, −38,
20, 54, −28, 42, 56, −46, −6, 46, 14, 8, −52, −42, 52, 12, −18, −8, 10, −16, −44, −4, 6,
58, −48, 16, 44, 22, 26, −54, −12, −26, −56, −50, −40, 50, 28, 18, −58, 30, −24, 2, 32,
−14, 24, −2; additional square (3,19). All squares of column −59 and row 59 of Q119 are
covered, so a copy of Q118 is dominated.
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i(Q119), γ(Q119), i(Q120), γ(Q120) ∈ {60, 61}: 1-cover of size 61 for Q119 with e = 14,
f = 11, u = 16, excess sum diagonals −90, −84, −24, 32, 76, 90. For odd x from −59 to
59, y-values are −31, 35, 21, −33, −15, −35, 37, −37, 45, 3, 25, 43, −39, 27, −27, −49,
−43, 47, 33, −29, 49, 31, −9, 9, −51, −11, −5, 13, 7, −45, −55, −19, −47, 59, −17, 5,
−1, 39, 57, 1, 11, 55, 51, −57, 41, 19, −59, −53, 53, −41, 17, −25, −3, 15, −23, −13,
−7, −21, 29, 23; additional square (0,0). All squares of row and column −60 of Q121 are
covered, so a copy of Q120 is dominated.

γ(Q121) = 61: 0-cover with e = 13, f = 11, u = 17, excess sum diagonals −74, −64,
40, 98. For even x from −60 to 60, y-values are 26, 36, 18, 24, 38, −40, −6, −32, 2, 40,
30, −36, −28, 28, −42, −56, −30, −44, −58, 44, 34, −48, 0, 6, −50, 14, 50, −14, −46,
10, −4, 52, −16, −52, 8, 48, −12, −2, 4, 22, 54, 16, 42, 56, −26, −20, 58, −60, −54, 60,
46, 20, −38, 32, −18, −24, −34, −8, −22, 12, −10.

γ(Q125) = 63: 0-cover with e = 13, f = 11, u = 18, excess sum diagonals −68, −40,
18, 90. For even x from −62 to 62, y-values are −32, −26, −20, 22, −36, 30, 20, −6, 0,
42, 24, −18, 56, 62, 28, −30, 60, −12, −44, −50, −46, −62, 6, 58, −52, −8, 48, 4, 14,
−4, 52, −16, 10, 54, −2, −58, −10, 8, 2, −54, −60, −34, 32, 50, 40, 18, −56, −42, −24,
−14, 44, −22, 36, −38, 16, 46, −48, 38, −40, 34, 12, 26, −28.

γ(Q129) = γ(Q130) = 65: 0-cover of Q129 with e = 14, f = 12, u = 18, excess sum
diagonals −100, −26, 0, 126. For even x from −64 to 64, y-values are 28, 22, −16, 14,
−24, −2, −12, −22, 0, 54, 24, 46, −56, 58, −64, −58, 32, 26, −60, −34, 36, −62, 56, 62,
−52, −8, 10, 4, 18, 12, −10, −50, −26, −20, −14, 16, −6, 8, 2, 38, −48, −42, −32, 42,
60, −54, −44, −38, 48, 34, 40, 50, 20, 30, 52, −46, 44, 6, −4, −30, −40, −18, −28, 64,
−36. We may apply Proposition 6(A) with k = 32; since there are excess sum diagonals
numbered −100 and −26, this set dominates Q130.

γ(Q131) = 66: 1-cover with e = 14, f = 13, u = 18, excess difference diagonal 0,
excess sum diagonals −130, 2, 128. Take the set on Q129 just given, add 1 to each row
and column number, and include the square (−65,−65).

Below we summarize established values and bounds for γ(Qn) and i(Qn); values from
[19] are in italic, those from [14] are underlined, those from this work are in bold, and
older ones are in roman type.

i(Qn) = γ(Qn) = (n − 1)/2 for n = 3, 11.

γ(Qn) = dn/2e for n = 1, 2, 4–7, 9, 10, 12, 13, 17–19, 21, 23, 25, 27, 29–31, 33, 37, 39,
41, 45, 49, 53, 57, 61, 65, 69, 71, 73, 77, 81, 85, 89, 91, 93, 97, 101, 105, 109, 113, 115,
117, 121, 125, 129–131.

γ(Qn) = dn/2e + 1 for n = 8, 14, 15, 16.

γ(Qn) ∈ {dn/2e, dn/2e + 1} for n = 20, 22, 24-26, 28, 32, 34, 35, 36, 38, 40, 42, 43, 44,
46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 74, 75, 76,
78, 79, 80, 82, 83, 84, 86, 87, 88, 90, 92, 94-96, 98-100, 102-104, 106-108, 110-112,
114, 116, 118-120, 122, 126, 132.
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i(Qn) = dn/2e for n = 1, 2, 5, 7, 9, 10, 13, 17, 21, 25, 33, 45, 57, 61, 69, 73, 77, 81, 85,
89, 93, 97, 105, 109.

i(Qn) = dn/2e + 1 for n = 4, 6, 8, 12, 14–16, 18.

i(Qn) ∈ {dn/2e, dn/2e + 1} for n = 19, 20, 22, 23, 24, 26-30, 31, 32, 34-44, 46-56,
58-60, 62-68, 70-72, 74-76, 78-80, 82-84, 86-88, 90-92, 94-96, 98-104, 106-108,
110-120.

6 Concluding Remarks

Much previous work has depended on finding dominating sets symmetric by a half-turn
about board center. This is not always possible, even when the line sets have the desired
symmetry. Specifically, the dominating sets given above to establish the values of i(Q69)
and i(Q73) each have the property that their sets of occupied lines have 180◦ symmetry, but
an exhaustive search showed there are no minimum dominating sets with 180◦ symmetry
that occupy these line sets.

From (1) and the definitions of γ and i, we have (n− 1)/2 ≤ γ(Qn) ≤ i(Qn) for all n;
our results lead us to add the following conjecture.

Conjecture For all n, i(Qn) ≤ dn/2e + 1.

It would be very interesting to know if equality occurs in (1) for any n other than
3 and 11. It is only necessary to examine the members of the sequence (ni) defined in
Theorem 1. The smallest open case is n4 = 143; it is shown in [19] that if γ(Q143) = 71,
then any minimum dominating set of Q143 is an independent 0-cover with e = f = 15,
u = 20, and no excess diagonals.
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Comment by the authors added August 25th 2003

In the above paper, the theorem that at least (n−1)/2 queens are required to dominate
the n by n chessboard was attributed to P. H. Spencer, in [1]. A proof of this result
appeared in the earlier work [2].

1. E. J. Cockayne, Chessboard domination problems, Discrete Math. 86 (1990), 13–20.

2. V. Raghavan and S. M. Venkatesan, On bounds for a covering problem, Inform.
Process. Lett. 25 (1987), 281–284.

Corrigendum added October 5th 2017

Some incorrect attributions in the second paragraph of the second page of the paper
are corrected in the next paragraph.

In 1863, C. F. de Jaenisch [22] considered the problems of finding the values of γ(Qn)
and i(Qn), giving minimum dominating sets and minimum independent dominating sets
up to n = 8. His work was briefly summarized by W. W. Rouse Ball [23] in 1892, who
considered several other questions about queen domination. In 1901, W. Ahrens [20,
Chapter X] gave minimum dominating sets for Q9, and in 1902 and 1903, K. von Szily
[24, 25] gave minimum dominating sets of Qn for 10 ≤ n ≤ 13 and n = 17. De Jaenisch,
Ahrens, and von Szily also worked extensively to find the number of different minimum
dominating sets for each n, often giving lists with one set from each symmetry class.
Many of these results were collected by Ahrens in the 1910 edition [21] of his book, and
can also be found in its later editions.

A summary of established values and bounds for γ(Qn) and i(Qn) is given on pages
17 and 18 of the paper, in the form of seven lists. These lists should be disjoint, but the
second and fourth lists both include 25, which should occur only in the second list. That
is, γ(Q25) = 13. (This was shown in [26], and also can be deduced from inequality (2) of
the paper and the first dominating set given in Section 5.)
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