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Abstract

Suppose P is a partially ordered set that is locally finite, has a least element,
and admits a rank function. We call P a weighted-relation poset if all the covering
relations of P are assigned a positive integer weight. We develop a theory of covering
maps for weighted-relation posets, and in particular show that any weighted-relation
poset P has a universal cover P— P, unique up to isomorphism, so that

1. P — P factors through any other covering map P’ — P;
2. every principal order ideal of Pisa chain; and
3. the weight assigned to each covering relation of Pis 1.

If P is a poset of “natural” combinatorial objects, the elements of its universal
cover P often have a simple description as well. For example, if P is the poset of
partitions ordered by inclusion of their Young diagrams, then the universal cover P
is the poset of standard Young tableaux; if P is the poset of rooted trees ordered
by inclusion, then P consists of permutations. We discuss several other examples,
including the posets of necklaces, bracket arrangements, and compositions.

1 Introduction

For topological spaces, the notion of a covering space is familiar (see, e.g., [9]): a covering
map p : X' — X is a continuous surjection such that, for sufficiently small open sets U C
X, p~}(U) is a disjoint union of open sets in X’ each of which p maps homeomorphically
onto U. For any space X satisfying appropriate hypotheses (e.g., that X is connected,
locally arcwise connected and semilocally simply connected), there is a simply connected
covering space 7 : X=X , which is universal in the sense that it “factors through” any
other connected cover of X, i.e., if p: X’ — X is any covering map with X’ conneced,
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then there is a covering map f : X — X' so that 7 = pf. The universal covering space of
X is unique up to homeomorphism over X.

In this paper we develop a theory of covering maps for ranked posets. More precisely,
we define covering maps of “weighted-relation” posets, which are locally finite ranked
posets with least element that have a positive integer weight associated with each of their
covering relations. We show that every such weighted-relation poset P has a universal
cover P — P, unique up to isomorphism in an appropriate category, which factors through
any other cover P’ — P. The universal cover P is “simple” in the sense that its Hasse
diagram is a tree and all its covering relations have weight 1.

In many cases where P is a poset of familiar combinatorial objects, the elements of the
universal cover P also have a simple description. For example, the poset of monomials
in commuting variables xq, ..., x; has a universal cover whose elements are monomials in
k noncommuting variables (Example 2 in §4 below); the poset of compositions (with an
appropriate choice of weights) has as its universal cover the poset of Cayley permutations
in the sense of [6] (Example 6). We discuss several other examples, including the posets
of necklaces, bracket arrangements, partitions, and rooted trees.

2 Weighted-relation posets

Our terminology for posets follows [11]. Let (P, <) be a locally finite poset with least
element 0 and rank function | -|. By a weight system on the relations of P, we mean a
function n that assigns a nonnegative integer n(z,y) to every pair x,y € P so that

1. n(z,y) # 0 if and only if x < y;

2. for all elements = < y and nonnegative integers |z| < k < |y|,

n(w,y) = Y nlx,z)n(z,y).

2=k

(Note that the second condition implies n(xz,x) =1 for all x € P.)

We call a poset P together with a weight system on its relations a weighted-relation
poset. By induction on |y| — |x| it is easy to prove from the definition that for any = < y
in P

n(x,y) = Z n(xy, xo)n(xg, x3) - - -n(xp_1, T,
r=r1<r2<"<TL=Y
where the sum is over all saturated chains * = 1 < 29 < -+ < 2 = y from x to y: thus,
to define n it suffices to give n(z,y) when y covers x. In particular, any ranked, locally
finite poset with least element can be made a weighted-relation poset by assigning 1 to
every covering relation.

The motivation for this definition comes from thinking of a covering relation x < y of
P as indicating y can be built from z by some kind of elementary operation: n(z,y) is
the number of ways this can be done. Then in general n(u,v) is the number of ways that
v can be built up from wu via a sequence of elementary operations. For examples see §4
below.
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Let W be the category whose objects are weighted-relation posets, and whose mor-
phisms are defined as follows. A morphism of weighted-relation posets P, P’ is a rank-
preserving function f : P — P’ such that, for any elements ¢, s of P,

n(f(0), f(s) = > nlt,s). (1)

s'ef~1(f(s))

In particular, any such function f is order-preserving. Also, if f has an inverse f~! that is
also a morphism of weighted-relation posets, then n(f(t), f(s)) = n(t,s) for all t,s € P.

We call a weighted-relation poset P simple if n(z,y) is 1 or 0 for any z,y € P. The
following result is evident.

Proposition 2.1. If P is a weighted-relation poset, the following are equivalent:
(i) P is simple;

(i) the Hasse diagram of P is a tree, and every covering relation has weight 1;
(iii) for every x € P, n(0,z) = 1.

We also record the following fact, which is an immediate consequence of inequality
(1).

Proposition 2.2. If f : P — P’ is a morphism of weighted-relation posets and P’ is
simple, then f is an injective function and P is simple.

3 Covering maps

Let P" and P be weighted-relation posets. We say that a rank-preserving function = :
P’ — P is a covering map if, whenever s,r € P with 7w(s’) = s,

n(s,r) = Z n(s',r"). (2)

rler—1(r)

Note that equation (2) implies that 7 is a morphism of weighted-relation posets, and
taking s = 0, we see that 7 is also surjective.

To prove that a given rank-preserving function is a covering map, it suffices to prove
equation (2) for |r| — |s| = 1. For suppose (2) holds when |r| — |s| = 1, and suppose
inductively it holds for |r| — |s| < n, n > 1. Let r,s € P with |r| — |s| = n, and let
7(s’) = s. Then

n(s,r) = Z n(s,t Z Z Z n(t',r'),

jt]=Is]+1 jtl=ls|+1 ¢'en—1(t) r'em—

and since the sets 771(t), as ¢ runs through the rank-(|s| + 1) elements of P, partition the
rank-(|s| + 1) elements of P’,

Z Z n(t',r") = Z n(s’,r').

[t'|=|s'|+1r'em—1(r) r'er—1(r)
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If P is a fixed weighted-relation poset, there is a category W/P of covers of P whose
objects are covering maps 7 : P’ — P. A morphism from 7 : P, — P to mg : P, — P in
W/P is a morphism f : P, — P, in W such that mof = 7. In fact, all such functions f
are covering maps.

Theorem 3.1. Suppose 7; : P; — P is a covering map fori = 1,2, and suppose f : P, —
P is a morphism of weighted-relation posets such that mof = m. Then f is a covering
map.

Proof. We show [ satisfies equation (2) above. Let s,r € P, s € P, with f(s') = s.
Since 7y is a covering map,

n(ma(s), ma(r)) = Z n(s,r;),

1=1
where 75 ' (ma2(r)) = {r1,...,r}. For each 7; in the image of f,
S nf) nleor) ®

r'ef=1(r;)

Now U, f7(r;) = n7 }(ma(r)), and since 7 is a covering map we have

n(s', ') = n(m(s), m(r)) = Zn(s, ). (4)

r'emy (ma(r)) i=1

Comparing (3) and (4), we see there is a contradiction unless each of the sets f~'(r;) is
nonempty and (3) is an equality for all . O

Theorem 3.2. Suppose w : P’ — P is a covering map and f : Q — P is a morphism
of weighted-relation posets, with Q simple. Then f can be lifted to P’, i.e., there is a
morphism of weighted-relation posets f': Q) — P’ such that nf" = f.

Proof. We define f': @Q — P’ by induction on rank; there is no problem getting started
since f" must take 0 € Q to 0 € P’. Suppose f’ has already been defined for rank < n.
For a rank-(n — 1) element z € @ and a rank-n element = € f(Q) with x = f(2), let

Clz,z)={€Q| 2 =z || =n, and f(z) = x}.

Since the Hasse diagram of @ is a tree, sets of the form C(z,z) partition the rank-n
elements of Q). We shall extend f’ to C(x, z). For 2’ € C(z, 2),

n(f(z),z) > Z n(z,z') = card C(z,z).

2'eC(z,z)

Let S={y € P'|y> f'(z) and w(y) = x}. For any y € S,

n(f(2).x) = n(nf'(2),7(y)) = > n(f'(z),9)
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and hence

k
card C(z,2) §Zn (5)
=1

where S = {y1,¥2,...,yr}. Choose a partition of C(z, z) into disjoint subsets Sy, ..., Sk
(some possibly empty) so that S; has cardinality at most n(f’(z),y;): this is possible
because of inequality (5). Extend f’ to C(x, z) by setting f'(z') = y; for all 2’ € S;. Then
for all 2/ € C(x, z),
n(f'(). f(EN =z Y, nlz2)
fE=f'()

Reasoning in the same way as in the paragraph following equation (2) above, we can con-
clude that f’ is extended as a morphism of weighted-relation posets; and by construction

mf'(Z') =z = f(<)
for all 2’ € C(z, 2). 0O
Theorem 3.3. If P is a weighted-relation poset, there is a poset P and a covering map

7 : P — P so that P is a simple weighted-relation poset. Further, the fiber 7=(z) of each
x € P contains n(0,z) elements.

Proof. Again we proceed by induction on the rank. Let P™ be  the set of elements of P
of rank at most n. Suppose a covering 7 : P"~1 — P~ with P~V simple has already
been constructed, and let x be a rank-n element of P. Since P is locally finite, the set C(x)
of elements covered by x is finite: let C(x) = {z1,...,2,}. Each fiber 77!(z;) contains
n(@, x;) rank-(n — 1) elements of P: call them Ti1, Tig, - - -y Tim,;, Where m; = n(f), x;). Let
K(x) be the set

{(,5,k)| 1 <i<card C(z), 1 <j<n(0,2;), 1 <k <n(z;,2)},
and define

P =pry T[] K

z€EP,|z|=n

Extend the weight system (and order) of pn=1) o pln ) by putting

1

0, otherwise,

) lfzjxija

n(z, (i’j’ k)) = {
for any (i, 7, k) € K(x), z € P Then P™ is simple: for any (i, k) € K (x) there is
a unique chain to 0 passing through z;;, so

TL(O, (i:ja k)) = n((): 551‘]')”(51‘]': (i,j, k)) = 1.

(The set C(z) N C(2') may be nonempty for = # a’, so the same point of P~ may be
labelled as both 7;; and Z7,,, but this does not affect the conclusion since we are taking a
disjoint union of the K(x).)
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Now extend 7 to P™ by having 7 send each element of K (z) to z. Then 7~ !(z) =

K (z) contains
T

Z n(@, zi)n(z;, x) = n(@, x)

i=1
elements. Also, for any z € P®=1 and rank-n element z of P, we have

T

n(m(2),2) =Y n(n(2), z)n(;, x) =

i=1
r m; n(z,z;)
=1 j=1 k=1 wen—1(x)
so 7 is extended as a covering map. O

By a universal cover of P, we mean a cover P — P so that, for any other cover
P’ — P, there is a morphism of W/P from P — P to P’ — P.

Theorem 3.4. If P is a weighted-relation poset, a cover P — P is universal if and only
if P is simple, and such a cover is unique up to isomorphism in W/P.

Proof. Suppose that p : P — P is a cover with P simple, and let 7 : P’ — P be another
cover. By Theorem 3.2, p can be lifted to a morphism p’ : P — P’ of weighted-relation
posets so that 7p’ = p: but this means p : P — P is a universal cover. Thus, a simple
cover is universal.

Now suppose 7' : P’ — P is a universal cover. By Theorem 3.3 there is a simple
cover m : P — P, and by universality there is a morphism of W/P from 7’ to w. Thus
there is a morphism of weighted posets [ : P’ — P which (by Theorem 3.1) is a covering
map, hence surjective; and since P is simple, Proposition 2.2 says f is injective and P’ is
simple. It follows that f is an isomorphism of W/P. O

4 Examples

Ezample 1. Let P be the poset of subsets of {1,2,...,n}, ordered by inclusion, with each
covering relation given weight 1. Then the universal cover P can be identified with the
set of linearly ordered subsets of {1,2,...,n}, with A < B in P if Ais an initial segment
of B; and PP forgets the order. Evidently the fiber of any rank-%£ element of P has
k! elements, so there are a total of k'(g) rank-k elements in P.

Example 2. Let M be the poset of monomials in k£ commuting variables x1, ..., xg, with
m =< m’ in M if there is a monomial m” such that m’ = mm”. The rank on M is given
by total degree, each of the z; having degree one; the least element of M is the empty
monomial 1; and the covering relations are all given weight 1. Then the universal cover
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M is isomorphic to the poset of monomials in £ noncommuting variables X, ..., X, with
weights given by
1, if w' = wX; for some 1,

n(w,w’) =
( ) {O, otherwise,

for [w'| — |w| = 1. Clearly M is simple. The function 7 : M — M that sends X; to z;
(so, e.g., T H(2229) = { X7 X5, X1 X5 X1, XoX?}) is a covering map. The cardinality of the
fiber of any monomial is given by

S . I+ +1
n(l,ziay - ak) = (1 : .k),
1 29 - Uk
and the total number of rank-n elements of M is

> ()=

11+ Fig=n

Ezxample 3. Let N be the set of circular necklaces made of beads of k colors: a rank-m
element of N is a necklace with m beads, and the least element is the empty necklace ().
For a rank-(m — 1) necklace p and a rank-m necklace ¢, p < ¢ if ¢ can be obtained from
p by insertion of a bead of any color, and n(p, q) is the number of ways to insert a bead
into p to get ¢. For example, in the case k = 2,

n((D,Q)zQ and n(C},C}):l

The universal cover N can be described as the poset of necklaces with labelled beads, i.e.,
the beads of a rank-m necklace are labelled 1,2...,m, with N’ — N the function that
forgets the labels. It is clear that N is simple, since there is a unique chain from any
labelled necklace to () via the operation of removing the highest-label bead. A rank-m
element of N can be thought of as a “k-colored permutation” mod rotation, so there are
kE™(m — 1)! such elements. Also, the fiber of a given necklace p € N with m beads has
n(0,p) = m!/N(p) elements, where N(p) is the number of rotations that take p to itself
(necessarily a divisor of m): p is called primitive if N(p) = 1. Evidently a necklace p with

N(p) = d has a primitive “quotient necklace” of size %. Thus, if P(m) is the number of
primitive necklaces of size m, we have

SR 2 ST (), p) = Kmm - 1),
d’ d

djm lp|=m

or >y, P(d)d = k™. By Mobius inversion we obtain the classical result

e

P(m) = %Zu(d)k :
dlm

Cf. [7, Theorem 7.1].
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Example 4. Let B be the set of balanced bracket arrangements: a rank-n element of B
is a sequence of n left brackets and n right brackets so that, reading left to right, the
number of right brackets never exceeds the number of left brackets. For b, 0" € B with
|b'| — |b] = 1, let n(b,b") be the number of ways to insert a balanced pair () into b to
obtain ', e.g., n((){(), (())()) = 1 and n(()(), ()()()) = 3. The least element is the empty
arrangement (). Then B is a weighted-relation poset.

The universal cover B has rank-n elements that are permutations ajas - - - as, of the
multiset {1,1,2,2,...,n,n} such that, if a; > a; and ¢ < j, then there is some k < j, k # 1,
with aj, = a;. In particular, if s is a rank-n element of %, then the two occurrences of n in
s must be adjacent. We define a partial order on B by declaring that the rank-n element
aiay . . . as, covers the rank-(n — 1) element ay - --a;_1a;42 - - - as,, where a; = a;11 = n,
and define the weight of all covering relations to be 1. Then B is evidently simple.

Define 7 : B — B by sending s € B to the bracket arrangement obtained by replacing
the first occurrence of each positive integer in s by (, and the second occurrence of each
positive integer by ). Let s be a rank-(n — 1) element of B, with 7(s") = s. Then a rank-n
element " > s’ is obtained by inserting nn into ', corresponding to inserting () into s.
Thus, for any r > s in B with |r| —|s| = 1,

n(s,r) = number of ways to insert () into s to get r

= Z n(s’,r'),

r'em—1(r)

so 7 is a covering map.
It is well known that there are C,, rank-n elements of B, where

c - 1 (Qn)
n+1\n

is the nth Catalan number. The number of rank-n elements of B can be seen to be

@2n—1=2n—-1)2n—3)---3-1

as follows. If s = ajay---aq, € @, there are 2n — 1 possible choices of 7 so that a; is the
first occurrence of n in s. Once i is chosen, then a;1; = n, so s covers the rank-(n — 1)
element ay - --a;_1a;42 - ag, of %, which by induction can be chosen in (2n — 3)!! ways.
The phenomenon that labelling elements of a set enumerated by Catalan numbers gives
a set enumerated by double factorials was noted in [3].

Example 5. Let F be the set of partitions of nonnegative integers, ordered by inclusion of
their Young diagrams. Thus, a partition A of n covers a partition pu of n — 1 if A can be
obtained from p by increasing one part of u by 1, or by adding a new part of size 1 to u:
and we assign weight 1 to every covering relation. Then a rank-n element of the universal
cover J is a Young diagram with boxes labelled 1,2...,n so that the labels increase from
left to right and from top to bottom, i.e., a standard Young tableau. The ordering on &
is by inclusion, and F — JF is the obvious function. The cardinality n(0, \) of the fiber of
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a partition \ is given by the hook-length formula (see [12, Cor. 7.21.6]). More generally,
when g < A the number n(u, A) counts standard Young tableaux of skew shape A/u (see
[12, Cor. 7.16.3] for a formula). There is also an algebraic interpretation of the numbers
n(p, A): if we let sy be the Schur symmetric function corresponding to the partition A,

then
Slfsu = Z n(:ua )‘)8)\

AI=lal+k
(see [12, Sect. 7.15]).

Ezxample 6. Let € be the poset of compositions, i.e., finite sequences of integers, with rank
given by the sum, and least element (). For compositions I, J with |J| —|I| = 1, we define

1, if J is obtained from I by increasing one part;
n(I,J) =< m, if there are m ways to insert 1 into I to get J;

0, otherwise.

Thus, e.g., n(121,122) = 1, n(121,1121) = 2, and n(121,212) = 0. This defines a weight
system of €, so € is a weighted-relation poset.

A rank-n element of the universal cover € is a Cayley permutation of length n as defined
in [6], i.e., a length-n sequence s of positive integers such that any positive integer i < j

appears in s whenever j does. The partial order on € is defined as follows. If s =ay ---a,

is a Cayley permutation, let m(s) = max{ai,...,a,}. Then s covers a;---a,_; if the
latter is a Cayley permutation: otherwise, s covers p(ay) - --p(a,_1), where p is the order-
preserving bijection from {as,...,a,—1} to {1,2,...,m(s) —1}. For example, the order

ideal generated by 41332 is
41332 > 3122 > 312 = 21 = 1 = .

If we give each covering relation weight 1, then Cis evidently simple.

Let m : € — C be the function that sends a sequence s to the sequence i11s - - - ij,, Where
i; is the number of times j occurs in s; e.g., 7~ 1(13) = {1222,2122, 2212, 2221}. To see
that 7 is a covering map, consider compositions I, J with |J| = |I| + 1. Let I =4y ---iy
and s = aj - - - a, € C with m(s) = I. Suppose first that J is obtained from I by increasing
the size of one part, so J = i+ -4,_1(i, + 1)iy11---ig. Then n(I,J) = 1 and there is
only one t > s with 7(t) = J, namely t = a;---a,r. Now suppose J is obtained from
I by inserting 1, ie., J = 41+ -4,10,41 - - - ix; without loss of generality we can assume
ir # 1. Then J contains a string of 1’s of length n(1, J) after i,. The possible elements
t = s in € with x(t) = J are of the form ¢ = g(a1)q(as) - - - q(an)(r + i), where i runs
from 1 to n(7,J) and ¢ is the order-preserving bijection from {ay,...,a,} ={1,...,k} to
{1,...;r+i—1,r4+i+1,...,k+1}. Finally, if n(I, J) = 0, we must have n(s,t) =0 for
any t € € with 7(t) = J since the previous two cases have exhausted all the possibilities
for t to cover s. So in any case,

n(l,J) = Z n(s,t)

ter—1(J)
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when |J| —|I] =1 and n(s) = I.
The cardinality of n((), I) of the fiber of a composition I = iy ---i is evidently the
multinomial coefficient 1

There is an algebraic interpretation of the numbers n(/,.J) analogous to that of the
preceding example: if M; is the monomial quasisymmetric function corresponding to the
composition I (see [7, Sect. 9.4], or [12, Sect. 7.19] for definitions), then

MfM;= > (I, J)M;.
|7|=I1+k

In particular, the multinomial coefficients n(f), J) appear in the expansion of MZF.

Example 7. Let T be the poset of rooted trees ordered by inclusion, i.e., ¢’ = ¢ if ¢’ can be
obtained from ¢ by adding new edges and vertices. The rank function is given by

|t| = number of vertices of ¢ — 1,

and the least element is the tree e consisting of the root vertex. The weight system is
defined as follows: if |[t'| — [t| = 1, let n(¢,t') be the number of vertices of ¢ to which a
new edge and terminal vertex may be added to obtain #'.

Rank-n elements of T are permutations of {1,2,...,n}. A permutation o = sys9--- s,
of {1,...,n} with s; = n covers the permutation

T:SI"'Si—lsi-i-l"'Sn

of {1,...,n — 1} (and no other). The least element is the empty permutation (). Then T
is clearly simple if we give each covering relation weight 1.

Now we define the covering map 7 : T — TJ. Let 7(()) = o, and given a nonempty
permutation o = s1s9 - - - 5, define a rooted tree with vertices labelled 0, 1, ..., n as follows.
Label the root 0, and attach the vertex labelled i to the vertex labelled j < i if j is the
last element of the sequence s1ss...s,_1 that is smaller than i, where s = i; attagh 1 to
the root if no such j exists. This associates a labelled rooted tree with each o € T, and
7(o) is just the rooted tree obtained by forgetting the labels. Thus, e.g.,

(4231) = 4\ |

To see that 7 is a covering map, note first that terminal vertices of 7(o) correspond
either to descents of o (i.e., terms s; with s; > s;,1), or to the final term. Now a
permutation o with |o| = n covers 7 exactly when o is obtained by inserting n into T,
e.g., 2413 > 213. This always introduces a new descent (or new final term) into 7, and
corresponds to adding a new edge and terminal vertex to m(7); moreover, the n possible
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places to insert n in a rank-(n — 1) permutation 7 correspond to the n vertices of (1)
where a new edge and vertex can be attached. Thus, for trees r, s with |r| — |s| = 1 and
s =m(T),

n(s,r) = number of permutations o > 7 with m(c) =r

= Z n(r, o).

ocer—1(r)

The cardinality n(e,t) of the fiber of a rank-n rooted tree ¢ is the number of distinct
labelled rooted trees (with labels coming from {0, 1,...,n} and strictly increasing as one
moves away from the root) that are isomorphic to ¢ when the labels are removed. Since

there are n! rank-n elements of T,

> nfe,t) =nl.

[t|=n

In fact, if we let e(t) be the number of terminal vertices of the tree ¢t we have

> nfet)= <kﬁl>

[t|=n,e(t)=k

where <§ ) is the number of permutations of {1,..., p} with ¢ descents (Eulerian number),
because of the correspondence between descents of ¢ and terminal vertices of m(¢). Cf.
11, Prop. 1.3.16).

The numbers n(e,t) appear in connection with the “growth operator” on the Hopf
algebra of rooted trees studied by Connes and Kreimer [2]. In [1, 5], n(e,t) is called
the “Connes-Moscovici weight” of ¢, and some results about it are obtained. To describe
them requires a few definitions. Given a tree ¢, let V() be the set of vertices of ¢, and for
v € V(t) let t, be the subtree consisting of v and all its descendents (with v as root): thus
t, =t if r is the root of ¢, and ¢, = e if v is a terminal vertex. Define the “tree factorial”

of t by
=T (t.|+1).
veV(t)

Also, if vy,..., v are the children of the root of ¢, define the symmetry group SG(t) to
be the group of permutations o of {1,...,k} such that t,, and t,, are isomorphic rooted
trees when (i) = j. Define the symmetry degree of ¢ to be

Sp= ][ cardSG(t,).

veEV (L)
For example, the tree ¢ = 7w(4231) above has t! = 10 and S; = 2. In [1] it is shown that

n(e,t) = % (6)
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Equation (6) is actually a variant of the generalized hook-length formula for rooted trees
that appears in [10, Sect. 22|, [4, Ex. 5.1.4-20], and [8]. To see this, note that if 7" is a
realization of the rooted tree ¢ as a planar directed graph (with arrows coming out from
the root), then the number of ways to attach the labels {0, 1,...,|t|} to the vertices of T
so that the labels strictly increase outward from the root is n(e,t)S;. Also of interest is

the result of [5] that
Z n(o, t) . Z‘
2

[t|=n
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