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Abstract

Suppose P is a partially ordered set that is locally finite, has a least element,
and admits a rank function. We call P a weighted-relation poset if all the covering
relations of P are assigned a positive integer weight. We develop a theory of covering
maps for weighted-relation posets, and in particular show that any weighted-relation
poset P has a universal cover P̃ → P , unique up to isomorphism, so that

1. P̃ → P factors through any other covering map P ′ → P ;

2. every principal order ideal of P̃ is a chain; and

3. the weight assigned to each covering relation of P̃ is 1.

If P is a poset of “natural” combinatorial objects, the elements of its universal
cover P̃ often have a simple description as well. For example, if P is the poset of
partitions ordered by inclusion of their Young diagrams, then the universal cover P̃
is the poset of standard Young tableaux; if P is the poset of rooted trees ordered
by inclusion, then P̃ consists of permutations. We discuss several other examples,
including the posets of necklaces, bracket arrangements, and compositions.

1 Introduction

For topological spaces, the notion of a covering space is familiar (see, e.g., [9]): a covering
map p : X ′ → X is a continuous surjection such that, for sufficiently small open sets U ⊂
X, p−1(U) is a disjoint union of open sets in X ′ each of which p maps homeomorphically
onto U . For any space X satisfying appropriate hypotheses (e.g., that X is connected,
locally arcwise connected and semilocally simply connected), there is a simply connected

covering space π : X̃ → X, which is universal in the sense that it “factors through” any
other connected cover of X, i.e., if p : X ′ → X is any covering map with X ′ conneced,
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then there is a covering map f : X̃ → X ′ so that π = pf . The universal covering space of
X is unique up to homeomorphism over X.

In this paper we develop a theory of covering maps for ranked posets. More precisely,
we define covering maps of “weighted-relation” posets, which are locally finite ranked
posets with least element that have a positive integer weight associated with each of their
covering relations. We show that every such weighted-relation poset P has a universal
cover P̃ → P , unique up to isomorphism in an appropriate category, which factors through
any other cover P ′ → P . The universal cover P̃ is “simple” in the sense that its Hasse
diagram is a tree and all its covering relations have weight 1.

In many cases where P is a poset of familiar combinatorial objects, the elements of the
universal cover P̃ also have a simple description. For example, the poset of monomials
in commuting variables x1, . . . , xk has a universal cover whose elements are monomials in
k noncommuting variables (Example 2 in §4 below); the poset of compositions (with an
appropriate choice of weights) has as its universal cover the poset of Cayley permutations
in the sense of [6] (Example 6). We discuss several other examples, including the posets
of necklaces, bracket arrangements, partitions, and rooted trees.

2 Weighted-relation posets

Our terminology for posets follows [11]. Let (P,�) be a locally finite poset with least
element 0̂ and rank function | · |. By a weight system on the relations of P , we mean a
function n that assigns a nonnegative integer n(x, y) to every pair x, y ∈ P so that
1. n(x, y) 6= 0 if and only if x � y;
2. for all elements x ≺ y and nonnegative integers |x| ≤ k ≤ |y|,

n(x, y) =
∑
|z|=k

n(x, z)n(z, y).

(Note that the second condition implies n(x, x) = 1 for all x ∈ P .)
We call a poset P together with a weight system on its relations a weighted-relation

poset. By induction on |y| − |x| it is easy to prove from the definition that for any x ≺ y
in P

n(x, y) =
∑

x=x1≺x2≺···≺xk=y

n(x1, x2)n(x2, x3) · · ·n(xk−1, xk),

where the sum is over all saturated chains x = x1 ≺ x2 ≺ · · · ≺ xk = y from x to y: thus,
to define n it suffices to give n(x, y) when y covers x. In particular, any ranked, locally
finite poset with least element can be made a weighted-relation poset by assigning 1 to
every covering relation.

The motivation for this definition comes from thinking of a covering relation x ≺ y of
P as indicating y can be built from x by some kind of elementary operation: n(x, y) is
the number of ways this can be done. Then in general n(u, v) is the number of ways that
v can be built up from u via a sequence of elementary operations. For examples see §4
below.
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Let W be the category whose objects are weighted-relation posets, and whose mor-
phisms are defined as follows. A morphism of weighted-relation posets P , P ′ is a rank-
preserving function f : P → P ′ such that, for any elements t, s of P ,

n(f(t), f(s)) ≥
∑

s′∈f−1(f(s))

n(t, s′). (1)

In particular, any such function f is order-preserving. Also, if f has an inverse f−1 that is
also a morphism of weighted-relation posets, then n(f(t), f(s)) = n(t, s) for all t, s ∈ P .

We call a weighted-relation poset P simple if n(x, y) is 1 or 0 for any x, y ∈ P . The
following result is evident.

Proposition 2.1. If P is a weighted-relation poset, the following are equivalent:
(i) P is simple;
(ii) the Hasse diagram of P is a tree, and every covering relation has weight 1;
(iii) for every x ∈ P , n(0̂, x) = 1.

We also record the following fact, which is an immediate consequence of inequality
(1).

Proposition 2.2. If f : P → P ′ is a morphism of weighted-relation posets and P ′ is
simple, then f is an injective function and P is simple.

3 Covering maps

Let P ′ and P be weighted-relation posets. We say that a rank-preserving function π :
P ′ → P is a covering map if, whenever s, r ∈ P with π(s′) = s,

n(s, r) =
∑

r′∈π−1(r)

n(s′, r′). (2)

Note that equation (2) implies that π is a morphism of weighted-relation posets, and
taking s = 0̂, we see that π is also surjective.

To prove that a given rank-preserving function is a covering map, it suffices to prove
equation (2) for |r| − |s| = 1. For suppose (2) holds when |r| − |s| = 1, and suppose
inductively it holds for |r| − |s| < n, n > 1. Let r, s ∈ P with |r| − |s| = n, and let
π(s′) = s. Then

n(s, r) =
∑

|t|=|s|+1

n(s, t)n(t, r) =
∑

|t|=|s|+1

∑
t′∈π−1(t)

∑
r′∈π−1(r)

n(s′, t′)n(t′, r′),

and since the sets π−1(t), as t runs through the rank-(|s|+1) elements of P , partition the
rank-(|s| + 1) elements of P ′,

n(s, r) =
∑

|t′|=|s′|+1

∑
r′∈π−1(r)

n(s′, t′)n(t′, r′) =
∑

r′∈π−1(r)

n(s′, r′).
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If P is a fixed weighted-relation poset, there is a category W/P of covers of P whose
objects are covering maps π : P ′ → P . A morphism from π1 : P1 → P to π2 : P2 → P in
W/P is a morphism f : P1 → P2 in W such that π2f = π1. In fact, all such functions f
are covering maps.

Theorem 3.1. Suppose πi : Pi → P is a covering map for i = 1, 2, and suppose f : P1 →
P2 is a morphism of weighted-relation posets such that π2f = π1. Then f is a covering
map.

Proof. We show f satisfies equation (2) above. Let s, r ∈ P2, s′ ∈ P1 with f(s′) = s.
Since π2 is a covering map,

n(π2(s), π2(r)) =
k∑

i=1

n(s, ri),

where π−1
2 (π2(r)) = {r1, . . . , rk}. For each ri in the image of f ,∑

r′∈f−1(ri)

n(s′, r′) ≤ n(s, ri). (3)

Now
⋃k

i=1 f−1(ri) = π−1
1 (π2(r)), and since π1 is a covering map we have

∑
r′∈π−1

1 (π2(r))

n(s′, r′) = n(π2(s), π2(r)) =
k∑

i=1

n(s, ri). (4)

Comparing (3) and (4), we see there is a contradiction unless each of the sets f−1(ri) is
nonempty and (3) is an equality for all i.

Theorem 3.2. Suppose π : P ′ → P is a covering map and f : Q → P is a morphism
of weighted-relation posets, with Q simple. Then f can be lifted to P ′, i.e., there is a
morphism of weighted-relation posets f ′ : Q → P ′ such that πf ′ = f .

Proof. We define f ′ : Q → P ′ by induction on rank; there is no problem getting started
since f ′ must take 0̂ ∈ Q to 0̂ ∈ P ′. Suppose f ′ has already been defined for rank < n.
For a rank-(n − 1) element z ∈ Q and a rank-n element x ∈ f(Q) with x � f(z), let

C(x, z) = {z′ ∈ Q| z′ � z, |z′| = n, and f(z′) = x}.
Since the Hasse diagram of Q is a tree, sets of the form C(x, z) partition the rank-n
elements of Q. We shall extend f ′ to C(x, z). For z′ ∈ C(x, z),

n(f(z), x) ≥
∑

z′∈C(x,z)

n(z, z′) = card C(x, z).

Let S = {y ∈ P ′| y � f ′(z) and π(y) = x}. For any y ∈ S,

n(f(z), x) = n(πf ′(z), π(y)) =
∑
y′∈S

n(f ′(z), y′)
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and hence

card C(x, z) ≤
k∑

i=1

n(f ′(z), yi), (5)

where S = {y1, y2, . . . , yk}. Choose a partition of C(x, z) into disjoint subsets S1, . . . , Sk

(some possibly empty) so that Si has cardinality at most n(f ′(z), yi): this is possible
because of inequality (5). Extend f ′ to C(x, z) by setting f ′(z′) = yi for all z′ ∈ Si. Then
for all z′ ∈ C(x, z),

n(f ′(z), f ′(z′)) ≥
∑

f ′(z′′)=f ′(z′)

n(z, z′′).

Reasoning in the same way as in the paragraph following equation (2) above, we can con-
clude that f ′ is extended as a morphism of weighted-relation posets; and by construction

πf ′(z′) = x = f(z′)

for all z′ ∈ C(x, z).

Theorem 3.3. If P is a weighted-relation poset, there is a poset P̃ and a covering map
π : P̃ → P so that P̃ is a simple weighted-relation poset. Further, the fiber π−1(x) of each
x ∈ P contains n(0̂, x) elements.

Proof. Again we proceed by induction on the rank. Let P (n) be the set of elements of P
of rank at most n. Suppose a covering π : P̃ (n−1) → P (n−1) with P̃ (n−1) simple has already
been constructed, and let x be a rank-n element of P . Since P is locally finite, the set C(x)
of elements covered by x is finite: let C(x) = {x1, . . . , xr}. Each fiber π−1(xi) contains

n(0̂, xi) rank-(n − 1) elements of P̃ : call them x̃i1, x̃i2, . . . , x̃imi
, where mi = n(0̂, xi). Let

K(x) be the set

{(i, j, k)| 1 ≤ i ≤ card C(x), 1 ≤ j ≤ n(0̂, xi), 1 ≤ k ≤ n(xi, x)},
and define

P̃ (n) = P̃ (n−1) ∪
∐

x∈P,|x|=n

K(x).

Extend the weight system (and order) of P̃ (n−1) to P̃ (n) by putting

n(z, (i, j, k)) =

{
1, if z � x̃ij,

0, otherwise,

for any (i, j, k) ∈ K(x), z ∈ P̃ (n−1). Then P̃ (n) is simple: for any (i, j, k) ∈ K(x) there is
a unique chain to 0̂ passing through x̃ij , so

n(0̂, (i, j, k)) = n(0̂, x̃ij)n(x̃ij , (i, j, k)) = 1.

(The set C(x) ∩ C(x′) may be nonempty for x 6= x′, so the same point of P̃ (n−1) may be
labelled as both x̃ij and x̃′

pq, but this does not affect the conclusion since we are taking a
disjoint union of the K(x).)

the electronic journal of combinatorics 8 (2001), #R32 5



Now extend π to P̃ (n) by having π send each element of K(x) to x. Then π−1(x) =
K(x) contains

r∑
i=1

n(0̂, xi)n(xi, x) = n(0̂, x)

elements. Also, for any z ∈ P̃ (n−1) and rank-n element x of P , we have

n(π(z), x) =
r∑

i=1

n(π(z), xi)n(xi, x) =

r∑
i=1

mi∑
j=1

n(x,xi)∑
k=1

n(z, x̃ij)n(x̃ij , (i, j, k)) =
∑

w∈π−1(x)

n(z, w),

so π is extended as a covering map.

By a universal cover of P , we mean a cover P̃ → P so that, for any other cover
P ′ → P , there is a morphism of W/P from P̃ → P to P ′ → P .

Theorem 3.4. If P is a weighted-relation poset, a cover P̃ → P is universal if and only
if P̃ is simple, and such a cover is unique up to isomorphism in W/P .

Proof. Suppose that p : P̃ → P is a cover with P̃ simple, and let π : P ′ → P be another
cover. By Theorem 3.2, p can be lifted to a morphism p′ : P̃ → P ′ of weighted-relation
posets so that πp′ = p: but this means p : P̃ → P is a universal cover. Thus, a simple
cover is universal.

Now suppose π′ : P ′ → P is a universal cover. By Theorem 3.3 there is a simple
cover π : P̃ → P , and by universality there is a morphism of W/P from π′ to π. Thus

there is a morphism of weighted posets f : P ′ → P̃ which (by Theorem 3.1) is a covering

map, hence surjective; and since P̃ is simple, Proposition 2.2 says f is injective and P ′ is
simple. It follows that f is an isomorphism of W/P .

4 Examples

Example 1. Let P be the poset of subsets of {1, 2, . . . , n}, ordered by inclusion, with each

covering relation given weight 1. Then the universal cover P̃ can be identified with the
set of linearly ordered subsets of {1, 2, . . . , n}, with A � B in P̃ if A is an initial segment

of B; and P̃ → P forgets the order. Evidently the fiber of any rank-k element of P has
k! elements, so there are a total of k!

(
n
k

)
rank-k elements in P̃ .

Example 2. Let M be the poset of monomials in k commuting variables x1, . . . , xk, with
m � m′ in M if there is a monomial m′′ such that m′ = mm′′. The rank on M is given
by total degree, each of the xi having degree one; the least element of M is the empty
monomial 1; and the covering relations are all given weight 1. Then the universal cover

the electronic journal of combinatorics 8 (2001), #R32 6



M̃ is isomorphic to the poset of monomials in k noncommuting variables X1, . . . , Xk, with
weights given by

n(w, w′) =

{
1, if w′ = wXi for some i,

0, otherwise,

for |w′| − |w| = 1. Clearly M̃ is simple. The function π : M̃ → M that sends Xi to xi

(so, e.g., π−1(x2
1x2) = {X2

1X2, X1X2X1, X2X
2
1}) is a covering map. The cardinality of the

fiber of any monomial is given by

n(1, xi1
1 xi2

2 · · ·xik
k ) =

(
i1 + · · · + ik
i1 i2 · · · ik

)
,

and the total number of rank-n elements of M̃ is∑
i1+···+ik=n

(
n

i1 · · · ik

)
= kn.

Example 3. Let N be the set of circular necklaces made of beads of k colors: a rank-m
element of N is a necklace with m beads, and the least element is the empty necklace ∅.
For a rank-(m − 1) necklace p and a rank-m necklace q, p ≺ q if q can be obtained from
p by insertion of a bead of any color, and n(p, q) is the number of ways to insert a bead
into p to get q. For example, in the case k = 2,

n( b

bc

bc

, b

b

bc

bc

) = 2 and n( b

bc

bc

, bb

bc

bc

) = 1.

The universal cover Ñ can be described as the poset of necklaces with labelled beads, i.e.,
the beads of a rank-m necklace are labelled 1, 2 . . . , m, with Ñ → N the function that
forgets the labels. It is clear that Ñ is simple, since there is a unique chain from any
labelled necklace to ∅ via the operation of removing the highest-label bead. A rank-m
element of Ñ can be thought of as a “k-colored permutation” mod rotation, so there are
km(m − 1)! such elements. Also, the fiber of a given necklace p ∈ N with m beads has
n(∅, p) = m!/N(p) elements, where N(p) is the number of rotations that take p to itself
(necessarily a divisor of m): p is called primitive if N(p) = 1. Evidently a necklace p with
N(p) = d has a primitive “quotient necklace” of size m

d
. Thus, if P (m) is the number of

primitive necklaces of size m, we have∑
d|m

P (
m

d
)
m!

d
=

∑
|p|=m

n(∅, p) = km(m − 1)!,

or
∑

d|m P (d)d = km. By Möbius inversion we obtain the classical result

P (m) =
1

m

∑
d|m

µ(d)k
m
d .

Cf. [7, Theorem 7.1].
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Example 4. Let B be the set of balanced bracket arrangements: a rank-n element of B
is a sequence of n left brackets and n right brackets so that, reading left to right, the
number of right brackets never exceeds the number of left brackets. For b, b′ ∈ B with
|b′| − |b| = 1, let n(b, b′) be the number of ways to insert a balanced pair 〈〉 into b to
obtain b′, e.g., n(〈〉〈〉, 〈〈〉〉〈〉) = 1 and n(〈〉〈〉, 〈〉〈〉〈〉) = 3. The least element is the empty
arrangement ∅. Then B is a weighted-relation poset.

The universal cover B̃ has rank-n elements that are permutations a1a2 · · ·a2n of the
multiset {1, 1, 2, 2, . . . , n, n} such that, if ai > aj and i < j, then there is some k < j, k 6= i,

with ak = ai. In particular, if s is a rank-n element of B̃, then the two occurrences of n in
s must be adjacent. We define a partial order on B̃ by declaring that the rank-n element
a1a2 . . . a2n covers the rank-(n − 1) element a1 · · ·ai−1ai+2 · · ·a2n, where ai = ai+1 = n,

and define the weight of all covering relations to be 1. Then B̃ is evidently simple.
Define π : B̃→ B by sending s ∈ B̃ to the bracket arrangement obtained by replacing

the first occurrence of each positive integer in s by 〈, and the second occurrence of each
positive integer by 〉. Let s be a rank-(n−1) element of B, with π(s′) = s. Then a rank-n
element r′ � s′ is obtained by inserting nn into s′, corresponding to inserting 〈〉 into s.
Thus, for any r � s in B with |r| − |s| = 1,

n(s, r) = number of ways to insert 〈〉 into s to get r

=
∑

r′∈π−1(r)

n(s′, r′),

so π is a covering map.
It is well known that there are Cn rank-n elements of B, where

Cn =
1

n + 1

(
2n

n

)
is the nth Catalan number. The number of rank-n elements of B̃ can be seen to be

(2n − 1)!! = (2n − 1)(2n − 3) · · ·3 · 1

as follows. If s = a1a2 · · ·a2n ∈ B̃, there are 2n − 1 possible choices of i so that ai is the
first occurrence of n in s. Once i is chosen, then ai+1 = n, so s covers the rank-(n − 1)

element a1 · · ·ai−1ai+2 · · ·a2n of B̃, which by induction can be chosen in (2n − 3)!! ways.
The phenomenon that labelling elements of a set enumerated by Catalan numbers gives
a set enumerated by double factorials was noted in [3].

Example 5. Let F be the set of partitions of nonnegative integers, ordered by inclusion of
their Young diagrams. Thus, a partition λ of n covers a partition µ of n − 1 if λ can be
obtained from µ by increasing one part of µ by 1, or by adding a new part of size 1 to µ:
and we assign weight 1 to every covering relation. Then a rank-n element of the universal
cover F̃ is a Young diagram with boxes labelled 1, 2 . . . , n so that the labels increase from
left to right and from top to bottom, i.e., a standard Young tableau. The ordering on F̃
is by inclusion, and F̃→ F is the obvious function. The cardinality n(∅, λ) of the fiber of
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a partition λ is given by the hook-length formula (see [12, Cor. 7.21.6]). More generally,
when µ ≺ λ the number n(µ, λ) counts standard Young tableaux of skew shape λ/µ (see
[12, Cor. 7.16.3] for a formula). There is also an algebraic interpretation of the numbers
n(µ, λ): if we let sλ be the Schur symmetric function corresponding to the partition λ,
then

sk
1sµ =

∑
|λ|=|µ|+k

n(µ, λ)sλ

(see [12, Sect. 7.15]).

Example 6. Let C be the poset of compositions, i.e., finite sequences of integers, with rank
given by the sum, and least element ∅. For compositions I, J with |J |− |I| = 1, we define

n(I, J) =


1, if J is obtained from I by increasing one part;

m, if there are m ways to insert 1 into I to get J ;

0, otherwise.

Thus, e.g., n(121, 122) = 1, n(121, 1121) = 2, and n(121, 212) = 0. This defines a weight
system of C, so C is a weighted-relation poset.

A rank-n element of the universal cover C̃ is a Cayley permutation of length n as defined
in [6], i.e., a length-n sequence s of positive integers such that any positive integer i < j

appears in s whenever j does. The partial order on C̃ is defined as follows. If s = a1 · · ·an

is a Cayley permutation, let m(s) = max{a1, . . . , an}. Then s covers a1 · · ·an−1 if the
latter is a Cayley permutation: otherwise, s covers p(a1) · · ·p(an−1), where p is the order-
preserving bijection from {a1, . . . , an−1} to {1, 2, . . . , m(s) − 1}. For example, the order
ideal generated by 41332 is

41332 � 3122 � 312 � 21 � 1 � ∅.
If we give each covering relation weight 1, then C̃ is evidently simple.

Let π : C̃→ C be the function that sends a sequence s to the sequence i1i2 · · · ik, where
ij is the number of times j occurs in s; e.g., π−1(13) = {1222, 2122, 2212, 2221}. To see
that π is a covering map, consider compositions I, J with |J | = |I| + 1. Let I = i1 · · · ik
and s = a1 · · ·an ∈ C̃ with π(s) = I. Suppose first that J is obtained from I by increasing
the size of one part, so J = i1 · · · ir−1(ir + 1)ir+1 · · · ik. Then n(I, J) = 1 and there is
only one t � s with π(t) = J , namely t = a1 · · ·anr. Now suppose J is obtained from
I by inserting 1, i.e., J = i1 · · · ir1ir+1 · · · ik; without loss of generality we can assume
ir 6= 1. Then J contains a string of 1’s of length n(I, J) after ir. The possible elements

t � s in C̃ with π(t) = J are of the form t = q(a1)q(a2) · · · q(an)(r + i), where i runs
from 1 to n(I, J) and q is the order-preserving bijection from {a1, . . . , an} = {1, . . . , k} to
{1, . . . , r + i− 1, r + i + 1, . . . , k + 1}. Finally, if n(I, J) = 0, we must have n(s, t) = 0 for

any t ∈ C̃ with π(t) = J since the previous two cases have exhausted all the possibilities
for t to cover s. So in any case,

n(I, J) =
∑

t∈π−1(J)

n(s, t)
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when |J | − |I| = 1 and π(s) = I.
The cardinality of n(∅, I) of the fiber of a composition I = i1 · · · ik is evidently the

multinomial coefficient ( |I|
i1 · · · ik

)
.

There is an algebraic interpretation of the numbers n(I, J) analogous to that of the
preceding example: if MI is the monomial quasisymmetric function corresponding to the
composition I (see [7, Sect. 9.4], or [12, Sect. 7.19] for definitions), then

Mk
1 MI =

∑
|J |=|I|+k

n(I, J)MJ .

In particular, the multinomial coefficients n(∅, J) appear in the expansion of Mk
1 .

Example 7. Let T be the poset of rooted trees ordered by inclusion, i.e., t′ � t if t′ can be
obtained from t by adding new edges and vertices. The rank function is given by

|t| = number of vertices of t − 1,

and the least element is the tree • consisting of the root vertex. The weight system is
defined as follows: if |t′| − |t| = 1, let n(t, t′) be the number of vertices of t to which a
new edge and terminal vertex may be added to obtain t′.

Rank-n elements of T̃ are permutations of {1, 2, . . . , n}. A permutation σ = s1s2 · · · sn

of {1, . . . , n} with si = n covers the permutation

τ = s1 · · · si−1si+1 · · · sn

of {1, . . . , n − 1} (and no other). The least element is the empty permutation ∅. Then T̃
is clearly simple if we give each covering relation weight 1.

Now we define the covering map π : T̃ → T. Let π(∅) = •, and given a nonempty
permutation σ = s1s2 · · · sn define a rooted tree with vertices labelled 0, 1, . . . , n as follows.
Label the root 0, and attach the vertex labelled i to the vertex labelled j < i if j is the
last element of the sequence s1s2 . . . sk−1 that is smaller than i, where sk = i; attach i to

the root if no such j exists. This associates a labelled rooted tree with each σ ∈ T̃, and
π(σ) is just the rooted tree obtained by forgetting the labels. Thus, e.g.,

π(4231) = .

To see that π is a covering map, note first that terminal vertices of π(σ) correspond
either to descents of σ (i.e., terms si with si > si+1), or to the final term. Now a
permutation σ with |σ| = n covers τ exactly when σ is obtained by inserting n into τ ,
e.g., 2413 � 213. This always introduces a new descent (or new final term) into τ , and
corresponds to adding a new edge and terminal vertex to π(τ); moreover, the n possible
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places to insert n in a rank-(n − 1) permutation τ correspond to the n vertices of π(τ)
where a new edge and vertex can be attached. Thus, for trees r, s with |r| − |s| = 1 and
s = π(τ),

n(s, r) = number of permutations σ � τ with π(σ) = r

=
∑

σ∈π−1(r)

n(τ, σ).

The cardinality n(•, t) of the fiber of a rank-n rooted tree t is the number of distinct
labelled rooted trees (with labels coming from {0, 1, . . . , n} and strictly increasing as one
moves away from the root) that are isomorphic to t when the labels are removed. Since

there are n! rank-n elements of T̃, ∑
|t|=n

n(•, t) = n!.

In fact, if we let e(t) be the number of terminal vertices of the tree t we have∑
|t|=n,e(t)=k

n(•, t) =

〈
n

k − 1

〉
,

where
〈

p
q

〉
is the number of permutations of {1, . . . , p} with q descents (Eulerian number),

because of the correspondence between descents of σ and terminal vertices of π(σ). Cf.
[11, Prop. 1.3.16].

The numbers n(•, t) appear in connection with the “growth operator” on the Hopf
algebra of rooted trees studied by Connes and Kreimer [2]. In [1, 5], n(•, t) is called
the “Connes-Moscovici weight” of t, and some results about it are obtained. To describe
them requires a few definitions. Given a tree t, let V (t) be the set of vertices of t, and for
v ∈ V (t) let tv be the subtree consisting of v and all its descendents (with v as root): thus
tr = t if r is the root of t, and tv = • if v is a terminal vertex. Define the “tree factorial”
of t by

t! =
∏

v∈V (t)

(|tv| + 1).

Also, if v1, . . . , vk are the children of the root of t, define the symmetry group SG(t) to
be the group of permutations σ of {1, . . . , k} such that tvi

and tvj
are isomorphic rooted

trees when σ(i) = j. Define the symmetry degree of t to be

St =
∏

v∈V (t)

card SG(tv).

For example, the tree t = π(4231) above has t! = 10 and St = 2. In [1] it is shown that

n(•, t) =
(|t| + 1)!

t!St
. (6)
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Equation (6) is actually a variant of the generalized hook-length formula for rooted trees
that appears in [10, Sect. 22], [4, Ex. 5.1.4-20], and [8]. To see this, note that if T is a
realization of the rooted tree t as a planar directed graph (with arrows coming out from
the root), then the number of ways to attach the labels {0, 1, . . . , |t|} to the vertices of T
so that the labels strictly increase outward from the root is n(•, t)St. Also of interest is
the result of [5] that ∑

|t|=n

n(•, t)
t!

=
n!

2n
.
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