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Abstract

Dirac’s classic theorem asserts that if G is a graph on n vertices, and δ(G) ≥
n/2, then G has a hamilton cycle. As is well known, the proof also shows that if
deg(x) + deg(y) ≥ (n− 1), for every pair x, y of independent vertices in G, then G
has a hamilton path. More generally, S. Win has shown that if k ≥ 2, G is connected
and

∑
x∈I deg(x) ≥ n− 1 whenever I is a k-element independent set, then G has a

spanning tree T with ∆(T) ≤ k. Here we are interested in the structure of spanning
trees under the additional assumption that G does not have a spanning tree with
maximum degree less than k. We show that apart from a single exceptional class
of graphs, if

∑
x∈I deg(x) ≥ n − 1 for every k-element independent set, then G has

a spanning caterpillar T with maximum degree k. Furthermore, given a maximum
path P in G, we may require that P is the spine of T and that the set of all vertices
whose degree in T is 3 or larger is independent in T.

∗Research supported in part by the National Security Agency.
†Research supported in part by the National Science Foundation.
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1 Introduction

We consider only finite simple graphs and use the standard notation degG(x) to denote
the degree of a vertex in G. We also use δ(G) and ∆(G) to denote respectively the
minimum degree and maximum degree of a graph G. The set of all vertices adjacent to
a vertex u in G is denoted NG(u).

Recall the now classic theorem of G. A. Dirac [3] which provides a sufficient condition
for a graph to have a hamilton cycle.

Theorem 1.1 Let G be a graph on n vertices. If δ(G) ≥ n/2, then G has a hamilton
cycle. �

Dirac’s theorem has lead to many new results and conjectures concerning paths and
cycles in graphs. One theme to this research concentrates solely on hamilton cycles—
investigating how the hypothesis of Theorem 1.1 can be weakened without allowing the
graph to become non-hamiltonian. One well known example of this is the “closure”
concept introduced by J. A. Bondy and V. Chvatàl [2].

A second direction is motivated by the fact that the proof of Dirac’s theorem yields
the following corollary [4].

Corollary 1.2 Let G = (V, E) be a graph on n vertices. If degG(x) + degG(y) ≥ n − 1
for every x, y ∈ V with xy 6∈ E, then G has a hamilton path. �

Now a hamilton path is just a spanning tree with small maximum degree, so for integers
n and k, it is natural to ask for the how the preceding theorem might be generalized to
guarantee the existence of a spanning tree with maximum degree at most k. In 1975, S.
Win [5] provided the following answer to this question.

Theorem 1.3 Let k ≥ 2 be an integer and let G be a connected graph so that
∑

x∈I

deg(x) ≥ n − 1

for every k-element independent set I ⊂ V . Then G has a spanning tree T with
∆(T) ≤ k. �

Note that the technical condition on the degrees of vertices given in Theorem 1.3 is
satisfied whenever δ(G) ≥ (n − 1)/k.

Along the lines of Theorem 1.3, there is a sequence of papers which study k-maximal
trees. A k-maximal tree of a graph is a subtree that is maximal (by inclusion) among all
subtrees having maximum degree at most k. The sequence culminates with the article of
Aung and Kyaw [1], in which the authors obtain lower bounds for the size of a k-maximal
tree and characterize graphs which meet those bounds.

The purpose of this paper is to investigate the structure of the spanning trees with
small maximum degree. Recall that a tree T is called a caterpillar when there exists a
path P in T so that every vertex of T which is not on the path P is adjacent to a point
of P . The path P is called the spine of the caterpillar.
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Our principal theorem will assert that graphs which satisfy the conclusion of Win’s
Theorem 1.3 with equality have spanning caterpillars, but there will be one exceptional
class of graphs. Let n and k be positive integers and consider a sequence δ1, δ2, . . . , δk of
positive integers with

∑k
i=1 δi = n − 1. Then form a graph G(δ1, δ2, . . . , δk) by taking k

disjoint complete graphs, one of size δi for each i = 1, 2, . . . , k and then attaching a new
vertex adjacent to all other vertices. Note that the only independent sets of size k consist
of one point from each of the k cliques and that the sum of the degrees of the vertices in
such a set is exactly n− 1. However, when three or more of the cliques have two or more
points, the graph does not have a spanning caterpillar of maximum degree at most k.

Furthermore, note that if G has a spanning tree with maximum degree less than k,
then in general it is difficult to say anything about the structure of a spanning tree T
whose maximum degree is as small as possible, even when δ(G) ≥ (n− 1)/k. Here’s why.
Let T0 be any tree. Choose a positive integer δ and form a graph G as follows. For each
edge e = xy in T0, remove the edge e and add a complete subgraph Ke of δ new vertices
with x and y both adjacent to all δ vertices in Ke. It is easy to see that δ(G) = δ, but
that any spanning tree of G contains a homeomorph of T0.

With these remarks in mind, here is the statement of our principal result.

Theorem 1.4 Let k ≥ 2 be an integer and let G = (V, E) be a connected graph on n
vertices satisfying: ∑

x∈I

deg(x) ≥ n − 1

for every k-element independent set I ⊂ V . Then either:

1. G has a spanning tree with maximum degree less than k;

2. G = G(δ1, δ2, . . . , δk) for some sequence δ1, δ2, . . . , δk of positive integers with at
least three δis larger than 1; or

3. for every maximum length path P in G, there is a spanning tree T of G such that:

a. T is a caterpillar,

b. ∆(T) = k,

c. the spine of T is the path P , and

d. the set {v ∈ V | degT(v) ≥ 3} is independent in T.

In addition, in Options 2 and 3, unless G is the star on k + 1 vertices, G contains a
dominating cycle.

Note that our theorem reduces to Corollary 1.2 when k = 2.
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2 Proof of The Principal Result

We fix integers n and k with k ≥ 2 and consider a connected graph G = (V, E) on n
vertices satsfying: ∑

x∈I

deg(x) ≥ n − 1

for every k-element independent set I ⊂ V . Without loss of generality, we may assume
that k ≥ 3, for as noted previously, the case k = 2 is just Corollary 1.2. However, we
will not assume Win’s Theorem 1.3, so we do not assume that G has a spanning tree
with maximum degree at most k. If G has a spanning tree T with maximum degree less
than k, then Option 1 of our theorem holds. So we will assume that G does not have a
spanning tree with maximum degree less than k.

Now let P = (u1, u2, . . . , ut) be an arbitrary maximum path in G with uiui+1 ∈ E for
all i = 1, 2, . . . , t − 1. Since k ≥ 3, we know that G does not have a hamilton path, so
there is at least one vertex v /∈ P . Since G is connected, we can choose v to be adjacent
to a vertex of P . However, no vertex not on P can be adjacent to two consecutive vertices
on P . Furthermore, u1ut /∈ E. Otherwise, if v is a vertex not on P and vui ∈ E, then
(ui+1, ui+2, . . . , ut, u1, u2, . . . , ui, v) is a longer path than P . More generally, G cannot
contain any cycle of length t. The maximality of P also implies the following.

Fact 1. Let C be a cycle of length t − 1. Then

(a) C dominates G,

(b) V − C is independent, and

(c) no two consecutive vertices of C have a common neighbor in V − C.

It is natural to call u1 and ut the left end point and right end point of the path
P , respectively. Moreover, if 1 ≤ i < t and u1ui+1 ∈ E, then (ui, ui−1, . . . , u1, ui+1,
ui+2, . . . , ut) is also a maximum path in G, and now ui is the left end point. We define
XL = {ui : i < t, u1ui+1 ∈ E}, and we call elements of XL potential left end points.
Dually, we call elements of XR = {ui : 1 < i, ui−1ut ∈ E} potential right end points.
Finally, we let X = XL ∪ XR.

Fact 2. Suppose there is an independent (k − 2)-set I ⊆ V − P so that degG(u1) +
degG(ut) +

∑
v∈I degG(v) = n − 1. Let ui /∈ X, with i minimum, and let uj /∈ X, with j

maximum. Then

(a) ui′uj′ /∈ E whenever 1 ≤ i′ < i ≤ j < j′ ≤ t,

(b) degG(ui′) ≥ i − 1 for all 1 ≤ i′ < i, and

(c) degG(uj′) ≥ t − j for all j < j′ ≤ t.

Proof. Because of the choice of i we know that ui′ ∈ X for all 1 ≤ i′ < i. Suppose
there is some ui′ ∈ XR with i′ minimum. Then ui′−1 ∈ XL and (u1, . . . , ui′−1, ut, . . . , ui′)
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is a cycle of length t, a contradiction. Hence ui′ ∈ XL for all 1 ≤ i′ < i. Likewise
uj′ ∈ XR for all j < j′ ≤ t. Thus degG(u1) ≥ |{u2, . . . , ui}| = i − 1, and degG(ut) ≥
|{uj, . . . , ut−1}| = t− j. Now since I ∪ {ui′, ut} is independent for all 1 ≤ i′ < i, we know
that degG(ui′) + degG(ut) +

∑
v∈I degG(v) ≥ n − 1, and so degG(ui′) ≥ degG(u1) ≥ i− 1

for each 1 ≤ i′ < i. Likewise, degG(uj′) ≥ degG(ut) ≥ t− j for each j < j′ ≤ t. Finally if
ui′uj′ ∈ E, with 1 ≤ i′ < i ≤ j < j′ ≤ t, then (u1, . . . , ui′, uj′, . . . , ut, uj′−1, . . . , ui′+1) is a
cycle of length t, a contradiction. �

Case 1. XL ∩ XR 6= ∅.
Let u ∈ XL ∩ XR. Then P − {u} contains a cycle C of length t − 1 that is formed

using the edges of P − {u} and those which witness u ∈ XL ∩ XR. That is, C =
(u1, u2, . . . , uj−1, ut, ut−1, . . . , uj+1), where u = uj. By Fact 1(a), C is dominating. Label
the vertices of V −P as v1, v2, . . . , vn−t so that degG(vi) ≤ degG(vj) when 1 ≤ i < j ≤ n−t.

We now construct a spanning tree T using the following algorithm. Set T0 to be the
tree consisting of P and its edges. Thereafter, for each i = 1, 2, . . . , n− t, choose a vertex
w ∈ P with wvi ∈ E and degTi−1

(w) minimum. Then add the vertex vi and the edge wvi

to Ti−1 to form Ti.
Setting T = Tn−t, it is clear by Fact 1(b) that T is a caterpillar containing P as its

spine. Moreover, the vertices of degree 3 or more in T are independent in T. Indeed, u is
not such a vertex, so if two such vertices are consecutive on P then they are consecutive
on C, contradicting Fact 1(c) above. It remains only to show that ∆(T) = k.

To the contrary, suppose that ∆(T) 6= k. Then ∆(T) > k. Consider the first step
at which a vertex of degree k + 1 is created. Suppose this occurs at step j when vj is
attached to a vertex w in P .

Suppose that degG(vj) = 1 and note that degG(vj′) = 1 for all j′ ≤ j. Let I =
{u1}∪ {vj′ ∈ V −P : j′ ≤ j, wvj′ ∈ E(Tj)}. Then I is an independent set of size k in G,
and thus, by the original degree hypothesis,

degG(u1) +
∑

v∈I−{u1}
degG(v) =

∑

v∈I

degG(v) ≥ n − 1 ,

from which we conclude

degG(u1) ≥ (n − 1) − (k − 1) = n − k .

However, this implies that NP (u1) = P − {u1}. In particular, u1ut ∈ E, a contradiction.
On the other hand, suppose degG(vj) > 1. The algorithm requires that for every

ui ∈ NG(vj) we have degTj−1
(ui) = k. Now for each ui ∈ P , let Wi = {ui−1, ui} ∪

{vj′ ∈ V − P : 1 ≤ j′ < j, uivj′ ∈ E(Tj−1)}. Then |Wi| = k for every ui ∈ NG(vj).
Furthermore, Wi and Wi′ are disjoint when ui and ui′ are distinct elements of NG(vj), and
(∪ui∈NG(vj )Wi)∩{vj , ut} = ∅. Fix ui, ui′ ∈ NG(vj) and let I = (Wi −{ui, ui−1})∪{vj , vj′}
for some vj′ ∈ NTj−1

(ui′). Note that j∗ < j for every vj∗ ∈ I, and so correspondingly
degG(vj∗) ≤ degG(vj). Then I is an independent set of size k, and thus

k degG(vj) ≥
∑

x∈I

degG(x) ≥ n − 1 > n − 2 ≥
∑

ui′∈NG(vj)

|Wi′ | = k degG(vj) .
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This contradiction completes the proof of Case 1.

Case 2. XL ∩ XR = ∅.
When T is a spanning tree of G which contains P , we let distT(x, y) denote the

distance from x to y in T, i.e., the number of edges in the (unique) path from x to y in
T. Also, we let distT(x, P ) = min{distT(x, u) : u ∈ P}, so that distT(x, P ) = 0 if and
only if x ∈ P . We let QT(x) denote the unique shortest path in T from x to a vertex in
P . Of course QT(x) is trivial when x ∈ P . When distT(x, P ) > 0, we let ST(x) denote
the unique vertex y which is adjacent to x in T with distT(y, P ) = distT(x, P )−1. When
a ∈ V is not a leaf of T, the set of vertices belonging to components of T−{a} which do
not intersect P is denoted F (a).

In this case, we select a spanning tree T by applying the following five “tie-breaking”
rules. These rules are applied sequentially in the order listed to narrow the set of trees
from which T must be drawn.

Rule 1. T must contain P and its edges.

Rule 2. Minimize ∆ = max{degT(x) : x ∈ V }.
Rule 3. Minimize m = |{x ∈ V : degT(x) = ∆}|.
Rule 4. Maximize q = max{distT(a, P ) : degT(a) = ∆}.
Rule 5. Maximize s = max{∑x∈F (a) distT(x, a) : degT(a) = ∆, distT(a, P ) = q}.

Now let T be any spanning tree selected according to these five rules. Choose a
vertex a0 with degT(a0) = ∆ (recall ∆ ≥ k), distT(a0, P ) = q, |F (a0)| = f , and∑

x∈F (a0) distT(x, a0) = s. Label the vertices of Q(a0) = (a0, a1, . . . , aq) so that ai−1ai

is an edge of T for 1 ≤ i ≤ q and so that aq ∈ P . We denote the number of components
of F (a0) by r and we label these components by F1, F2, . . . , Fr, noting that r is either
∆ − 2 or ∆ − 1 depending on whether a0 belongs to P or not, respectively. (This subtle
note will be used in Conclusion 1 of Subcase B below, where we deduce that a0 ∈ P after
learning that r = ∆ − 2.)

For each i = 1, 2, . . . , r, let xi be a vertex in Fi for which distT(x, a0) is maximum.
Then xi is a leaf in the tree T. Also, for each i = 1, 2, . . . , r, let yi be the unique vertex
of Fi which is adjacent to a0 in T. Note that xi = yi if and only if the component Fi is
trivial.

Claim 1. If x ∈ F (a0), then degT(x) < ∆.

Proof. This follows immediately from the definition of a0. �
Claim 2. Let i ∈ {1, 2, . . . , r}. Then all neighbors of xi in G belong to Q(xi) ∪ P .

Proof. Suppose to the contrary that xiy ∈ E and y 6∈ Q(xi) ∪ P . Then either y ∈ Fj for
some j 6= i, y ∈ Fi − Q(xi) or y ∈ V − (F (a0) ∪ Q(a0) ∪ P ). Suppose first that y ∈ Fj

with i 6= j. Then form a new tree S by removing the edge a0yj and adding the edge xiy.
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Then S wins by Rule 2, 3 or 4. The contradiction shows that no leaf xi has a neighbor in
F (a0) − Fi.

Next, suppose that y ∈ Fi − Q(xi). Then y 6= yi. Form S by removing the edge
yS(y) and adding the edge xiy. Now, because of the choice of xi, S wins by Rule 5. The
contradiction shows that no leaf xi has a neighbor in Fi − Q(xi).

Finally, suppose that y ∈ V − (
F (a0)∪Q(a0)∪P

)
. Now form the tree S by removing

the edge yS(y) and adding the edge xiy.
Now S wins either by Rule 3 or by Rule 5. The contradiction completes the proof of

the claim. �
Claim 3. Let i ∈ {1, 2, . . . , r}. If q > 0 then xia1 6∈ E.

Proof. Suppose that q > 0 and xia1 ∈ E. Form S by removing the edge a0a1 and adding
the edge xia1. In S, the degree of xi is 2, and the degree of a0 is ∆ − 1. However, the
degree of a1 is the same in both trees, so S wins either by Rule 2 or by Rule 3. �

Since P is a maximum path in G, no point of V −P can be adjacent to two consecutive
points of P . Here is a somewhat analogous claim for the path Q(a0).

Claim 4. Let i ∈ {1, 2, . . . , r}. If q > 0 then xi is not adjacent in G to consecutive
vertices of the path Q(a0).

Proof. Suppose to the contrary that a leaf xi is adjacent to both aj and aj+1. Form S
from T by inserting xi between aj and aj+1, i.e., remove the edges xiS(xi) and ajaj+1,
and add the edges xiaj and xiaj+1. Then S wins by Rule 2, 3 or 4. �
Claim 5. If i ∈ {1, 2, . . . , r} and the leaf xi ∈ Fi is adjacent in G to a vertex v ∈ Q(a0)∪P ,
then degT(v) ≥ ∆ − 1.

Proof. Suppose to the contrary that xiv ∈ E, v ∈ Q(a0) ∪ P but degT(v) < ∆ − 1. Then
v 6= a0. Form S by removing the edge yia0 and adding the edge vxi. Then S wins either
by Rule 2 or by Rule 3. �

Without loss of generality, we may assume that the components of F (a0) have been
labelled so that

degG(x1) − distT(x1, a0) ≥ degG(xi) − distT(xi, a0)

for all i = 1, 2, . . . , r.
At this point, our argument for Case 2 splits into two subcases.

Subcase A. degG(x1) − distT(x1, a0) ≤ 0.

In this case, we know that degG(xi) − distT(xi, a0) ≤ 0 for all i = 1, 2, . . . , r. Now
consider the k-element independent set I = {u1, ut} ∪ {x1, x2, . . . , xk−2}. Then

degG(u1) + degG(ut) +

k−2∑

i=1

degG(xi) ≥ n − 1. (1)
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However, degG(u1) + degG(ut) ≤ t − 1, since degG(u1) = |XL|, degG(ut) = |XR|,
XL ∩ XR = ∅ and aq 6∈ XL ∪ XR. Also, degG(xi) ≤ distT(xi, a0) ≤ |Fi| for each i =
1, 2, . . . , k − 2. Thus

degG(u1) + degG(ut) +
k−2∑

i=1

|Fi| ≤ |P | − 1 + |F (a0)| ≤ n − 1. (2)

Inequalities (1) and (2) force equalities (1) and (2). Thus r = k−2, degG(u1)+degG(ut) =
t − 1, and degG(xi) = distT(xi, a0) = |Fi| for all i = 1, 2, . . . , k − 2. In particular, a0 ∈ P
and each Fi is a path. Furthermore, a0 is the only point on P which is not a potential
end point, so that no point of F (a0) can be adjacent in G to any point of P − {a0}.

Now let i ∈ {1, 2, . . . , k − 2}, let fi = |Fi|, and let xi = z1, z2, . . . , zfi
= yi, zfi+1 = a0

be a listing of the points of the path Fi ∪ {a0}. Then we know that z1zj ∈ E for all
j = 2, 3, . . . , fi + 1. Now let j be any integer with 2 ≤ j ≤ fi. Form a new tree S by
removing the edge zjzj+1 and adding z1zj+1. Now S ties T on each of the tiebreaking rules.
Since zj is a leaf, we know as above that zjzj′ ∈ E for all j′ = 1, . . . , j−1, j +1, . . . , fi +1.
Thus each Fi ∪ {a0} is a clique.

Choose ui /∈ X with i minimum, and uj /∈ X with j maximum. Here, ui = a0 = uj.
Because of equalities (1) and (2), we may apply Fact 2. Parts (a) and (b) imply that
{u1, . . . , ui} is a clique, and parts (a) and (c) imply that {uj, . . . , ut} is a clique. But these
remarks then imply that G is the exceptional graph G(degG(u1), degG(ut), f1, f2, . . . , fk−2).
If G is not a star, that is, if not all of its parameters are 1, then G has a dominating
cycle. If at most two of its parameters are 1, then G satisfies Option 3 of the theorem;
otherwise it satisfies Option 2. This completes the argument in this subcase.

Subcase B. degG(x1) − distT(x1, a0) > 0.

In this subcase, vertex x1 has at least one neighbor in G which does not belong to
F1 ∪ {a0}.

Let N1 = (NG(x1) ∩ Q(a0)) − {a0, aq} and N2 = (NG(x1) ∩ P ) − {ao}. By Claim 2
NG(x1) is contained in the disjoint union F1 ∪· {a0} ∪· N1 ∪· N2. In this subcase, we are
assuming that |N1| + |N2| > 0.

For each aj ∈ N1, let Wj = (NT(aj)−{aj+1})∪{aj}. By Claim 5, |Wj| = degT(aj) ≥
∆ − 1 for every aj ∈ N1. Furthermore, by Claim 4, Wj1 ∩ Wj2 = ∅ for all aj1 , aj2 ∈ N1

with j1 6= j2. Also, note that a1 /∈ N1 by Claim 3, and so
(
X ∪ {a0} ∪ F (a0)

) ∩ Wj = ∅
for all aj ∈ N1.

For each uj ∈ N2, let Zj = {uj} ∪ (NT(uj) − P ). As above, by Claim 5, |Zj| ≥
degT(uj) − 1 ≥ ∆ − 2 for each j ∈ N2, and since P is maximum Zj1 ∩ Zj2 = ∅ for all
uj1, uj2 ∈ N2 with j1 6= j2. Likewise, note that

(
X ∪ {a0} ∪ F (a0)

) ∩ Zj = ∅
for all uj ∈ N2.
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It follows that V ⊇ X ∪· {a0} ∪· F (a0) ∪· (∪· aj∈N1Wj) ∪· (∪· uj∈N2Zj), and so

n − 1 ≥ |X| + |F (a0)| + |N1|(∆ − 1) + |N2|(∆ − 2) . (3)

Now |XL| = degG(u1), |XR| = degG(ut), XL ∪ XR = X and XL ∩ XR = ∅. Thus

|X| = degG(u1) + degG(ut). (4)

Noting that |Fi| ≥ distT(xi, a0) for each i = 1, 2, . . . , r, we have

|F (a0)| ≥
r∑

i=1

distT(xi, a0). (5)

Furthermore, because of Claim 2 we have

NG(x1) ⊆ (F1 ∩ Q(x1)) ∪· {a0} ∪· N1 ∪· N2 ,

and because |F1 ∩ Q(x1)| = distT(x1, a0), we obtain

|N1| + |N2| ≥ degG(x1) − distT(x1, a0). (6)

It follows that inequality 3 can be rewritten and relaxed to

n − 1 ≥ degG(u1) + degG(ut) +
r∑

i=1

distT(xi, a0) (7)

+|N1| + (∆ − 2)
(
degG(x1) − distT(x1, a0)

)
.

On the other hand, consider the k-element independent set I = {u1, ut} ∪ {x1, x2, . . . ,
xk−2}. Then

n − 1 ≤ degG(u1) + degG(ut) +

k−2∑

i=1

degG(xi). (8)

Recall that the components of F (a0) were labelled so that

degG(xi) ≤ degG(x1) − distT(x1, a0) + distT(xi, a0) (9)

for each i = 1, 2, . . . , r. It follows that

n − 1 ≤ degG(u1) + degG(ut) (10)

+

k−2∑

i=1

(
degG(x1) − distT(x1, a0) + distT(xi, a0)

)
.

Thus

n − 1 ≤ degG(u1) + degG(ut) +

k−2∑

i=1

distT(xi, a0) (11)
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+(k − 2)
(
degG(x1) − distT(x1, a0)

)
.

Comparing inequalities 7 and 11, we obtain

degG(u1) + degG(ut) +

r∑

i=1

distT(xi, a0) (12)

+|N1| + (∆ − 2)
(
degG(x1) − distT(x1, a0)

)

≤ degG(u1) + degG(ut) +

k−2∑

i=1

distT(xi, a0)

+(k − 2)
(
degG(x1) − distT(x1, a0)

)
,

which reduces to

r∑

i=k−1

distT(xi, a0) + |N1| + (∆ − k)
(
degG(x1) − distT(x1, a0)

) ≤ 0 . (13)

Recalling that in this subcase we have degG(x1) − distT(x1, a0) > 0, we conclude that
equality must hold in (3)-(13), from which we draw the following string of conclusions.

Conclusion 1. From equality in (13) it is clear that the summation must be empty; that
is, r = k − 2. Recall that this implies that a0 ∈ P ; i.e., q = 0. Moreover, we also learn
from (13) that ∆ = k and, of course, N1 is empty, which implies that N2 is nonempty in
this subcase.

For each uj ∈ N2, let Z ′
j = Zj − {uj}, and set Z = ∪uj∈N2Z

′
j. Also, define the set

M = N2 ∪ {a0}. By the maximality of P , the vertex x1 cannot have internally disjoint
paths to consecutive vertices of P . Hence M is independent.

Conclusion 2. The path P is partitioned into XL∪· XR∪· M . Moreover, the set of vertices
V is partitioned into P ∪· Z ∪· F (a0). Indeed, both assertions follow from equality in (3).

Conclusion 3. Fi ∪ {a0} is a path of length distT(xi, a0) for each i = 1, 2, . . . , k − 2. This
is because we obtain |Fi| = distT(xi, a0) for all i from equality in (5).

Equalities in (6) and (9), along with Conclusion 1, imply that degG(xi)−distT(xi, a0) =
|N2| for all i = 1, 2, . . . , k − 2. The next conclusion follows easily from this fact.

Conclusion 4. For each i = 1, 2, . . . , k − 2, we have NG(xi) = (Fi −{xi})∪· (N2 ∪ {a0}) =
(Fi − {xi}) ∪· M .

Another simple consequence of equality in (3) is that, for every uj ∈ N2, we have
|Z ′

j| = k−3. In other words, degT(uj) = k−1 for each uj ∈ N2. This observation implies
the following.

Conclusion 5. The vertex a0 is the unique vertex whose degree in T is k.

Our final conclusion is merely the statement of equality in (8).
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Conclusion 6. n − 1 = degG(u1) + degG(ut) +
∑k−2

i=1 degG(xi).

We first show that if k ≥ 4 then T satisfies Option 3. We already know that ∆(T) = k
from Conclusion 1, and that M is independent. From Conclusion 2 and the maximality
of P , we know that the only vertices u ∈ P with degT(u) ≥ 3 are in M . Thus it suffices
to show that T is a caterpillar with spine P . First we prove two claims.

Claim 6. Suppose k ≥ 4. Then for every v ∈ Z we have NG(v) ⊆ M .

Proof. To the contrary, suppose that v′v ∈ E with v′ /∈ M . Of course, v′ /∈ X, so it must
be that v′ ∈ Z ∪· F (a0), by Conclusion 2. In particular, v′ /∈ P . We will modify the tree
T to create a tree T′ as follows. Let u ∈ M be the vertex adjacent to v in T, and let
i ∈ {1, . . . , k − 2} be chosen so that v′ /∈ Fi. Now define T′ = T−{vu, yia0}+ {vv′, xiu}.
Note that degT′(a0) < degT(a0), and degT′(w) ≤ degT(w) for all w ∈ V − {xi, v

′}. Also,
degT′(xi) ≤ degT(xi)+1 ≤ 2, and degT′(v′) = degT(v′)+1 ≤ k, by the definition of a0 and
Conclusion 1. Therefore, since G has no spanning tree of maximum degree less than k, it
must be that degT′(v′) = k. However, this contradicts Rule 4 because of Conclusion 1. �
Claim 7. Suppose k ≥ 4. Then for every i = 1, 2, . . . , k − 2 we have |Fi| = 1.

Proof. As above, define the set I = {u1, ut, x1, . . . , xk−2}. Choose a vertex u ∈ N2 and fix
a value for i. Since k ≥ 4, by Claim 5 there is a vertex v ∈ Z which is adjacent to u in T.
Now consider the k-element independent set I ′ = I ∪{v}−{xi}. Because of Conclusion 6
and our original hypothesis, we must have

∑

x∈I

degG(x) = n − 1 ≤
∑

x∈I′
degG(x) .

By cancelling common terms and using Conclusion 4 and Claim 6, we have

|M | + |Fi| − 1 = degG(xi) ≤ degG(v) ≤ |M | .

Hence |Fi| ≤ 1. �
By Conclusion 2, V − P = Z ∪ F (a0). By definition, every element of Z is adjacent

in T to a vertex in P , and by Claim 8, every vertex in F (a0) is adjacent to a0 ∈ P . Thus
T is a catepillar with spine P . By our earlier remarks, T satisfies Option 3.

Next we consider the particular case k = 3. For this value of k, we cannot obtain as
strong a result as in Claim 7, but instead, we settle for Claim 8 below. In this special case
we will be able to modify T if necessary to obtain a spanning tree that satisfies Option
3. As in the previous case, we know that ∆(T) = k and that the only vertices u ∈ P with
degT(u) ≥ 3 are in the independent set M . In fact, by Conclusion 5, a0 is the unique
such vertex.

Claim 8. Suppose k = 3. Then |F1| ≤ 2.

Proof. Suppose to the contrary that |F1| ≥ 3, and let a0 = uj. By Conclusion 3, the
vertices of F1 ∪ {a0} form the path (x1, y

′
1, . . . , y1, a0). Conclusion 1 states that N2 6= 0.

Choose uj′ ∈ N2 so that |j′ − j| is minimal. Without loss of generality we shall assume
that j′ < j.
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We know that both uj′+1, uj−1 /∈ M because of the maximality of P . Also, uj′+1 /∈ XL

since otherwise the path (y1, . . . , y
′
1, x1, uj′, uj′−1, . . . , u1, uj′+2, . . . , ut) is longer than P .

Likewise, uj−1 /∈ XR. By Conclusion 2, uj′+1 ∈ XR and uj−1 ∈ XL.
Now there must be some h, j′ + 1 ≤ h < j − 1, so that uh ∈ XR and uh+1 ∈

XL. However, now we see that the path (x1, y
′
1, . . . , y1, uj, uj+1, . . . , ut, uh−1, uh−2, . . . ,

u1, uh+2, . . . , uj−1) is longer than P . (Of course, if h = j − 2 then the path actu-
ally is (x1, y

′
1, . . . , y1, uj, uj+1, . . . , ut, uh−1, uh−2, . . . , u1).) This contradiction completes the

proof. �
If |F1| = 1, then T is a caterpillar and all requirements of Option 3 are satisfied as

in the case k ≥ 4. In the case that |F1| = 2, we define T′ = T − x1y1 + x1u for some
u ∈ N2. Note that degT′(w) ≤ degT(w) for all w ∈ V − {u}. Since degT(w) ≤ 2 for
all w ∈ V − {a0}, we have degT′(u) ≤ 3 and degT′(w) < 3 unless w ∈ {u, ao} ⊂ M , an
independent set. Thus T′ satisfies Option 3.

Finally, we show that G contains a dominating cycle. Choose ui /∈ X with i minimum,
and uj /∈ X with j maximum. Then Conclusion 6 allows us to apply Fact 2. Parts (a)
and (b) imply that every ui′ , 1 ≤ i′ < i, has a neighbor in {ui, ui+1, . . . , uj}, while parts
(a) and (c) imply that every uj′, j < j′ ≤ t, has a neighbor in {ui, ui+1, . . . , uj}. Notice
that Conclusions 1 and 2 imply that i < j and that a0 is on the subpath of P from ui

to uj. Hence C = (x1, ui, ui+1, . . . , uj) is a cycle and is dominating. This completes the
proof of Theorem 1.4. �
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