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Abstract

This paper begins with a brief discussion of a class of polynomial Riemann hypotheses,
which leads to the consideration of sequences of orthogonal polynomials and 3-term recur-
sions. The discussion further leads to higher order polynomial recursions, including 4-term
recursions where orthogonality is lost. Nevertheless, we show that classical results on the
nature of zeros of real orthogonal polynomials (i. e., that the zeros of pn are real and those
of pn+1 interleave those of pn) may be extended to polynomial sequences satisfying certain
4-term recursions. We identify specific polynomial sequences satisfying higher order recur-
sions that should also satisfy this classical result. As with the 3-term recursions, the 4-term
recursions give rise naturally to a linear functional. In the case of 3-term recursions the
zeros fall nicely into place when it is known that the functional is positive, but in the case
of our 4-term recursions, we show that the functional can be positive even when there are
non-real zeros among some of the polynomials. It is interesting, however, that for our 4-term
recursions positivity is guaranteed when a certain real parameter C satisfies C ≥ 3, and
this is exactly the condition of our result that guarantees the zeros have the aforementioned
interleaving property. We conjecture the condition C ≥ 3 is also necessary.

Next we used a classical determinant criterion to find exactly when the associated lin-
ear functional is positive, and we found that the Hankel determinants ∆n formed from the
sequence of moments of the functional when C = 3 give rise to the initial values of the
integer sequence 1, 3, 26, 646, 45885, · · · , of Alternating Sign Matrices (ASMs) with vertical
symmetry. This spurred an intense interest in these moments, and we give 9 diverse char-
acterizations of this sequence of moments. We then specify these Hankel determinants as
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Macdonald-type integrals. We also provide an an infinite class of integer sequences, each
sequence of which gives the Hankel determinants ∆n of the moments.

Finally we show that certain n-tuples of non-intersecting lattice paths are evaluated by a
related class of special Hankel determinants. This class includes the ∆n. At the same time,
ASMs with vertical symmetry can readily be identified with certain n-tuples of osculating
paths. These two lattice path models appear as a natural bridge from the ASMs with vertical
symmetry to Hankel determinants.
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1 Introduction

Let g(x) be a real polynomial and T [g](s) be the polynomial defined linearly on basis elements
by

T [1](s) = 1

T [xn](s) = s(s + 1) · · · (s + n − 1)/n!. (1)

The transformation T can be viewed in terms of the complex integral transform

T [g](s)
π

sin(πs)
=
∫ 1

0
xs(1 − x)1−sg(x)

dx

x(1 − x)
.

Furthermore if g(x) = g(1 − x) then

T [g](s) = T [g](1 − s).

Especially interesting would be those cases in which T [g](s) satisfies, additionally a Riemann
hypothesis; i.e., in those cases in which the zeros ρ = β + iγ, satisfy β = 1

2 .
Redmond has recently given an analytic proof that shows that whenever the polynomial g

satisfies a Riemann hypothesis, then so does the T -transform T [g]. Although this result does
not include those situations where the polynomial g does not satisfy a Riemann hypothesis, but
T [g](s) does, he has been able to generalize g ∈ Rh ⇒ T [g] ∈ Rh to entire g of order 1 (see [9]).

As an example, his result shows that the polynomials

T [(x + r)n + (1 − x + r)n](s) (2)

satisfy a Riemann hypothesis for all n > 0 and all values of the real parameter r. A substantial
amount of numerical evidence indicates that a great deal more is true and we give two examples
to illustrate the important phenomena of positivity and interlacing that are inaccessible by
analytic methods.

First, when r > 0, the polynomials

T [(x + r)n](w + 1
2) =

∑
i,j≥0

cijw
irj

can be shown to have the positivity property that all the coefficients cij are non-negative, which
can be used [4] to show that the w-zeros of T [(x + r)n](w + 1

2) are negative when r > 0.
Using this positivity result and other results, together with known parts of the standard the-

ory of 3-term polynomial recursions, Eğecioğlu and Ryavec [4] were able to show in a completely
different way that for all n > 0 and all real values of the parameter r, the polynomials given
in (2) satisfy a Riemann hypothesis. The proof techniques here have implications that are the
subject matter of this paper.

After having disposed of what might be termed The Linear Case by these alternative tech-
niques, it seemed natural to consider the Quadratic Case; i. e., to consider the zeros of

Pn(s, r) = T [(x(x − 1) + r)n](s), (3)
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for values of the parameter r satisfying r ≥ 1
4 . Here again Redmond’s result shows that the

Pn(s, r) satisfy a Riemann hypothesis, but it is again likely that much more is true as we indicate.
The polynomials Pn(s, r) generate real polynomials

Pn(1
2 + it, r)

in t2, so that if we put u = −t2 and set

pn(u, r) = Pn(1
2 + it, r) (4)

then the pn satisfy a 4-term recursion. Numerical data indicates that for each r ≥ 1
4 , the u-zeros

of pn+1(u, r) are negative and interlace the u-zeros of pn(u, r). We have called this assertion the
Quadratic Polynomial Riemann hypothesis. Moreover, the data also supports the assertion that
a positivity result (like the result established in the Linear Case) holds in the Quadratic Case;
i. e., that if

pn(u,R + 1
4 ) =

∑
i,j≥0

ci,ju
iRj ,

then the nonzero coefficients ci,j are positive. If true, this would show that if the roots of the
pn(u, r) are real, then they are negative for r ≥ 1

4 , which is equivalent to Pn(s, r) ∈ Rh.
We cannot provide a proof of the polynomial Riemann hypothesis in the Quadratic Case. If

the hypothesis is correct, it is interesting when considered within the framework of the general
theory of polynomial recursions.

The new feature in the Quadratic Case is that the pn(u, r) do not satisfy a 3-term recursion
for r > 1

4 , but rather a 4-term recursion. Essentially the 3-term theory, on which the Linear
Case relies, is based on a notion of orthogonality not available in the consideration of 4-term
recursions. In other words, the standard arguments of the 3-term theory are then too weak to
extend to a 4-term theory, and in fact they cannot be extended in any general statement.

Without any existing theory available to tackle the Quadratic Polynomial Riemann hypoth-
esis, we turned to the consideration of renormalized versions of the 4-term recursions satisfied
by the pn. The recursions for the pn are given in (5) of section 2. We mention that the term
“renormalization” refers to a series of elementary transformations (described in Appendix II)
that convert the 4-term polynomial recursions (5) into the 4-term polynomial recursions (6).
Renormalization therefore has the effect of condensing the somewhat complicated recursions
(5) in the parameters n and r into a relatively simple recursion (6) in the single parameter C.
This simple recursion identified C = 3 as a critical value, and led to the formulation of the
3-Conjecture. This conjecture might be viewed as a single asymptotic version of the Quadratic
Polynomial Riemann hypothesis, and again, substantial amount of data indicates its truth. On
the other hand, this conjecture is readily phrased in two halves, and Redmond was able to prove
the most important half, and his proof is included in this paper as Theorem 1. Higher order
conjectures are probably true and examples are given.

In a strange twist of fortune, certain determinants ∆n which are naturally attached to the
3-Conjecture (and which will appear in section 5), open up some very unexpected connections
to Alternating Sign Matrices (ASM’s). In fact when the sequence of integers 1, 3, 26, 646,
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45885,· · ·, first appeared on the screen, our amazement was total. From that point on everything
we touched seemed inexorably (and for a time, inexplicably) to generate these integers, and the
following table lists some of the many models considered in this paper that are connected via
this fascinating sequence. The symbols in the first column will be explained in due course, and

n : 0 1 2 3 4 · · ·
∆n : 1 3 26 646 45885 · · ·

RR(n) : 1 3 26 646 45885 · · ·
In : 1 3 26 646 45885 · · ·
An : 1 3 26 646 45885 · · ·
Vn : 1 3 26 646 45885 · · ·
On : 1 3 26 646 45885 · · ·
Pn : 1 3 26 646 45885 · · ·

Figure 1: Different models for 1, 3, 26, 646, 45885,· · ·

we begin with the Robbins-Rumsey sequence,

RR(n) =
n∏

k=0

(6k+4
2k+2

)
2
(4k+3
2k+2

) ,
listed in [10] as the conjectured counting formula for the number Vn of ASM’s with vertical
symmetry. This conjecture (and others) has recently been proved by Kuperberg [6]. In this
paper we prove several results and indicate directions for further conjectures. In Theorem 3
(section 7) we show that

∆n = In,

where In is a sequence of values of certain Macdonald-type integrals (see (27), Section 7). In
Theorem 4 (section 8) we show that

In = An,

where An is any one of the sequence of Hankel determinants given in Theorem 4. In Theorem
5, we show that

An = RR(n).

There are two sequences, On (Definition 1, Section 9) and Pn (Definition 2, Section 10), that
count two types, respectively, of ensembles of lattice paths. We show in Lemma 2 (section 9)
that

Vn = On

and we show in Theorem 6 (section 10) that

An = Pn.
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A completely different proof of the Robbins-Rumsey conjecture

Vn = RR(n)

would follow from a bijection between the lattice paths counted by On and those counted by
Pn, or equivalently, between the two corresponding families of tableaux described at the end of
section 10.

2 The 3-Conjecture

Using (1) we construct the first few polynomials Pn(s, r) defined in (3) as

P0(s, r) = 1

P1(s, r) =
1
2
s(s − 1) + r

P2(s, r) =
1
24

s2(s − 1)2 + (r − 1
12

)s(s − 1) + r2.

For n ≥ 2, it can be shown that the Pn satisfy the 4-term recursion

(2n + 2)(2n + 1)Pn+1(s) = [s(s − 1) + 12rn2 + 8rn + 2r − n2 − n]Pn(s)

− [12r2n2 − 2rn2 − 2r2n]Pn−1(s)

+ [n(n − 1)(4r3 − r2)]Pn−2(s).

This recursion is derived in Appendix I. The pn(u) of (4) therefore satisfy the recursion

(2n + 2)(2n + 1)pn+1(u) = [−1
4

+ u + 12rn2 + 8rn + 2r − n2 − n]pn(u)

− [12r2n2 − 2rn2 − 2r2n]pn−1(u) (5)

+ [n(n − 1)(4r3 − r2)]pn−2(u),

which, as a tool in proving the Quadratic Polynomial Riemann hypothesis, we found intractable,
and we turned to efforts at simplifying the recursion by renormalization. Renormalization is an
attempt to see what is happening in the pn-recursion (5) for large n. We have put the steps
in the renormalization into Appendix II and quote here merely the new polynomial recursion
that results from the renormalization of the pn. Thus we obtained a sequence of polynomials
qn = qn(x) with q−2 = q−1 = 0, q0 = 1, and defined thereafter by the recursion

qn = xqn−1 − Cqn−2 − qn−3, (6)

where
C =

8r(6r − 1)

[16r2(4r − 1)]
2
3

.

As r runs from 1
4 to ∞, C(r) is monotone decreasing to 3, and we find that C = 3 is a

critical value in several important respects. Before we consider the 4-term recursion (6), it will
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be useful to review briefly some of the theory of 3-term recursions (we refer the reader to [3] for
details).

Consider a sequence of polynomials qn(x) defined by the 3-term recursion,

qn = (x − cn)qn−1 − λnqn−2,

where q−1 = 0, q0 = 1 and the {cn} and {λn} are real sequences. There is then a unique linear
functional L on the space of polynomials such that

L[1] = λ1

L[qmqn] = 0 m 6= n

L[q2
n] = λ1λ2 · · ·λn+1

It follows that the {qn} is an orthogonal sequence of monic polynomials with respect to L if the
λn 6= 0.

The functional L is said to be positive definite if L[p] > 0 for every non-negative, non-zero
polynomial p. Therefore L is positive definite if and only if all λn > 0. In this case, the zeros of
the qn+1 are real and simple and interlace the zeros of qn. Moreover, if we specify the moments
of L by

µn = L[xn]

(and take µ0 = λ1 = 1), then L is positive definite if and only if the associated sequence of
Hankel determinants

∆n = ∆n[µi+j]0≤i,j≤n (7)

are positive for n = 0, 1, . . ..
Now if you begin with a sequence of monic polynomials qn defined as in (6) by a 4-term

recursion, then you again get some orthogonality with respect to the functional LC defined by

LC [1] = µ0 = 1

LC [xn] = µn

LC [qn] = 0 n ≥ 1,

which results in
LC [q1q3] = 0,

but not, for example,
LC [q2q3] = 0.

Evidently, this loss of orthogonality makes it impossible to transfer directly the arguments of
the 3-term theory to the 4-term situation.

Our first result, the so-called 3-Conjecture, relates to the Quadratic Polynomial Riemann
hypothesis and the 4-term recursions (6). We have the following conjecture.

Conjecture 1 (3-Conjecture) The sequence of polynomials qn, n = 1, 2, . . ., as defined through
the 4-term recursion (6) have real zeros if and only if C ≥ 3. Moreover, when C ≥ 3, the zeros
of qn+1 interlace the zeros of qn.
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This conjecture is proved in the case that C ≥ 3. We do not have a proof of the statement
that when C < 3, then there is some qn with some non-real zeros. Numerical evidence for values
of C as high as C = 2.9 gives n with qn having some non-real zeros and indicates that C = 3 is
indeed the critical value.

Theorem 1 If C ≥ 3 then the polynomials defined by q−2 = q−1 = 0, q0 = 1 and by (6) for
n ≥ 1 have real zeros, and the zeros of qn+1 interleave the zeros of qn.

Proof The proof breaks down into the following steps:

1. Fix N large and restrict attention to the polynomials. (qn(x))0≤n<N .

2. Show that if C is sufficiently large then the zeros of (qn(x))0≤n<N are real and interleaved.

3. If for some C, the zeros of (qn(x))0≤n<N are not real and interleaved then as C decreases
there must be a transition at some point. At the point of the transition there will be a k

with 0 < k < N − 1 and a real x0 such that qk(x0) = qk+1(x0) = 0.

4. Fix C and x0 to be this transition point and assume that C ≥ 3. Let t1, t2, t3 be the roots
of the polynomial,

t3 − x0t
2 + Ct + 1 = 0.

5. Show that two of the roots must be equal.

6. Dispose of the double root case.

7. Dispose of the triple root case.

Large C case and the transition

Fix N > 0. We first need to show that for sufficiently large C the roots of the first N polynomials
are real and interleaved. We do this by scaling and showing that after scaling and normalization
the qn are a simple perturbation of orthogonal polynomials. Note that

qn+1(
√

Cx)
C(n+1)/2

= x
qn(

√
Cx)

Cn/2
− qn−1(

√
Cx)

C(n−1)/2
− 1

C3/2

qn−2(
√

Cx)
C(n−2)/2

Thus if we define

qn(x) =
qn(

√
Cx)

Cn/2

then qn satisfies the following recursion

qn+1(x) = xqn(x) − qn−1(x) − C−3/2qn−2(x).

For large C this is just a perturbation of the recursion

rn+1(x) = xrn(x) − rn−1(x)
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which defines a set of orthogonal polynomials. Thus the first set of N polynomials of q can be
made arbitrarily close to the first N polynomials rn (n = 0, 1, 2, . . . N − 1).

Since the polynomials rn are orthogonal their roots are simple and real. For arbitrary real
C, the polynomials qn have real coefficients. This means that any complex roots of qn come
as half of a complex conjugate pair of roots. But as C gets large the roots of qn approach the
roots of the rn and it is impossible for two complex conjugate roots to approach two distinct
roots of rn. Thus for sufficiently large C the roots of the first N polynomials of qn are real and
interleaved. Note that this interleaving is a strict interleaving so that no root of qn is equal to
a root of qn+1 for 0 ≤ n < N − 1. Thus the roots of the first N polynomials of p are real and
interleaved.

Now we let C decrease until the interleaving property fails. It is not hard to see that the
interleaving property can only fail if there is a transition value for C and a k with 0 < k < N −1
such that qk and qk+1 have a common real root. Let that root be x0. We will now demonstrate
that such a transition point can only occur if C is strictly less than 3.

Consider the cubic equation

t3 − x0t
2 + Ct + 1 = 0. (8)

Let t1, t2, t3 be the roots of this equation. The remainder of the proof hinges on whether this
equation has a double root or triple root.

The roots are distinct

First suppose that equation (8) does not have a double root. In that case, we can find some
a1, a2, a3 such that

qn(x0) = a1t
n+2
1 + a2t

n+2
2 + a3t

n+2
3 .

Now we have q−2(x0) = q−1(x0) = qk(x0) = qk+1(x0). This leads to the following equations:

a1 + a2 + a3 = 0

a1t1 + a2t2 + a3t3 = 0

a1t
k+2
1 + a2t

k+2
2 + a3t

k+2
3 = 0

a1t
k+3
1 + a2t

k+3
2 + a3t

k+3
3 = 0

Note that the a1, a2, a3 cannot be trivial because

a1t
2
1 + a2t

2
2 + a3t

2
3 = 1.

Thus the following determinants are zero:∣∣∣∣∣∣∣
1 1 1
t1 t2 t3

tk+2
1 tk+2

2 tk+2
3

∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣
1 1 1
t1 t2 t3

tk+3
1 tk+3

2 tk+3
3

∣∣∣∣∣∣∣ = 0
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This means in turn that we can find non-trivial α, β, γ and α′, β′, γ′ such that

α + βti + γtk+2
i = 0

α′ + β′ti + γ′tk+3
i = 0

for i = 1, 2, 3. A little manipulation gives the following equations

−α′γ + (αγ′ − β′γ)ti + βγ′t2i = 0 (9)

where i = 1, 2, 3. The next question is whether equations (9) could be trivial in the sense that

−α′γ = 0, (αγ′ − β′γ) = 0, βγ′ = 0.

We will show that if equations (9) are trivial then C < 3. This will be done in three cases.
First, if γ = 0 then ti = −α/β and we find that there is a triple root which is a case that is
covered later. Second, if γ′ = 0 then ti = −α′/β′ which also leaves us in the triple root case.
Finally, the only remaining case is that α′ = 0 and β = 0. In this case,

tk+2
i = −α/γ.

This means that the ti’s differ from one another by a factor of a root of unity. Also 1 = | − 1| =
|t1t2t3| = |t1|3 so |t1| = 1. But

C = t1t2 + t1t3 + t2t3

which means that C < 3.
Thus the equations (9) are not trivial. But this means that the following determinant is

zero: ∣∣∣∣∣∣∣
1 1 1
t1 t2 t3
t21 t22 t23

∣∣∣∣∣∣∣ = (t3 − t2)(t3 − t1)(t2 − t1) = 0

So there is a double root which was a case we are covering below.

Double Root Case

We will assume that the cubic equation (8) has a double root. Note that we are considering the
triple root case to be distinct and it is handled below. If we have a double root then we can
write

t1 = t2 = −φ, t3 = − 1
φ2

where φ 6= 1. Note that φ must be real. Now we can find real numbers ρ, σ, τ such that

qn−2(x0) = (ρn + σ)(−φ)n + τ(−1/φ2)n

Using q−2(x0) = q−1(x0) = 0, we can solve for ρ, σ and τ to get

qn−2(x0) = σ(−φ)n
[
(

1
φ3

− 1)n + 1 − 1
φ3n

]
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Now we will use the claim that qk(x0) = 0 for k > 0. In this case, we would have

k + 2 =
1 − (1/φ)3k+6

1 − (1/φ)3
= 1 +

1
φ3

+ . . . +
1

φ3k+3
. (10)

Note that the right hand side of this equation has k + 2 summands. If φ > 0 then we look at
the cases where φ > 1 and φ < 1. In both cases the above equality is impossible. If φ < 0 then
we use the fact that

C = φ2 +
2
φ

.

For negative φ the right hand side of this equation is decreasing with φ. It ranges from +∞ as
φ → −∞ to −∞ as φ → 0−. Thus C can only be greater than or equal to 3 if φ ≤ −2. But if
φ ≤ −2 then the equation

k + 2 = 1 +
1
φ3

+ . . . +
1

φ3k+3

is clearly impossible.

Triple Root Case

We are left with only one possible remaining case: that of triple roots. In that case t1 = t2 =
t3 = −1, C = 3 and x0 = −3. We then have

qn+1(x0) = −3qn(x0) − 3qn−1(x0) − qn−2(x0)

and
qn(x0) =

(n + 1)(n + 2)
2

.

This covers all the cases. It means that the transition point that we have been talking about
cannot happen for C ≥ 3. Thus if C ≥ 3 the roots of the qn are real and interleaved. •

3 The 6-Conjecture

All of the work to this point derives from the initial consideration of the T -transform of the
powers (x(x−1)+r)n and the 4-term polynomial sequences they satisfy. Of course we could begin
with the powers of other polynomials invariant under x → 1 − x, and consider the higher order
sequences they define. We then would consider which values of various parameters guarantee a
Riemann hypothesis.

For the sake of brevity, we look at just one more case of the kind of situation that presents
itself in section 11, and skip the derivations.

We have chosen a 5-term sequence, qn = qn(x,C) with

qn = xqn−1 − Cqn−2 + 4qn−3 − qn−4
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with initial terms

q−3 = 0

q−2 = 0

q−1 = 0 (11)

q0 = 1

as an example of an infinite class of sequences depending on a single parameter C and we begin
with the following conjecture.

Conjecture 2 (The 6-Conjecture) The sequence of polynomials satisfying the recursion

qn = xqn−1 − Cqn−2 + 4qn−3 − qn−4

with initial polynomials as in (11) have real zeros if and only if C ≥ 6. In this case, the zeros
of qn+1 interlace the zeros of qn.

Numerical evidence indicates that many other polynomial sequences depending on a single
parameter C have real zeros if and only if C is not smaller than some critical value. We connect
these higher order sequences to Hankel determinants in section 11. There is a substantial amount
of numerical evidence that the critical coefficients that are at work for these recursions come
from binomial coefficients, e. g. 3, 1 for 4-term recursions, and 6, 4, 1 for 5-term recursions.

4 Moments

We consider the sequence of polynomials qn = qn(x) defined by the 4–term recursion

qn = xqn−1 − Cqn−2 − qn−3, (n ≥ 1)

with q−2 = q−1 = 0, and q0 = 1. Thus

q0 = 1

q1 = x

q2 = x2 − C

q3 = x3 − 2Cx − 1

q4 = x4 − 3Cx2 − 2x + C2

Write

qn(x) =
n∑

j=0

dn,jx
j

and define Qn = [di,j ]0≤i,j≤n to be the (n + 1) × (n + 1) matrix of coefficients. Thus

Q4 =




1 0 0 0 0
0 1 0 0 0

−C 0 1 0 0
−1 −2C 0 1 0
C2 −2 −3C 0 1



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We specify a linear functional LC on the space of real polynomials by

LC [q0] = 1 (12)

LC [qn] = 0 , n ≥ 1.

Expressing the moments of LC by

µn = µn(C) = LC [xn], (13)

then the first few moments are

µ0 = 1

µ1 = 0

µ2 = C

µ3 = 1

µ4 = 2C2

µ5 = 5C

µ6 = 3 + 5C3,

and in general, we have the following result.

Theorem 2 The moments µn of the functional L are given by any of the following expressions:

1. The (n, 0)-th entry of Q−1
n .

2. The sum of the weights of all lattice paths from the origin to the point (n, 0) with elementary
steps

(a, b) → (a + 1, b + 1) with weight 1,

(a, b) → (a + 1, b − 1) with weight C, (14)

(a, b) → (a + 1, b − 2) with weight 1,

which stay weakly above the x-axis.

3. The sum of the monomials Cn2(T ) over all 2-3–trees T on n + 1 nodes, where n2(T ) =
number of nodes of T with 2 children.

4. The coefficient of xn in
1

n + 1
(1 + Cx2 + x3)n+1

5. The sum
1

n + 1

∑
n=3j+2k

(
n + 1
j, k

)
Ck
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6. For C ≥ 3, the integral moment ∫ t1

t2
tnw(t)dt

where t2 < t1 are the two larger roots of the discriminant of z3 + Cz2 − tz + 1, and
w(t) = wC(t) is positive for t2 < t < t1.

7. For C = 3, the integral moment
√

3
2π

3n+4
∫ 1

0
fn(u)g(u)du (15)

where

f(u) = 9u(1 − u) − 1

g(u) = u
1
3 (1 − u)

2
3 (1 − 2u) (16)

8. For C = 3, the expression

(−1)n3n+4
2n+1∑
k=0

cn,k

(
k + 1

3

2n + 3

)
(17)

where the cn,k are defined by

(u + 1)(1 + 7u + u2)n =
2n+1∑
k=0

cn,ku
k.

9. For C = 3, the expression

(−1)n3n+4
n∑

k=0

(
n

k

)(
k + 1

3

2k + 3

)
32k

3k + 5
.

Proof To prove part 1, note that by (12) and (13), µ0 = 1 and for i > 0

i∑
j=0

di,jµj = 0.

Therefore for every n > 0,

Qn




µ0

µ1
...

µn


 =




1
0
...
0




Thus the vector [µ0, µ1, · · · , µn]t is the first column of Q−1
n and (1) follows.

To prove 2, let Q−1
n = [ei,j ]0≤i,j≤n. Thus

xi =
n∑

j=0

ei,jqj(x) (18)
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Multiplying both sides by x,

xi+1 =
n∑

j=0

ei,jxqj(x)

=
n∑

j=0

ei,j(qj+1(x) + Cqj−1(x) + qj−2(x))

= qi+1(x) + Cei,1 + ei,2 +
n∑

j=1

ei,j−1qj(x) +
n∑

j=1

Cei,j+1qj(x) +
n∑

j=1

ei,j+2qj(x)

Comparing coefficients with the expansion (18) with i replaced by i + 1

ei+1,j =




1 if j = i + 1
ei,j−1 + Cei,j+1 + ei,j+2 if 0 < j ≤ i

Cei,1 + ei,2 if j = 0
(19)

This is the same recursion satisfied by the sum of the weights of the collection of paths from

1

1

C

C1 1

1 1

1 1

Figure 2: A lattice path from the origin to (10, 0) with elementary steps as in (14).

the origin to the point (i + 1, j) which stay weakly above the x-axis and have elementary steps
given in (14). An example of such a path from the origin to (10, 0) with weight C2 is shown in
Figure 2. Since the value at the lattice point (n, 0) is en,0, the sum of the weights of all paths
from the origin to (n, 0) is µn by part 1. This proves part 2.

To prove part 3, we traverse a lattice path in part 2 from right to left, coding the three
elementary steps in (14) by x0, x2, and x3, respectively, and padding the resulting string with
an extra x0. For the example path in Figure 2 this results in the code

x3 x0 x0 x2 x0 x3 x0 x2 x0 x0 x0 (20)

This word is the word obtained by the depth-first traversal of a 2-3–tree T on 11 nodes, and
putting the labels of the nodes down one by one from left to right. Each x3 is the label of an
internal node with 3 children, each x2 is the label of an internal node with 2 children, and x0’s
are the labels of leaf nodes with no children (thus the internal nodes have 2 or 3 children, as
suggested by the name 2-3–tree). Note that n0 + n2 + n3 = n + 1 where ni is the number of
nodes with i children, and the contribution of the tree is Cn2(T ), since under this bijection, the
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x

x

x
x

x

x

x

0

0

0

0

2

x3

3

x0 0

x2

0x

Figure 3: The 2-3–tree corresponding to the lattice path in Figure 2.

nodes labeled with x2 have weight C, and all the other nodes have weight 1. The tree that
corresponds to the path in Figure 2 via the depth-first code in (20) is shown in Figure 3.

To prove part 4, we use the following version of Lagrange Inversion
Theorem (Lagrange Inversion Formula) Let R(x) be the formal power series

R(x) = R0 + R1x + R2x
2 + · · ·

and let
f(x) = f1x + f2x

2 + f3x
3 + · · ·

be the formal power series solution of the equation f(x) = xR(f(x)). Then fn is given by the
coefficient of xn−1 in 1

nRn(x).
We use this result in the following way. Let

f(x) =
∑
T

Cn2(T )xn(T ) =
∑
n≥0

µn(C)xn+1

where the sum is over all 2-3–trees T , and n(T ) is the total number of nodes in T . Any 2-3–tree
with more than one node can be uniquely decomposed into either 2 or 3 principal subtrees.
Therefore f(x) satisfies the functional equation

f(x) = x + xCf(x)2 + xf(x)3

Now we can use the Lagrange Inversion Formula with R(x) = 1+Cx2+x3 and obtain µn = fn+1

as the coefficient of xn in 1
n+1(1 + Cx2 + x3)n+1. This proves part 4. Part 5 follows by the

multinomial theorem.
Parts 4 and 5 of the theorem have alternate proofs. We begin with the series

∞∑
0

zkqk(x),
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which may be evaluated via the recursion

∞∑
0

zkqk(x) = 1 +
∞∑
1

zk(xqk−1 − Cqk−2 − qk−3)

= 1 + (zx − Cz2 − z3)
∞∑
0

zkqk

to obtain ∞∑
0

zkqk(x) =
1

z(t(z) − x)

where
t(z) =

1
z

+ Cz + z2.

Let T (ε) denote the image of the circle [z : |z| = ε] under the map z → t(z). Given C, if ε

is sufficiently small, as z goes around the circle z = ε, t(z) goes around the origin once in the
opposite direction. It follows that

xn =
1

2πi

∮
T (ε)

tn

t − x
dt

= − 1
2πi

∮
|z|=ε

t′(z)tn(z)
t − x

dz

=
∞∑

k=0

(− 1
2πi

∮
|z|=ε

t′tnzk+1dz)qk(x).

This sum is finite, and we therefore obtain

L[xn] = − 1
2πi

∮
|z|=ε

t′tnzdz (21)

as L simply picks off the k = 0 term in the sum. It follows that

L[xn] =
1

2(n + 1)πi

∮
|z|=ε

tn+1dz

=
1

2(n + 1)πi

∮
|z|=ε

(1 + Cz2 + z3)n+1 dz

zn+1

=
1

n + 1

∑
n=3j+2k

(
n + 1
j, k

)
Ck.

This again establishes parts 4 and 5 of the theorem.
For the proof of the parts 6 and 7, we convert the path integral defining µn in (21) to a real

integral on the real line. We begin with the assumption that C > 3. We denote

p(z) = z3 + Cz2 − tz + 1

= (z − z1(t))(z − z2(t))(z − z3(t)).
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Then

z1(t) = −C

3
− 1

2
1
3

(H
1
3
1 + H

1
3
2 )

z2(t) = −C

3
− 1

2
1
3

(ω2H
1
3
1 + ωH

1
3
2 )

z3(t) = −C

3
− 1

2
1
3

(ωH
1
3
1 + ω2H

1
3
2 )

where H1, H2, and the discriminant ∆ of p(z) are given as

w(t) =
√

3

2π2
1
3

(H
1
3
2 − H

1
3
1 )

H1 = G +

√
−∆

27

H2 = G −
√
−∆

27

G = 1 +
tC

3
+ 2(

C

3
)3

−∆
27

= 1 +
4C3

27
+

2Ct

3
− C2t2

27
− 4t3

27
.

Since C > 3 by assumption, the discriminant of p has three distinct real t-roots t1(C), t2(C),
and t3(C), satisfying

t3(C) < −C < t2(C) < 0

and
15
4

< t1(C) < C + 2.

We let z1 be the real branch of p(z) = 0, and we observe that t1(C), t2(C), and t3(C) are
each 2-cycles of the branches, z1(t), z2(t), and z3(t), where

0 < z2(t1) = z3(t1) <
1
2

z1(t1) < −4

and

−1 < z2(t2) = z3(t2) < 0

z1(t2) < −1

and

z1(t3) = z2(t3) < −1

−1 < z3(t3) < 0.

Next, note that if T = T (C) denotes the image of the unit circle |z| = 1 under the map

z → t(z),
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then T traverses the origin in the t-plane once, cutting the real axis at −C and C + 2. By the
inequalities above, the two roots t2 < t1 therefore lie within this contour, while the third root
t3 is outside. See Figure 4.

T = T (C)

3z ( )1t

z ( )2 t2

t-plane

z-plane

-1 1

-C C+2

t3 2 1t t

(3
z= )t2

z2 ( )=1t

| z | = 1[ ]z :

z (2 t

3z (t

)

)

Figure 4: Paths of integration in the z and the t-planes.

Since

L[xn] = − 1
2πi

∮
|z|=ε

t′tnzdz

= − 1
2πi

∮
|z|=1

t′tnzdz,
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we can convert this z-integral to an integral in the t-plane,

µn =
1

2πi

∮
T

ztndt

=
1

2πi

∫ t1

t2
(z2(t) − z3(t))tndt

=
ω − ω2

2πi2
1
3

∫ t1

t2
(H

1
3
1 (t) − H

1
3
2 (t))tndt

=
√

3

2π2
1
3

∫ t1

t2
(H

1
3
1 (t) − H

1
3
2 (t))tndt

=
∫ t1

t2
ω(t)tndt

which is part 6 of the theorem.
At C = 3, the branching of the function z(t) changes a bit, because the discriminant

∆ = −(t + 3)2(15 − 4t)

now has a double root at −3. Hence, t2(3) = −3 is a 3-cycle (and t1(3) = 15
4 remains a 2-

cycle). But this fact clearly does not change the argument above and we simply take the limit
as C → 3+, to obtain

=
√

3

2π2
1
3

∫ 15
4

−3
(H

1
3
1 (t) − H

1
3
2 (t))tndt

We use this last expression to obtain the formula of part 7. Since C = 3, we have

−∆
27

=
(t + 3)2(15 − 4t))

27

in which case we have

H1(t) = (3 + t)[1 +
√

15 − 4t
3
√

3
]

H2(t) = (3 + t)[1 −
√

15 − 4t
3
√

3
]

Making the change of variable,

3 + t =
27
4

u dt =
27
4

du

in the integral defining L[xn] we get

µn =
√

3

2π2
1
3

∫ 1

0
(
27
4

u)
1
3 [(1 +

√
1 − u)

1
3 − (1 −

√
1 − u)

1
3 ](

27
4

u − 3)n
27
4

du

= 3n+4

√
3

16π

∫ 1

0
u

1
3 [(1 +

√
1 − u)

1
3 − (1 −

√
1 − u)

1
3 ](

9
4
u − 1)ndu.

Next make the change of variable

u = 4v(1 − v)

du = 4(1 − 2v)dv,
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to obtain

µn = 3n+4

√
3

2π

∫ 1
2

0
fn(v)[v(1 − v)]

1
3 [(1 − v)

1
3 − v

1
3 ](1 − 2v)dv

= 3n+4

√
3

2π

∫ 1

0
fn(v)g(v)dv,

where f and g are as in (16).
To prove part 8, we begin with the expression,

µn = 3n+4

√
3

16π

∫ 1

0
u

1
3 [(1 +

√
1 − u)

1
3 − (1 −

√
1 − u)

1
3 ](

9
4
u − 1)ndu.

The substitution

u = 1 − v2

du = −2vdv

results in the difference of two integrals

µn = 3n+4

√
3

16π

∫ 1

0
(1 − v2)

1
3 [(1 + v)

1
3 − (1 − v)

1
3 ](

9
4
(1 − v2) − 1)n2vdv.

In the second integral, let v = −w, dv = −dw, and combine the result with the first integral to
get

µn = 3n+4

√
3

8π

∫ 1

−1
(1 − v2)

1
3 [(1 + v)

1
3 ](

9
4
(1 − v2) − 1)nvdv.

Then make the substitution

v =
1 − u

1 + u

dv =
−2

(1 + u)2
du

and note that

1 − v =
2u

1 + u

1 + v =
2

1 + u

to obtain

µn = 3n+4

√
3

2π

∫ ∞

0
u

1
3

1 − u

(1 + u)4
[(

3
1 + u

)2u − 1]ndu (22)

= (−1)n3n+4

√
3

2π

∫ ∞

0
u

1
3

1 − u

(1 + u)2n+4
[1 − 7u + u2]ndu

= (−1)n3n+4

√
3

2π

∫ ∞

0

u
1
3

(1 + u)2n+4

2n+1∑
k=0

(−1)kcn,ku
kdu
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With 0 < a < m + 1, we have

∫ ∞

0

ua−1

(1 + u)m+1
du = (−1)m

π

sin(aπ)

(
a − 1

m

)

which readily provides the expression in part 8 for µn. Part 9 of the theorem follows from an
alternate evaluation of the integral formula (22). We omit the details.

•

Remark
Part 8 of the above provides new expressions for the moments µn in terms of sums of fractional
binomial coefficients. Thus, if n = 0, we have

µ0 = 34

[(
1
3

3

)
+

(
4
3

3

)]
= 1.

Similarly

µ1 = (−1)35

[(
1
3

5

)
+ 8

(
4
3

5

)
+ 8

(
7
3

5

)
+

(
10
3

5

)]
= 0

and

µ2 = 36

[(
1
3

7

)
+ 15

(
4
3

7

)
+ 65

(
7
3

7

)
+ 65

(
10
3

7

)
+ 15

(
13
3

7

)
+

(
16
3

7

)]
= 3.

Remark
It is evident from the lattice path interpretation in part 2, and multinomial expansion in part 5
of Theorem 2 that as a polynomial in C,

deg(µ2n(C)) = n, deg(µ2n+1(C)) = n − 1. (23)

Furthermore the coefficient of the leading term in µn(C) is the Catalan number 1
2n+1

(2n+1
n

)
for

µ2n (n > 0), and the binomial coefficient
(2n+1

n+1

)
for µ2n+1.

5 Very Special Hankel Determinants

Consider again the sequence of polynomials defined by the 4–term recursion

qn = xqn−1 − Cqn−2 − qn−3, (n ≥ 1)

with q−2 = q−1 = 0, and q0 = 1, and the linear functional LC defined by

LC [q0] = 1, LC [qn] = 0 (n ≥ 1).

µn = µn(C) = LC [xn]
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as characterized by Theorem 2. For the critical value C = 3, we have

µ0 = 1

µ1 = 0

µ2 = 3

µ3 = 1

µ4 = 18

µ5 = 15,

and these in turn produce a sequence of Hankel determinants as defined in (7) that start out as

∆0 = 1

∆1 = 3

∆2 = 26

∆3 = 646

∆4 = 45885

∆5 = 930465

and continue to agree (as far as the tables go) with the number of ASMs with vertical symmetry
given by the formula (34) for RR(n), and so you are suddenly working in another universe. Since
the critical value is C = 3, write C = 3 + t with t ≥ 0 and let µn = µn(3 + t). We find that

µ0 = 1

µ1 = 0

µ2 = 3 + t

µ3 = 1

µ4 = 18 + 12t + 2t2

µ5 = 15 + 5t

µ6 = 138 + 135t + 45t2 + 5t3 (24)

µ7 = 189 + 126t + 21t2

µ8 = 1218 + 1540t + 756t2 + 168t3 + 14t4

µ9 = 2280 + 2268t + 756t2 + 84t3

As a consequence of parts 2 and 5 of Theorem 2, the µn(C) are polynomials in C with non-
negative integral coefficients. It follows from (23) that also as polynomials in t, deg(µ2n(3+t)) =
n, deg(µ2n+1(3 + t)) = n − 1, and the coefficients of µn(3 + t) are non-negative integers.

As polynomials in C, the first few Hankel determinants ∆n = det[µi+j ] are as shown below.
Evidently, deg(∆n(C)) = 1

2n(n + 1). However the coefficients of ∆n(C) are not non-negative.

∆0 = 1
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∆1 = C

∆2 = −1 + C3 (25)

∆3 = −2 − 3C3 + C6

∆4 = −14C − 6C7 + C10

∆5 = 18 − 120C3 − 30C6 + 15C9 − 10C12 + C15

But replacing C by 3 + t, we obtain the polynomials ∆n = ∆n(3 + t) = det[µi+j(3 + t)] as

∆0 = 1

∆1 = 3 + t

∆2 = 26 + 27t + 9t2 + t3 (26)

∆3 = 646 + 1377t + 1188t2 + 537t3 + 135t4 + 18t5 + t6

∆4 = 45885 + 166198t + 264627t2 + 245430t3 + 147420t4 +

60102t5 + 16884t6 + 3234t7 + 405t8 + 30t9 + t10

It is interesting that these ∆n(3 + t) do have non-negative coefficients. We wonder whether
or not this is true in general. The constant terms 1, 3, 26, 646, 45885, . . . of ∆n(3 + t) agree
with the number Vn of ASMs with vertical symmetry as far as the tables go, as noted earlier.
Furthermore, it is reasonable to think that ASMs with vertical symmetry are only a special set
of objects enumerated by ∆n(3 + t), the others having some non-zero statistic indicated by the
exponents of t.

6 Positivity is Insufficient

Given the analogy with 3-term recursions, it is natural to conjecture that if the linear form L
associated with a 4-term recursion is positive then the zeros of the recursively defined polynomials
are real and interleaved. In this section we include an argument that shows that this conjecture
is false.

We start with the positive linear form and then generate the badly behaved 4-term recur-
sion to fit the linear form. We will define the positive linear form by starting with the set of
orthogonal polynomials associated with the positive linear form. We can actually choose any
set of orthogonal polynomials, but for completeness we choose the Hermite polynomials. The
recursion for the Hermite polynomials Hn = Hn(x) is as follows:

H−2 = H−1 = 0

Hn = 2xHn−1 − 2(n − 1)Hn−2

The positive linear form then satisfies the equations

L[H0] = 1
L[Hn] = 0 (n > 0).
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Now we define the polynomials qn = qn(x) that should satisfy the 4-term recursion as

q0 = H0 = 1
q1 = H1

q2 = H2 + γH1

q3 = H3 + (β/α)H2

q4 = H4 + αH3 + βH2

qn = Hn (n > 4)

where α, β and γ will be determined. Now it is not hard to see that for almost all α and β there
is a γ that makes the above set of polynomials satisfy a 4-term recursion. In fact if

α 6= 0

6α2 − β(β + 8) 6= 0

then
γ =

4αβ

6α2 − β(β + 8)

works. It is also clear that

L[q0] = 1
L[qn] = 0 (n > 0).

That is L is the linear form for the 4-term recursion. Finally, for almost any complex number z0

we can find α and β such that q4(z0) = 0. It is possible that the α and β found might not have
an associated γ. However, if we then perturb α and β then q4 will have a zero near z0. Thus we
can guarantee a 4-term recursion for which q4 has complex roots.

However, to make things explicit, the following values work:

α = −4/3

β = 28/3

γ = 28/85

q4((1 + i)/2) = 0.

7 Certain Macdonald-type Integrals

We take the moments µn = µn(C) with C = 3 as defined in the form

µn = 3n+4

√
3

2π

∫ 1

0
fn(v)g(v)dv

where f and g are as given in (16), to obtain an expression for the determinants ∆n =
det[µi+j ]0≤i,j≤n as Macdonald-type integrals. Let

In = (
√

3
2π

)n+1 3(n+1)(3n+4)

(n + 1)!

∫
I(n+1)

∏
0≤i<j≤n

(vi − vj)2
n∏

i=0

g(ui)dui (27)
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where

vi = ui(1 − ui)

g(ui) = u
1
3
i (1 − ui)

2
3 (1 − 2ui)

We have

Theorem 3 If ∆n = det[µi+j ]0≤i,j≤n, then ∆n = In.

Proof We put

B = 34

√
3

2π
g(u) = u

1
3 (1 − u)

2
3 (1 − 2u)

f(u) = 9u(1 − u) − 1

Then choosing n + 1 variables u0, u1, . . . , un, and labeling fi = f(ui) and gi = g(ui) (0 ≤ i ≤ n),
we get

∆n = det[µi+l]0≤i,l≤n

= Bn+1
∫

I(n+1)

n∏
i=0

(3fi)i det[(3fk)l]
n∏

i=0

gidui

= Bn+13n(n+1)
∫

I(n+1)

n∏
i=0

(fi)i det[f l
k]

n∏
i=0

gidui

where the integral is over the (n+1)-fold product of the unit interval. Now sum over all (n+1)!
permutations of the indices to get

(n + 1)!∆n = Bn+13n(n+1)
∫

I(n+1)
det[f l

k]
2

n∏
i=0

gidui

= Bn+13n(n+1)
∫

I(n+1)
[
∏

0≤i<j≤n

(fi − fj)]2
n∏

i=0

gidui

= Bn+133n(n+1)
∫

I(n+1)

∏
0≤i<j≤n

(vi − vj)2
n∏

i=0

gidui

where
vi = ui(1 − ui).

The theorem follows immediately. •

From what is said in the next several sections, it is reasonable to think that the ∆n give
the number of ASMs with vertical symmetry. In that case, these integrals should also count the
ASMs with vertical symmetry.
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For example, expand ∏
0≤i<j≤n

(vi − vj)2 =
∑
(i)

ci0,i1,···,invi0
0 vi1

1 · · · vin
n ,

where the coefficients are integers and the sum is over compositions (i) = (i0, i1, . . . , in) of
n(n + 1) in which 0 ≤ ik ≤ 2n for every k. Substituting into the integral and noting that∫ 1

0
uα−1(1 − u)β−1(1 − 2u)du =

(β − α)
α

· Γ(α + 1)Γ(β)
Γ(α + β + 1)

and in the case α = ik + 4
3 , and β = ik + 5

3 ,

(β − α)
α

· Γ(α + 1)Γ(β)
Γ(α + β + 1)

=
1

33ik+4
· 2π√

3
· Γ(3ik + 4)
Γ(2ik + 4)Γ(ik + 2)

we arrive at

(n + 1)!∆n =
∑
(i)

ci0,i1,···,in

n∏
k=0

Mik ,

where

Mk =
1

k + 1

(
3k + 3

k

)
.

In order to evaluate the sum, we may assume that the indices form a partition of n(n + 1),
in which case 0 ≤ i0 ≤ i1 ≤ · · · ≤ in and the ik run over the range k ≤ ik ≤ n + k. This change
will only involve a new collection of integer coefficients for which we keep the same notation.
Thus if n = 0, there is one term with

i0 = 0 c0 = 1

and

∆0 =

(
3
0

)
= 1

If n = 1, the original sum over

(i0, i1) = (0, 2) c0,2 = 1

= (2, 0) c2,0 = 1

= (1, 1) c1,1 = −2

is replaced with a sum over

(i0, i1) = (0, 2) c0,2 = 2

= (1, 1) c1,1 = −2

and dividing by 2! we get

∆1 = det[Mi+j ]0≤i≤j≤1

= M0M2 − M2
1

= 3
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In the case n = 2, the sum is over

(i0, i1, i2) = (0, 2, 4) c(i) = 6

= (0, 3, 3) c(i) = −6

= (1, 1, 4) c(i) = −6

= (1, 2, 3) c(i) = 12

= (2, 2, 2) c(i) = −6

so that after dividing by 3!, we get

∆2 = det[Mi+j ]0≤i≤j≤2

= M0M2M4 − M0M
2
3 − M2

1 M4 + 2M1M2M3 − M3
2

= 26.

8 Equivalent forms for ∆n

Recall that
∆n(C) = det[µi+j(C)]0≤i,j≤n

where the moments µk are defined by (13) and characterized in a variety of forms by Theorem
2. The determinant ∆n(3) itself can be expressed in a number of different forms as the following
theorem shows.

Theorem 4 ∆n(3) = det[ai+j ]0≤i,j≤n, where ak has any of the forms

1. ak = 1
k+1

(3k+3
k

)
,

2. ak = bk(x) =
∑k

j=0
j+1
k+1

(3k−j+1
k−j

)
xj for any x. In particular det[bi+j(x)]0≤i,j≤n evaluates to

∆n(3) independently of x.

3. ak = 1
k+1

(3k+1
k

)
,

4. ak =
(3k+2

k

)
.

Proof We will first deal with the case where

ak =
1

k + 1

(
3k + 3

k

)
.

We will use the following expression for µk from Theorem 2,

µk =
√

3
2π

3k+4
∫ 1

0
fk(u)g(u)du

where

f(u) = 9u(1 − u) − 1

g(u) = u
1
3 (1 − u)

2
3 (1 − 2u)
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as in (16). This form for the µk allows us to make the following computation:

k∑
i=0

(
k

i

)
3k−iµi =

√
3

2π
3k+4

∫ 1

0
(f(u) + 1)kg(u)du

=
√

3
2π

33k+4
∫ 1

0
(1 − 2u)uk+ 1

3 (1 − u)k+ 2
3 g(u)du

=
√

3
2π

33k+4

(
Γ(k + 4

3)Γ(k + 5
3)

Γ(2k + 3)
− 2

Γ(k + 7
3)Γ(k + 4

3)
Γ(2k + 4)

)

=
√

3
2π

33k+4(2k + 3 − 2(k +
4
3
))

Γ(k + 4
3)Γ(k + 5

3)
Γ(2k + 4)

=
√

3
2π

33k+3 Γ(3k + 3)2π

Γ(2k + 4)Γ(k + 1)33k+3− 1
2

=
1

k + 1

(
3k + 3

k

)

= ak

Now row and column manipulations show that the determinant of

ai+j =
i+j∑
k=0

(
i + j

k

)
3i+j−kµk

is equal to the determinant of µi+j . This proves part 1.
We now prove part 2. The first 5 polynomials bk(x) are

b0(x) = 1

b1(x) = x + 2

b2(x) = x2 + 4x + 7

b3(x) = x3 + 6x2 + 18x + 30

b4(x) = x4 + 8x3 + 33x2 + 88x + 143

The proof of 2 is related to the enumeration of 2–line arrays of positive integers

e1 e2 · · · ek

f1 f2 · · · fk

such that 1 = f1 = e1 ≤ f2 ≤ e2 ≤ · · · ≤ fk ≤ ek ≤ j and ei ≤ i, (1 ≤ i ≤ k). Let hk,j be the
number of such arrays. Carlitz proved [2] that

hk,k−j+1 =
j

k

(
3k − j − 1

k − j

)
, (1 ≤ j ≤ k),

and
1
k

(
3k

k − 1

)
=

k∑
j=1

hk,k−j+1 (28)
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We define the polynomials bk(x) in terms of the numbers hk,j of Carlitz as

bk(x) = xk+1
k+1∑
j=1

hk+1,jx
−j.

It can be proved that the bk(x) satisfy the recursion

(1 − x)2bk(x) − x3bk−1(x) =
1

k + 1

(
3k + 1

k

)
− 2

k + 1

(
3k
k

)
x (29)

for k ≥ 1 with b0(x) = 1 by comparing coefficients and verifying the resulting binomial identity.
In particular there is a representation of the form

(1 − x)2bk(x) − x3bk−1(x) = αk − βkx

for two numerical sequences {αk} and {βk} defined in (29). Now perform elementary row
operations on the matrix Bn = [bi+j(x)] as follows: multiply the last row by (1 − x)2, and
subtract from it x3 times the (n − 1)-st row. Then multiply the (n− 1)-st row by (1 − x)2, and
subtract from it x3 times the (n − 2)-nd row, and so on, continuing down to n = 1. Only the
first row stays b0(x), b1(x), . . . , bn−1(x). All other entries of the transformed matrix are now of
the form αr −βrx, i.e. linear in x. Call this new matrix Cn. The operations on Bn multiply the
determinant by (1 − x)2n and so

(1 − x)2n det(Bn) = det(Cn). (30)

But det(Cn) is a polynomial of degree n + n = 2n from first principles. Since det(Bn) is a
polynomial in x, the left hand side of (30) is a polynomial of degree at least 2n, and therefore
exactly 2n. This forces det(Bn) to be a constant independent of x. By Carlitz’s summation in
(28),

bk(1) =
1

k + 1

(
3k + 3

k

)

and therefore by part 1 of the Theorem, ∆n = det(Bn). Specializing bk(x) at x = 0 gives

bk(0) =
1

k + 1

(
3k + 1

k

)

which proves part 3, while part 4 is a consequence of the binomial identity

bk(3) =

(
3k + 2

k

)
.

•

Remark
As we have seen in (25) and (26) of Section 5 for the first few values of n, the polynomials ∆n(t+3)
appear to have non-negative coefficients, the constant term agreeing with the number of ASMs
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with vertical symmetry. Consider the matrix entries in the equivalent forms for ∆n given in
Theorem 4. These can be interpreted as corresponding to the t = 0 case of the determinant
for any of the alternate formulations for ak in Theorem 4. For example ∆n = det[ai+j ] with
ak = 1

3k+1

(3k+1
k

)
, and it is reasonable to assume that ak is the constant term in some polynomial

ak(t), for which det[ai+j(t)] is identical to the polynomial ∆n(3 + t) obtained through the
µk(3 + t)’s.

Theorem 5 ∆n(3) = RR(n).

Proof For this proof we will use the representation of ∆n(3) as the determinant of the matrix

An =

[(
3(i + j) + 2

i + j

)]
0≤i,j≤n

which is the interpretation of ∆n(3) given in part 4 of Theorem 4. In a private correspondence,
we have learned that Ira Gessel and Guoce Xin have independently discovered a different ap-
proach to calculating this determinant. The approach we take is a variation of finding the LDU
decomposition of the matrix An. More specifically we find a lower triangular matrix,


w0,0

w1,0 w1,1

. . .

wn,0 wn,1 . . . wn,n




so that 


w0,0

w1,0 w1,1

. . .

wn,0 wn,1 . . . wn,n







a0,0 . . . a0,n

a1,0 . . . a1,n

. . .

an,0 . . . an,n




is an upper triangular matrix where

ai,j =

(
3(i + j) + 2

i + j

)
.

We normalize the w-matrix so that wi,i = 1 for all i ≥ 0. We then proceed to guess the formula
for the w-matrix. This is given below:

wi,j =
∑
k

[
(−1)i+j+k(3k)!

(2k + 1)!k!

(
2i

i + j + k

)
(3i + 2)!(j + k)!(2i + 2j + 2k + 1)!

(3j + 3k + 2)!i!(4i + 1)!

]
.

We plan on providing more details on how this guess was obtained elsewhere. It can easily be
checked to be accurate with matrices with sizes up to 30 × 30.

We then proceeded to use automated tools to validate this guess. For notational convenience
we rename the running indices by i and j, and denote the row and the column indices of the
matrix by n and m respectively. Then we need to demonstrate that the following double sum
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n∑
i=0

wm,iai,n =

n∑
i=0

n−i∑
j=0

[
(−1)m+i+j(3j)!

(2j + 1)!j!

(
2m

m + i + j

)
(3m + 2)!(i + j)!(2m + 2i + 2j + 1)!

(3i + 3j + 2)!m!(4m + 1)!

(
3(i + n) + 2

i + n

)]

is zero if m < n and is (6n+4
2n+2

)
2
(4n+3
2n+2

)
if m = n. These types of identities can be proved automatically using a tool due to Wilf and
Zeilberger: see for example, Kurt Wegschaider’s thesis [12] for a comprehensive treatment.

We rewrite the double sum, and equivalently show that for m < n (below the diagonal)

n∑
i=0

n−i∑
j=0

(−1)i+j(3j)!(i + j)!(2 + 3i + 3m)!(1 + 2i + 2j + 2n)!
j!(1 + 2j)!(2 + 3i + 3j)!(i + m)!(2 + 2i + 2m)!(−i − j + n)!(i + j + n)!

= 0 (31)

and for n = m (on the diagonal)

n∑
i=0

n−i∑
j=0

(−1)n+i+j(3j)!(3n + 3i + 2)!(i + j)!(2n + 2i + 2j + 1)!(3n − 1)!(4n + 3)!
j!(2j + 1)!(n + i + j)!(n − i − j)!(n + i)!(2n + 2i + 2)!(3j + 3i + 2)!(n − 1)!(2n + 1)(6n + 1)!

= 1.

(32)

To incorporate the condition m < n, we multiply the summand in (31) by
(n−1

m

)
and set

F [m,n, i, j] =
(−1)i+j(3j)!(i + j)!(2 + 3i + 3m)!(1 + 2i + 2j + 2n)!

(n−1
m

)
j!(1 + 2j)!(2 + 3i + 3j)!(i + m)!(2 + 2i + 2m)!(−i − j + n)!(i + j + n)!

The following certificate for F proving (31) was computed by Akalu Tefera:

12(−2 + n)(−1 + n)(1 + 4n)(−7 + 6n)(−5 + 6n)F [−2 + m,−2 + n,−1 + i, j] +

12(m − n)(−1 + n)(−1 + 4n)(−4 − 9n + 18n2)F [−2 + m,−1 + n,−1 + i, j] +

3(−1 + m − n)(m − n)(1 + 3n)(2 + 3n)(−3 + 4n)F [−2 + m,n,−1 + i, j] +

4(−1 + m)(−1 + n)(−3 + 4n)(−1 + 4n)(1 + 4n)F [−1 + m,−1 + n,−1 + i, j] =

∆[i,−12(−2 + n)(−1 + n)(1 + 4n)(−7 + 6n)(−5 + 6n)F [−2 + m,−2 + n,−1 + i, j] −
12(m − n)(−1 + n)(−1 + 4n)(−4 − 9n + 18n2)F [−2 + m,−1 + n,−1 + i, j] −
3(−1 + m − n)(m − n)(1 + 3n)(2 + 3n)(−3 + 4n)F [−2 + m,n,−1 + i, j]] + ∆[j, 0]

The certificate for the sum (32) with summand F [n, i, j] given by

(−1)n+i+j(3j)!(3n + 3i + 2)!(i + j)!(2n + 2i + 2j + 1)!(3n − 1)!(4n + 3)!
j!(2j + 1)!(n + i + j)!(n − i − j)!(n + i)!(2n + 2i + 2)!(3j + 3i + 2)!(n − 1)!(2n + 1)(6n + 1)!
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turned out to be much more complicated. We ran Kurt Wegschaider’s Mathematica program
MultiSum with the command FindRecurrence[summand, n, i, j, 1]. The resulting certifi-
cate proving (32) can be accessed online1. It is safe to bet that this “one-line proof” of (32) is
a record-setter as far as long certificates go, as the certificate file is over 1.2MB, and contains
about 20,000 lines. •

9 ASM, vertical symmetry, lattice path models

Alternating Sign Matrices

An n × n matrix with entries from {−1, 0, 1} is an Alternating Sign Matrix (ASM) if

1. every row and column has sum 1,

2. in every row and column, the non-zero entries start with 1 and alternate in sign.

Because of the second condition, the partial sums of elements of every row and column of an
ASM must be 1 or 0. Every permutation matrix is an ASM, and for n = 1, 2 these are the only
ASMs. For n = 3, there are 7 ASMs, the six 3 × 3 permutation matrices and the matrix


0 1 0
1 −1 1
0 1 0




The first few values of the number of ASMs is

1, 2, 7, 42, 429, 7436, . . .

Numerous conjectures concerning ASMs were put forward by Mills, Robbins, and Rumsey in
[7]. These are further described in [11]. A general formula for the number of n × n ASMs was
conjectured by Mills–Robbins–Rumsey to be

n−1∏
k=0

(3k + 1)!
(n + k)!

(33)

and proved by Zeilberger in 1996 [13]. Shorter proofs were subsequently given by Kuperberg [5]
and a refinement by Zeilberger [14]. There is a substantial amount of combinatorics concerning
ASMs that is still not fully understood. Proofs for the number of ASMs having symmetries (e.g.
invariant under reflection about a vertical axis, invariant under a 90 degree rotation, etc.) for
which there are conjectured formulas have only recently been announced by Greg Kuperberg
[6]. For example, the number of (2n + 3) × (2n + 3) ASMs2 symmetric about a vertical axis is

RR(n) =
n∏

k=0

(6k+4
2k+2

)
2
(4k+3
2k+2

) (34)

which starts out as 1, 3, 26, 646, 45885 for n = 0, 1, 2, 3, 4. A full account of the history of ASMs
can be found in [1].

1http://www.cs.ucsb.edu/∼omer/diagonal-certificate.txt
2For technical reasons we start with the 3 × 3 case in this paper.
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Lattice Paths

In this section we consider lattice paths in the plane with unit steps in the direction of the
horizontal and vertical axes. The elementary steps are

(a, b) → (a + 1, b) (horizontal step),

(a, b) → (a, b + 1) (vertical step). (35)

Thus a t-step path π is the union of the closed line segments determined by a sequence of distinct
lattice points (s0, s1, . . . , st) such that if si = (xi, yi), then xi+1 − xi and yi+1 − yi are in {0, 1}.
The path π is said to be from s0 to st, denoted by π : s0 → st. Given lattice points A = (a1, a2)
and B = (b1, b2), there is an encoding of a path π : A → B as a word over {1, 2} consisting of
b1 − a1 occurrences of 1 (horizontal steps) and b2 − a2 occurrences of 2 (vertical steps). Thus
the number of paths from A to B is the binomial coefficient(

b1 − a1 + b2 − a2

b1 − a1

)

Note that this number is zero unless B is weakly to the North-East of A. For sets of points
Ai = (ai

1, a
i
2) and Bi = (bi

1, b
i
2), (1 ≤ i ≤ n), we single out two families of n-tuples of paths

Π = (π1, . . . , πn) with πi : Ai → Bi. Π is called

1. Non-intersecting if no two paths πi, πj have a common point,

2. Osculating if the paths are allowed to meet at lattice points only, but without crossing.

Figure 7 shows a 4-tuple of non-intersecting paths, and the rightmost figure in Figure 5 shows
a 5-tuple of osculating paths where the osculation points are indicated by circles. In all of these
examples, the path from A0 to B0 is a degenerate path consisting of a single lattice point with
no horizontal or vertical steps.

There is a standard tool for representing the number of non-intersecting families of paths
as a determinant via involutions, assuming certain restrictions on the relative positions of the
points Ai and Bi. For a permutation σ of the indices i, let Πσ denote n-tuples of paths Πσ =
(πσ

1 , . . . , πσ
n) with πσ

i : Ai → Bσ(i) and set sign(Πσ) = sign(σ). Then

∑
σ

∑
Πσ

sign(Πσ) = det

[(
ai

1 − bj
1 + ai

2 − bj
2

ai
1 − bj

1

)]
1≤i,j≤n

(36)

For any involution on the unrestricted set of n-tuples of paths Πσ which is sign-reversing outside
its fixed point set F , the left-hand side of (36) can be written as

∑
Πσ∈F

sign(Πσ) (37)

A sign-reversing involution can be defined by locating a canonical pair of intersecting paths (such
as the smallest labeled intersection of the smallest pair in lexicographic order), and switching
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the portions of the paths after the intersection point. If the position of the points Ai and Bi

guarantee that any n-tuple Πσ corresponding to a non-identity σ is intersecting, such as when

a1
1 ≤ a2

1 ≤ · · · ≤ an
1 and a1

2 ≥ a2
2 ≥ · · · ≥ an

2 ,

b1
1 ≤ b2

1 ≤ · · · ≤ bn
1 and b1

2 ≥ b2
2 ≥ · · · ≥ bn

2 ,

then the determinant in (36) counts the number of n tuples of non-intersecting paths Π =
(π1, . . . , πn) with πi : Ai → Bi.

ASM and Osculating Paths

The path interpretation of ASMs in terms of osculating paths is directly based on the corner
sum matrix introduced by Robbins and Rumsey in [10]: Given an n × n matrix A, the corner
sum matrix A of A is defined by

Ai,j =
∑

Ak,l

where the sum is over all pairs of integers (k, l) with k ≥ i and l ≥ j (the interpretation here
differs from [10] only in the ordering of the row and column indices of A). Ak,l is regarded as zero
if k or l is out of the range {1, 2, . . . , n}. The differences Ai,j −Ai+1,j and Ai,j −Ai,j+1 are the
partial sums of the rows and columns of A. Using this observation the following characterization
of ASMs in terms of corner sum matrices can be proved

Lemma 1 ([10], lemma 1) An n × n matrix A is an ASM iff A satisfies

1. A1,i = Ai,1 = n + 1 − i for i = 1, 2, . . . , n,

2. Ai,j − Ai,j+1 and Ai,j − Ai+1,j are in {0, 1} for 1 ≤ i, j ≤ n.

Therefore the corner-sum matrix A of an ASM A has first row from right to left, and first column
from bottom up the entries 1, 2, . . . , n. The other entries Ai,j are from {0, 1, . . . , n} so that the
entry above and to the left is either equal to Ai,j or 1 + Ai,j.

We think of A as consisting of n2 cells in the (n+1)× (n+1) grid with label of the cell (i, j)
equal to the entry Ai,j. Tracing the south and east boundaries of the cells in A corresponding
to each fixed i ∈ {1, 2, . . . , n} produces n lattice paths Since the steps of the paths in the first
row (a vertical step) and in the first column (a horizontal step) are predetermined by condition
1 of lemma 1, these can be viewed as paths in the n × n grid. The rows start with the points
A0, A1, . . . , An−1 from top to bottom, and the columns with the points B0, B1, . . . , Bn−1 Let
Π = (π0, π1, . . . , πn−1) where πi : Ai → Bi is the lattice path obtained from the boundary of the
entries n− i in A. Then the path from A0 to B0 is a single point, and the family Π is osculating.

Next, we consider ASM with vertical symmetry. The path interpretation that accompanies
Robbins and Rumsey’s corner-sum matrix can again be interpreted as an osculating path model.

Definition 1 On denotes the number of (n + 1)-tuples of osculating paths Π = (π0, π1, . . . , πn)
where

Ai = (0,−2i), Bi = (i, 0), (38)

and πi : Ai → Bi for i = 0, 1, . . . , n.
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An example of such a 5-tuple Π family appears on the right hand side of Figure 5 for n = 4.

Lemma 2 On is the number of (2n + 3) × (2n + 3) ASM with vertical symmetry.

Proof There is a simple one-to-one correspondence. Label the columns of A as the n + 1
left columns L1, . . . , Ln+1, the central column c and the n + 1 columns to the right of c as
R1, . . . , Rn+1. The proof of the lemma makes use of the corner-sum matrix interpretation for
the general ASM, applied to the (2n+3)×(n+2) matrix that consists of c and R1, . . . , Rn+1. First
of all note that the entries in c must be 1,−1, 1,−1, . . . ,−1, 1 by vertical symmetry. Furthermore
the row sums in R1, . . . , Rn+1 must alternately be 0 or 1 from top to bottom. These conditions
force that the entries in c and R1, . . . , Rn+1 in A satisfy

1. In c, the entries of A from bottom up are 1, 1, 2, 2, . . . , n + 1, n + 1, n + 2.

2. In R1, the entries of A from bottom up are 0, 1, 1, 2, 2, . . . , n + 1, n + 1.

3. In the first two rows in R1, R2, . . . , Rn+1 the entries of A from right to left are 1, 2, 3, . . . , n+
1.

4. In the last row in R1, R2, . . . , Rn+1 the entries of A are 0.

These properties imply that the paths that are obtained from the boundaries of the cells labeled
{1, 2, . . . , n + 1} from A as in the case of the general ASM are now predetermined in the first
two rows, the last row, and the columns c and R1. This leaves a 2n× n grid defining the points
Ai and Bi as in Figure 5. The boundary of the cells labeled n + 1− i defines a path from Ai to
Bi as given in (38). The path π0 : A0 → B0 is a degenerate path with one point, and the family
Π = (π0, π1, . . . , πn) is osculating. The reverse of this map is straightforward. •
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Figure 5: The columns c, R1, R2, R3, R4, R5 of an 11 × 11 vertically symmetric ASM,
the corner sum matrix, and the corresponding 5-tuple of osculating paths.
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This construction is displayed in Figure 5 for the 11 × 11 vertically symmetric ASM on the left
of the figure (the rightmost 6 columns are shown). The resulting 5-tuple of osculating paths are
as given on the right hand side.

10 Path Interpretations & Hankel Determinants

Our path model for Hankel determinants related to ASM with vertical symmetry is as follows.
Consider the set of points A0, A1, . . . , An and B0, B1, . . . , Bn where

Ai = (−i,−2i), and Bi = (i, 2i + 2), (0 ≤ i ≤ n)

as displayed in Figure 6 for n = 3. The points Ai are on the line y = 2x in the third quadrant,

B

A1

A
3

1

B2

3

0

2A

A
0

B

B

y=2x

y=2x+2

Figure 6: Path model for the (n + 1) × (n + 1) Hankel matrix (39) for r = 2 and n = 3.

and the points Bi are on the line y = 2x + 2 in the first quadrant. The number of paths
π : Ai → Bj is given by (

3(i + j) + 2
i + j

)

which is the (i, j)-th entry of the Hankel matrix [ai+j ]0≤i,j≤n with determinant ∆n(3) we consid-
ered before with ak =

(3k+2
k

)
(this is the characterization in part 4 of Theorem 4). In the general
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case, instead of the lines y = 2x and y = 2x+ 2, we consider the lines y = rx and y = rx+ r for
r ≥ 1 with

Ai = (−i,−ri), and Bi = (i, ri + r), (0 ≤ i ≤ n).

In this way we obtain a path model for the (n + 1) × (n + 1) Hankel matrix
[(

(r + 1)(i + j) + r

i + j

)]
. (39)

Our results hold for general r in this setup, where the ASM with vertical symmetry corresponds
to the case r = 2.

Theorem 6 For any integer r ≥ 1, det
[((r+1)(i+j)+r

i+j

)]
0≤i,j≤n

is the number of non-intersecting

tuples of paths Π = (π0, π1, . . . , πn) with πi : Ai → Ci where

Ai = (−i,−ri), and Ci = (i,−i), (0 ≤ i ≤ n)

as shown in Figure 7 for r = 2 and n = 3.

A1

A
3

A
0

A2

y=2x

2C

1C

C0

C3

y= -x

Figure 7: Tuples of non-intersecting paths (Hankel paths) counted by the Hankel
determinant det

[((r+1)(i+j)+r
i+j

)]
for r = 2 and n = 3.

Proof First we work with tuples of paths from points Ai to Bj in Figure 6, and subsequently
identify the tuples enumerated by the determinant as non-intersecting paths from points Ai to Ci

in Figure 7. Note that the usual cancellation of intersecting n-tuples via sign reversing involutions
fails for the placement of points Figure 6, since it is possible to have non-identity permutations
σ for which Πσ is non-intersecting. However the interpretation (37) for the determinant still
holds. We show that all tuples of paths can be paired up to cancel out except for those Π =
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(π0, π1, . . . , πn) corresponding to the identity permutation for which πi stays strictly to the
North-West of πj whenever i < j. Assuming for a moment that we can do this, it is easy to see
that we can identify such a family with paths from Ai to Ci instead of the Bi as claimed in the
Theorem, since the portion of πi from Ci to Bi must consist of vertical steps only for every i.

We proceed in two steps. First we pair up tuples Πσ in which some path πi : Ai → Bσ(i)

starts out by r (or more) vertical steps (and therefore intersects the line y = rx + r at x = −i).
Consider any bijection α for the trivial binomial identity(

(r + 1)k
k

)
= (r + 1)

(
(r + 1)k − 1

k − 1

)
.

Locate the largest index i in Πσ for which πi passes through (−i,−ri + r), i.e. starts with r

vertical steps. Suppose σ(i) = k and σ(i−1) = l so that πi : (−i,−ri+r) → Bk, πj : Ai−1 → Bl.
Let N = i + k and M = i + l. The number of such πi, πi−1 pairs is(

(r + 1)N
N

)(
(r + 1)M − 1

M − 1

)
. (40)

Switching the endpoints, the number of pairs πi : (−i,−ri + r) → Bl, πj : Ai−1 → Bk is
(

(r + 1)M
M

)(
(r + 1)N − 1

N − 1

)
, (41)

and these latter pairs of paths have signs opposite to those of the former. Now α can be used
to construct a bijection between these two sets of opposite signed pairs of paths by setting up a
correspondence for(

(r + 1)N
N

)(
(r + 1)M − 1

M − 1

)
= (r + 1)

(
(r + 1)N − 1

N − 1

)(
(r + 1)M − 1

M − 1

)

and (
(r + 1)M

M

)(
(r + 1)N − 1

N − 1

)
= (r + 1)

(
(r + 1)M − 1

M − 1

)(
(r + 1)N − 1

N − 1

)

and composing the two bijections. Let F be the fixed point of this sign-reversing involution.
We can now consider only Πσ ∈ F . These are tuples Πσ in which no πi starts with r vertical

steps. Now by the pigeonhole principle, either πi stays North-West of πj in such a Πσ for all pairs
i < j, or Πσ is an intersecting tuple of paths. Such intersecting ones in F can be canceled out
by a standard sign-reversing involution, leaving the non-intersecting ones (such as the example
in Figure 7) corresponding to the identity permutation as the tuples of paths enumerated by the
determinant. •

Definition 2 Pn denotes the number of (n+1)-tuples of non-intersecting paths Π = (π0, π1, . . . , πn)
with πi : Ai → Ci where

Ai = (−i,−2i), and Ci = (i,−i), (0 ≤ i ≤ n),
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An example 4–tuple counted by Pn is shown in Figure 7 for r = 2 and n = 3.
As a corollary of Theorem 6 with r = 2, we have that

Pn = det

[(
3(i + j) + 2

i + j

)]
0≤i,j≤n

and therefore the sequence Pn starts out as 1, 3, 26, 646, 45885 for n = 0, 1, 2, 3, 4.

Remark
The values of the Hankel determinants in Theorem 6 for small values of n and r are given in
Figure 8. The second row is given by RR(n) for n = 0, 1, 2, 3, 4. For the first row, it is easy to

r\n 0 1 2 3 4

1 1 1 1 1 1
2 1 3 26 646 45885
3 1 6 206 40083 44042301
4 1 10 950 848465 7096349476
5 1 15 3200 9604260 403895099151

Figure 8: Values of det
[((r+1)(i+j)+r

i+j

)]
0≤i,j≤n

for small values of r and n.

see from the path interpretation that

det

[(
2(i + j) + 1

i + j

)]
= 1

for every n since there is only one tuple of paths Π enumerated by the determinant, i.e. one in
which each π : Ai → Ci consists of horizontal steps only. Since

det

[
1

2(i + j) + 1

(
2(i + j) + 1

i + j

)]
= det

[(
2(i + j) + 1

i + j

)]

we obtain a combinatorial proof of the well-known result that the Catalan-Hankel determinant
on the right evaluates to unity [8].

Remark
Part of the bijection constructed for the proof of Theorem 6 was built upon α proving(

cN

N

)
= c ·

(
cN − 1
N − 1

)
(42)

Of course the equality of (40) and (41) follows from (42) trivially and does not require a bijection.
In particular constructing a “nice” bijection α involves dividing combinatorially, which is usually
problematic. This is best illustrated by the fact that the q-binomial identity

(1 + q + · · · + qN−1)

[
cN

N

]
= (1 + q + · · · + qN−1)(1 + qN + · · · + q(c−1)N )

[
cN − 1
N − 1

]
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has a straightforward bijective proof, since both sides q-count the number of strings of type
1(c−1)N2N−131 by inversions, whereas[

cN

N

]
= (1 + qN + · · · + q(c−1)N )

[
cN − 1
N − 1

]

does not.

Remark
A related Hankel determinant which can easily be evaluated via a path model is det[ai+j ]0≤i,j≤n

where ak =
(2k

k

)
.

Theorem 7

det

[(
2(i + j)
i + j

)]
0≤i,j≤n

= 2n . (43)

Proof Consider the set of points A0, A1, . . . , An and B0, B1, . . . , Bn where

Ai = (−i,−i), and Bi = (i, i), (0 ≤ i ≤ n)

so that A0 = B0 = (0, 0). Then ai+j is the number of paths from Ai to Bj, and the determinant
can be interpreted as in (36). We show that det[ai+j]0≤i,j≤n enumerates all (n + 1)-tuples of
paths Π = (π0, π1, . . . , πn) corresponding to the identity permutation in which each pi is a right-
angle between Ai and Bi, i.e. each πi consists of horizontal steps followed by vertical steps, or
vertical steps followed by horizontal steps as shown in Figure 9 for n = 4. Since there are 2n

0A

1

A

B

B

B

2A

A

B4

2

A

3

4

B

0

1

3

Figure 9: Path model for the Hankel determinant det[
(2(i+j)

i+j

)
]0≤i,j≤4.

such (n + 1)-tuples of paths, the Theorem will follow. The key observation is that for any two
distinct points Bk and Bl, the number of pairs of paths, one from (−i,−j) to Bk and one from
(−j,−i) to Bl is (

i + j + 2k
i + k

)(
i + j + 2l

j + l

)
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and this can be written as (
i + j + 2k

j + k

)(
i + j + 2l

i + l

)
,

which is the number of pairs of paths, one from (−i,−j) to Bl and one from (−j,−i) to Bk.
Note that in this case there is a trivial bijection between these two sets of pairs of paths that
we can use as the part of an involution. We again proceed in two steps. First we pair up tuples
Πσ in which some pair of paths πr : Ar → Bk and πs : As → Bl pass through symmetrically
placed points (−i,−j) and (−j,−i), respectively. By the above observation, this pairing is sign
reversing. Let F be the fixed point of this involution. On F , we pair up intersecting pairs of
paths in the usual way. The final fixed point set enumerated by the determinant consist of all
(n + 1)-tuples of paths Π = (π0, π1, . . . , πn) such that

1. Π is non-intersecting,

2. There are no two paths in Π such that one passes through (−i,−j), and the other through
(−j,−i) for any i, j (−n ≤ i, j ≤ n).

Now notice that in any such tuple Π, we must have π1 : A1 → B1. Otherwise π1 has to go
through either (2,−1), or (−1, 2), and in either case it is then impossible for any other path to
reach B1. Now π2 : A2 → B2, for otherwise π2 has to pass through (3,−2), or (−2, 3), making it
impossible for any other path to reach B2. It follows that πi : Ai → Bi and each πi other than
π0 can be either type of a right-angle. This proves Theorem 7. •

Remark
There is a straightforward one-to-one correspondence between the Hankel paths counted by
Pn (as defined in Definition 2) and column-strict tableaux of staircase shape (n + 1, n, . . . , 1)
in which the entries in row i are bounded by 2(n + 1) − i. For example, the 4-tuple of non-
intersecting paths in Figure 7 corresponds to the column strict tableau in Figure 10 where the
bounds for the row entries are 7, 6, 5, 4 from top to bottom. On the other hand, there is a

4

32 6

1 1 4 6

3 4

Figure 10: Column-strict tableau corresponding to the 4-tuple of paths in Figure 7.

one-to -one correspondence between the osculating paths corresponding to ASM with vertical
symmetry counted by On (as defined in Definition 1) and strict Gelfand patterns [11] with first
row 1, 3, . . . , 2n− 1. For example, the 5-tuple of osculating paths in Figure 5 corresponds to the
strict Gelfand pattern in Figure 11 with first row 1, 3, 5, 7, 9.

the electronic journal of combinatorics 8 (2001), #R36 42



42 7 8
52 7

3 6

1 3 5 7 9

3

Figure 11: Strict Gelfand pattern corresponding to the 5-tuple of paths in Figure 5.

Remark
The two types of paths in question, the Hankel paths counted by Pn−1 (as defined in Definition
2) and the osculating paths corresponding to ASM with vertical symmetry counted by On−1 (as
defined in Definition 1) can be shown to be in bijection with the families F1(n) and F2(n) of
tableaux defined below. First, call a tableau (or a shifted tableau) with n rows good if

1. the entries are bounded by n,

2. the first cell in row i is labeled i,

3. entries are weakly-increasing down the anti-diagonals.

Let λ = (2n − 1, ..., 3, 1). Then F1(n) is the family of column–strict good tableaux of shape λ,
and F2(n) is the family of shifted good tableaux of shape λ. Examples of these are given in
Figures 12 and Figure 13 for n = 3.

11111 11111 11111 11112 11112 11112 11113 11113 11113 11122 11122 11122 11123
222 223 233 222 223 233 222 223 233 222 223 233 222
3 3 3 3 3 3 3 3 3 3 3 3 3

11123 11123 11133 11133 11222 11222 11223 11223 11233 11233 12222 12223 12233
223 233 223 233 223 233 223 233 223 233 233 233 233
3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 12: Family F1(3) of column-strict good tableaux of shape (5, 3, 1) counted by
P2.

11111 11111 11111 11112 11112 11112 11113 11113 11122 11122 11122 11123 11123
222 223 233 222 223 233 223 233 222 223 233 223 233
3 3 3 3 3 3 3 3 3 3 3 3 3

11133 11222 11222 11222 11223 11223 11233 12222 12222 12222 12223 12223 12233
233 222 223 233 223 233 233 222 223 233 223 233 233
3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 13: Family F2(3) of shifted good tableaux of shape (5, 3, 1) counted by O2.
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11 Higher Order ∆n

We note again that the Hankel determinants det[ai+j ]0≤i,j≤n with

ak =

(
2k + 1

k

)
,

all have the value 1. It appears that the values det[ai+j ]0≤i,j≤n with

ak =

(
3k + 2

k

)
,

are the same as the conjectured numbers for ASMs with vertical symmetry given by (34).
So in two cases, the values of an infinite class of determinants are given by smooth arithmetic

sequences; i.e., the prime factors of the determinants come from ratios of products of binomial
coefficients and are therefore small. This phenomenon seems to be quite extensive.

We now return to the critical value C = 6 of section 3, the value which specifies the polyno-
mial sequence

qn = xqn−1 − 6qn−2 + 4qn−3 − qn−4

with initial polynomials q−3 = q−2 = q−1 = 0, q0 = 1 As in section 2, we may define a linear
functional L on the space of polynomials by

L[1] = 1

L[qn] = 0 (n ≥ 1).

This functional has moments µn = L[xn] the first seven values of which are

µ0 = 1

µ1 = 0

µ2 = 6

µ3 = −4

µ4 = 73

µ5 = −120

µ6 = 1164.

The associated Hankel determinants ∆n = det[µi+j ]0≤i,j≤n begin

∆0 = 1

∆1 = 6

∆2 = 206

∆3 = 40083.
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It can readily be shown that these particular ∆n can also be realized in other forms, and we
mention ∆n = det[bi+j ]0≤i,j≤n, where

bk =

(
4k + 3

k

)
.

In the tables, the largest prime factor of these determinants is generally quite large, and
some further numerical data suggests that the Hankel determinants det[hi+j ]0≤i,j≤n with

hk =

(
ak + b

k

)
(a ≥ 4)

are never smooth.

12 Epilogue

This paper began with the consideration of a certain transform of polynomials, which we have
called the T -transform. From this transform we began our study of families of polynomials
satisfying a Riemann hypothesis. These families occur as the terms generated by recursions, and
except in the few cases where the recursions are 3-term, the empirical evidence of the existence
of a Riemann hypothesis and of a familiar interlacing phenomenon cannot be studied within the
framework of an existing theory. This led us to the consideration of renormalized recursions, out
of which emerged several new problems, as well as a totally unexpected connection to various
combinatorial objects, which include Alternating Sign Matrices with vertical symmetry. As to
the new problems, we mention again the 3-conjecture and the 6-conjecture, which are merely two
examples of infinitely many questions related to renormalized recursions and questions about
the nature of interlacing phenomenon, as well as questions about the t-analogues generated by
various Hankel determinant models presented.

We have indicated that to each renormalized recursion, there is a critical value, and that this
critical value may be attached to rather interesting combinatorial questions. These combinatorial
questions in turn may be approached from various different directions, which seem to unite
problems in diverse areas. For example, it is unexpected that certain values of Macdonald-
like integrals we consider are associated to the number of ASMs with vertical symmetry. This
integral formulation in turn, is a direct consequence of our interpretation of the values of certain
Hankel determinants combinatorially by lattice path models in which the standard sign-reversing
involutions do not apply.

Recently we have discovered a vast generalization of the T -transform, with the attendant
Riemann hypothesis and interlacing phenomenon. This new twisted T -transform is a multidi-
mensional convolution defined as follows. Given n(n+1)

2 positive integers

γ = [γij : 0 ≤ i < j ≤ n]

we define a kernel via
W [u; γ, n] =

∏
0≤i<j≤n

[1 − ui − uj]γij .
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Given n + 1 polynomials
P = [pk : 0 ≤ k ≤ n],

each having all their zeros on the line Re(s) = 1
2 , their twisted transform is defined as

T [P, γ](s) =
(

sin πs

π

)n+1 ∫
I(n+1)

W [u; γ, n]
n∏

k=0

pk(uk)us
k(1 − uk)1−s duk

uk(1 − uk)
.

The T -transform which led to the considerations in the present paper is the case n = 0 of this
with the empty product W [u; γ, n] = 1. For T [P, γ], Redmond [9] was able to prove that

pk ∈ Rh for each pk ∈ P ⇒ T [P, γ](s) ∈ Rh.

However, the apparent interlacing phenomenon conjecture is still unproved. In a future
paper we plan to address this question. Undoubtedly the general case will also raise a number
of combinatorial questions and relations of the nature considered in the present paper.
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13 APPENDIX I (Derivation of the 4-term recursion)

In this appendix we derive the the 4-term recursion corresponding to the Quadratic Polynomial
Riemann hypothesis. We begin with a general framework.

Let f(x) be a positive function, and g(x) a real function, both defined on the unit interval
0 < x < 1 and chosen so that the integral

g̃f (s) =
∫ 1

0
f(x)sf(1 − x)1−sg(x)d∗x

is an analytic function of the complex variable s = σ + it on the critical strip 0 < σ < 1. The
measure d∗x denotes the invariant measure for a group of transformations

[y = mλ(x) : λ > 0]

of the unit interval to itself, defined for each λ > 0 via

f(1 − y)
f(y)

=
1
λ

f(1 − x)
f(x)

For each such λ there is a λ-multiplier Mλ(x) defined by

f(y) = Mλ(x)f(x),

so that
f(1 − y) =

Mλ(x)
λ

f(1 − x).

Of particular interest are those choices of f and g for which g̃f (s) may be extended to a
meromorphic function in the complex plane and there satisfying a functional equation such as

g̃f (s) = g̃f (1 − s).

This functional equation would follow, for example, from a choice of g satisfying

g(x) = g(1 − x),

and of course a very special interest would obtain in those cases in which g̃f (s) satisfies, ad-
ditionally, a Riemann hypothesis; i. e., in those cases of g̃f (s) whose zeros ρ = β + iγ in the
critical strip satisfy β = 1

2 .
We have considered in this paper the special polynomial case, f(x) = x, in which

Mλ(x) =
λ

1 + (λ − 1)x
mλ(x) = xMλ(x)

d∗(x) = =
dx

x(1 − x)
,

together with a sequence, gn(x) = [x(x − 1) + r]n, of powers of a quadratic. The gn satisfy
differential-difference equations, from which it is readily deduced that the sequence, Pn(s, r) =
T [gn], satisfy 4-term recursions.
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To indicate how these recursions are obtained, make the substitution,

y = mλ(x)

in the integral,

g̃f (s) =
∫ 1

0
f(y)sf(1 − y)1−sg(y)d∗y

to get

g̃f (s)λ1−s =
∫ 1

0
f(x)sf(1 − x)1−sD(λ, x)d∗x

where
D(λ, x) = Mλ(x)g(mλ(x)).

Evaluating the derivatives with respect to λ at λ = 1 we get

(1 − s)g̃(s) =
∫ 1

0
f(y)sf(1 − y)1−sḊ(1, x)d∗y

s(1 − s)g̃(s) =
∫ 1

0
f(y)sf(1 − y)1−sD̈(1, x)d∗y

In the special (polynomial) case

M1 = 1
d

dλ
M(λ)|λ=1 = 1 − x

d2

dλ2
M(λ)|λ=1 = x(x − 1)

d

dλ
m(λ)|λ=1 = x(1 − x)

d2

dλ2
m(λ)|λ=1 = x2(x − 1)

and
d2

dλ2
D(λ, x)|λ=1 = x2(1 − x)2g̈n(x) + x(x − 1)(2x − 1)ġn(x) + x(x − 1)gn(x)

and the recursion (5) given in section 1 follows directly from

gn = gn
1

ġn = n(2x − 1)gn−1
1

g̈n = n(n − 1)(2x − 1)2gn−2
1 + 2ngn−1

1

(2x − 1)2 = 4(g1 − r) + 1

x(x − 1) = g1 − r.

We remark that the same method will produce higher order recursions for the T -transforms of
sequences of powers Q(x)n.
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14 APPENDIX II (Renormalized 4-term recursion)

Renormalization is an attempt to see what is happening in the Pn-recursion (5) of section 1 for
large n. As a first step we put s = 1

2 + it, where t is a real variable. The real polynomials

Pn(1
2 + it)

are polynomials in u = −t2 and we put

pn(u) = Pn(1
2 + it).

The pn satisfy the recursion

(2n + 2)(2n + 1)pn+1(u) = [−1
4

+ u + 12rn2 + 8rn + 2r − n2 − n]pn(u)

− [12r2n2 − 2rn2 − 2r2n]pn−1(u) (44)

+ [n(n − 1)(4r3 − r2)]pn−2(u).

Next, divide the recursion by n2 and throw away the terms in the coefficients that go to zero as
n goes to infinity. There results a recursion

4en+1(u) = (
u

n2
+ 12r − 1)en(u) − (12r2 − 2r)en−1(u) + (4r3 − r2)en−2(u).

Next, multiply this recursion by 4n and put fn = 4nen to get

fn+1(u) = (
u

n2
+ 12r − 1)fn(u) − 8r(6r − 1)fn−1(u) + 16r2(4r − 1)fn−2(u).

Next, put u = n2v to get a recursion

gn+1((
n

n + 1
)2v) = (v + 12r − 1)gn(v)

− 8r(6r − 1)gn−1((
n

n − 1
)2v)

+ 16r2(4r − 1)gn−2((
n

n − 2
)2v).

We replace this recursion with

hn+1(v) = (v + 12r − 1)hn(v) − 8r(6r − 1)hn−1(v) + 16r2(4r − 1)hn−2(v).

Next, put v + 12r − 1 = u to get a recursion

In+1(u) = uIn(u) − AIn−1(u) + BIn−2(u)

with

A = 8r(6r − 1)

B = 16r2(4r − 1).
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Finally, if we put

u = xB
1
3

A = CB
2
3

Qn(x) = B−n
3 In(xB

1
3 )

then we get a polynomial recursion

Qn(x) = xQn−1(x) − CQn−2(x) + Qn−3(x), (45)

with
C =

8r(6r − 1)

[16r2(4r − 1)]
2
3

.

In the recursion (44), we considered the range 1
4 < r < ∞, which is converted to the range

∞ > C > 3. This is how the critical value C = 3 emerges from the calculations.
From the asymptotic recursion (45), we obtain a sequence of polynomials, the first five of

which are given by

Q0(x,C) = 1

Q1(x,C) = x

Q2(x,C) = x2 − C

Q3(x,C) = x3 − 2Cx + 1

Q4(x,C) = x4 − 3Cx2 + 2x + C2

We note that if a sequence of polynomials qn is defined by

q0(x,C) = 1

q1(x,C) = x

q2(x,C) = x2 − C

and thereafter by the recursion

qn(x) = xqn−1(x) − Cqn−2(x) − qn−3(x),

then the qn are related to the Qn by

qn(x) = (−1)nQn(−x).

It follows that Qn has real zeros for some pair n and C, if and only if qn has real zeros. In this
paper we preferred to work with the second recursion, the one with the minus sign, because the
moments that are defined by this sequence are non-negative, while the corresponding moments
defined by the first recursion alternate in sign.
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