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Abstract

In this paper, we show that the domination number D of a random graph enjoys
as sharp a concentration as does its chromatic number χ. We first prove this fact
for the sequence of graphs {G(n, pn}, n → ∞, where a two point concentration
is obtained with high probability for pn = p (fixed) or for a sequence pn that
approaches zero sufficiently slowly. We then consider the infinite graph G(Z+, p),
where p is fixed, and prove a three point concentration for the domination number
with probability one. The main results are proved using the second moment method
together with the Borel Cantelli lemma.

1 Introduction

A set γ of vertices of a graph G = (V, E) constitutes a dominating set if each v ∈ V is
either in γ or is adjacent to a vertex in γ. The domination number D of G is the size of
a dominating set of smallest cardinality. Domination has been the subject of extensive
research; see for example Section 1.2 in [1], or the texts [6], [7]. In a recent Rutgers
University dissertation, Dreyer [3] examines the question of domination for random graphs,
motivated by questions in search structures for protein sequence libraries. Recall that
the random graph G(n, p) is an ensemble of n vertices with each of the potential

(
n
2

)
edges being inserted independently with probability p, where p often approaches zero as
n → ∞. The treatises of Bollobás [2] and Janson et al. [8] between them cover the theory
of random graphs in admirable detail. Dreyer [3] generalizes some results of Nikoletseas
and Spirakis [5] and proves that with q = 1/(1− p) (p fixed) and for any ε > 0, any fixed
set of cardinality (1 + ε) logq n is a dominating set with probability approaching unity
as n → ∞, and that sets of size (1 − ε) logq n dominate with probability approaching
zero (n → ∞). The elementary proofs of these facts reveal, moreover, that rather than
having ε fixed, we may instead take ε = εn tending to zero so that εn logq n → ∞. It
follows from the first of these results that the domination number of G(n, p) is no larger
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than dlogq n + ane with probability approaching unity – where an is any sequence that
approaches infinity. This is because

P(D ≤ dlogq n + ane) = P(∃ a dominating set of size r := dlogq n + ane)
≥ P({1, 2, . . . , r} is a dominating set)

= (1 − (1 − p)r)n−r

≥ 1 − (n − r)(1 − p)r

≥ 1 − n(1 − p)r

≥ 1 − n(1 − p)logq n+an

= 1 − (1 − p)an

→ 1.

In this paper, we sharpen this result, showing that the domination number D of a random
graph enjoys as sharp a concentration as does its chromatic number χ [1]. In Section 2,
we prove this fact for the sequence of graphs {G(n, pn}, n → ∞, where a two point
concentration is obtained with high probability (w.h.p.) for pn = p (fixed) or for a
sequence pn that approaches zero sufficiently slowly. In Section 3, on the other hand, we
consider the infinite graph G(Z+, p), where p is fixed, and prove a three point concentration
for the domination number with probability one (i.e., in the almost everywhere sense of
measure theory.) The main results are proved using the so-called second moment method
[1] together with the Borel Cantelli lemma from probability theory. We consider our results
to be interesting, particularly since the problem of determining domination numbers is
known to be NP-complete, and since very little appears to have been done in the area of
domination for random graphs (see, e.g., [4] in addition to [3],[5].)

2 Two Point Concentration

For r ≥ 1, let the random variable Xr denote the number of dominating sets of size r.
Note that

Xr =

(n
r)∑

j=1

Ij ,

where Ij equals one or zero according as the jth set of size r forms or doesn’t form a
dominating set, and that the expected value E (Xr ) of Xr is given by

E (Xr ) =

(
n

r

)
(1 − (1 − p)r)n−r . (1)

We first analyze (1) on using the easy estimates
(

n
r

) ≤ (ne/r)r and 1− x ≤ exp(x) to get

E (Xr ) ≤
(ne

r

)r

exp {−(n − r)(1 − p)r}
= exp {−n(1 − p)r + r(1 − p)r + r + r log n − r log r} . (2)
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Here and throughout this paper, we use log to denote the natural logarithm. Note that
the right hand side of (2) makes sense even if r 6∈ Z+, and that it can be checked to be an
increasing function of r by verifying that its derivative is non-negative for r ≤ n. Keeping
these facts in mind, we next denote log1/(1−p) n (for fixed p) by Ln and note that with
r = Ln − L((Ln)(log n)) the exponent in (2) can be bounded above as follows:

exp {−n(1 − p)r + r(1 − p)r + r + r log n − r log r}
≤ exp {−n(1 − p)r + 2r + r log n − r log r}
≤ exp{2Ln − 2L((Ln)(log n)) − (log n)L((Ln)(log n))

− r log r}
→ 0 (n → ∞). (3)

It follows from (3) that with r = bLn − L((Ln)(log n))c and Dn denoting the domination
number, we have

P(Dn ≤ r) = P(Xr ≥ 1) ≤ E (Xr ) → 0 (n → ∞).

We have thus proved

Lemma 1 The domination number Dn of the random graph G(n, p) satisfies, for fixed p,

P(Dn ≥ bLn − L((Ln)(log n))c + 1) → 1 (n → ∞).

The values of Ln tend to get somewhat large if p → 0. For example, if p = 1 − 1/e,
then Ln = log n, but with p = 1/n, Ln ≈ n log n, where, throughout this paper, we write
an ≈ bn if an/bn → 1 as n → ∞. In general, for p → 0, L(·) ≈ log(·)/p. If the argument
leading to (3) is to be generalized, we clearly need r := Ln − L((Ln)(log n)) ≥ 1 so that
r log r ≥ 0; note that r may be negative if, e.g., p = 1/n. One may check that r ≥ 1
if p ≥ e log2 n/n. It is not too hard to see, moreover, that the argument leading to (3)
is otherwise independent of the magnitude of p (since (log n)L((Ln)(log n)) always far
exceeds 2Ln), so that we have

Lemma 2 The conclusion of Lemma 1 holds for each sequence of graphs G(n, pn) with
pn ≥ e log2 n/n.

We next continue with the analysis of the expected value E (Xr ). Throughout this paper,
we will use the notation o(1) to denote a generic function that tends to zero with n.
Also, given non-negative sequences an and bn, we will write an � bn (or bn � an) to
mean an/bn → ∞ as n → ∞. Returning to (1), we see on using the estimate 1 − x ≥
exp{−x/(1 − x)} that for r ≥ 1,

E (Xr ) =

(
n

r

)
(1 − (1 − p)r)n−r

≥
(

n

r

)
(1 − (1 − p)r)n

≥ (1 − o(1))
nr

r!
exp

{
− n(1 − p)r

1 − (1 − p)r

}
, (4)
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where the last estimates in (4) hold provided that r2 = o(n), which is a condition that
is certainly satisfied if p is fixed (and in general if p � log n/

√
n) and r = Ln −

L((Ln)(log n)) + ε, where the significance of the arbitrary ε > 0 will become clear in
a moment1. Assume that p � log n/

√
n and set r = Ln − L((Ln)(log n)) + ε, i.e., a

mere ε more than the value r = Ln − L((Ln)(log n)) ensuring that “E”(Xr ) → 0. We
shall show that this choice forces the right hand side of (4) to tend to infinity. Stirling’s
approximation yields,

(1 − o(1))
nr

r!
exp

{
− n(1 − p)r

1 − (1 − p)r

}

≥ (1 − o(1))
(ne

r

)r 1√
2πr

exp

{
− n(1 − p)r

1 − (1 − p)r

}
≥ (1 − o(1)) exp {A − B} , (5)

where

A = (log n)(Ln)

{
1 − (1 − p)ε

1 − (1−p)εLn log n
n

}
+ Ln

and
B = L(Ln log n) + (log n)L(Ln log n) + Ln log(Ln) + K + log(Ln)/2,

where K = log
√

2π. We assert that the right side of (5) tends to infinity for all positive
values of ε provided that p is fixed or else tends to zero at an appropriately slow rate.
Some numerical values may be useful at this point. Using p = 1 − (1/e) and E (Xr ) ≈
(ne/r)r exp{−ne−r}, Rick Norwood has computed that with n = 100, 000, E (X7) =
3.26 · 10−8, while E (X8) = 4.8 · 1021. Since p � log n/

√
n and Ln ≈ log n/p, we see that

p � Ln log n/n and thus that for large n,

A ≥ log nLn

{
1 − (1 − p)ε

1 − εp(1 − p)ε

}
+ Ln.

For specificity, we now set ε = 1/2 and use the estimate 1−√
1 − x ≥ x/2, which implies

that for large n

A ≥ (log n)(Ln)

{
1 − (1 − p)ε

1 − εp(1 − p)ε

}
+ Ln

= (log n)(Ln)

{
1

1 − εp(1 − p)ε
− (1 − p)ε

1 − εp(1 − p)ε
− εp(1 − p)ε

1 − εp(1 − p)ε

}
+ Ln

≥ (log n)(Ln)
εp[1 − (1 − p)ε]

1 − εp(1 − p)ε
+ Ln

≥ (log n)(Ln)
p2ε2

1 − εp(1 − p)ε
+ Ln

1Recall that we will find it beneficial to continue to plug in a non-integer value for r on the right
side of an equation such as (4), fully realizing that E(Xr ) makes no sense. In such cases, the notation
“E”(Xr ), “V”(Xr) etc. will be used
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≥ (log n)(Ln)p2ε2 + Ln =
(log n)(Ln)p2

4
+ Ln := C.

The choice of ε = 1/2 has its drawbacks as we shall see; it is the main reason why a
two point concentration (rather than a far more desirable one point concentration) will
be obtained at the end of this section. The problem is that Ln − L((Ln)(log n)) may be
arbitrarily close to an integer, so that we might, in our quest to have

bLn − L((Ln)(log n))c = bLn − L((Ln)(log n)) + εc,
be forced to deal with a sequence of ε’s that tend to zero with n. From now on, we shall
take ε = 1/2 unless it is explicitly specified to be different. We shall show that C/10
exceeds each of the five quantities that constitute B, so that

exp{A − B} ≥ exp{C − B} ≥ exp{C/2} → ∞.

It is clear that we only need focus on the case p → 0. Also, it is evident that for large
n, C/10 ≥ K = log

√
2π and C/10 ≥ log(Ln)/2. Next, note that the second term in B

dominates the first, so that we need to exhibit the fact that

C/10 ≥ (log n)L(Ln log n). (6)

Since L(·) ≈ log(·)/p, (6) reduces to

p log2 n

40
+

log n

10p
≥ log nL(

log2 n

p
),

and thus to
p log n

40
+

1

10p
≥ 1

p
log(

log2 n

p
).

(6) will thus hold provided that

p log n

40
≥ 1

p
log(

log2 n

p
),

or if

p2

40
≥

log
(

log2 n
p

)
log n

,

a condition that is satisfied if p is not too small, e.g., if p = 1/ log log n. Finally, the
condition C/10 ≥ Ln log(Ln) may be checked to hold for large n provided that

p2 log n

40
≥ log

(
log n

p

)
,

or if

p2

40
≥

log
(

log n
p

)
log n

,
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and is thus satisfied if (6) is.
It is easy to check that the derivative (with respect to r) of the right hand side of (5)

is non-negative if r is not too close to n, e.g., if r2 � n, so that

E (XbLn−L((Ln)(log n))c+2) ≥ right side of (5)|r=bLn−L((Ln)(log n))c+2

≥ right side of (5)|r=Ln−L((Ln)(log n))+ε

→ ∞.

The above analysis clearly needs that the condition r2 � n be satisfied. This holds for
p � log n/

√
n and r = Ln − L((Ln)(log n)) + K, where K is any constant. Now the

condition

p2

40
≥

log
(

log2 n
p

)
log n

,

ensuring the validity of (6) is certainly weaker than the condition p � log n/
√

n. We have
thus proved:

Lemma 3 The expected number E (Xr ) of dominating sets of size r of the random graph
G(n, p) tends to infinity if p is either fixed or tends to zero sufficiently slowly so that
p2/40 ≥ [log

(
(log2 n)/p

)
]/log n, and if r ≥ bLn − L((Ln)(log n))c + 2.

It would be most interesting to see how rapidly the expected value of Xr changes from
zero to infinity if p is smaller than required in Lemma 3. A related set of results, to form
the subject of another paper, can be obtained on using a more careful analysis than that
leading to Lemma 3 – with the focus being on allowing ε to get as large as needed to yield
E (Xr ) → ∞.

We next need to obtain careful estimates on the variance V(Xr) of the number of
r-dominating sets. We have

V(Xr ) =

(n
r)∑

j=1

E (Ij ) {1 − E (Ij )} + 2

(n
r)∑

j=1

∑
j<i

{E (IiIj) − E (Ii)E (Ij )}

=

(
n

r

)
ρ +

(
n

r

) r−1∑
s=0

(
r

s

)(
n − r

r − s

)
E (I1Is) −

(
n

r

)2

ρ2, (7)

where ρ = E (I1) = (1− (1−p)r)n−r and Is is any generic r-set that intersects the 1st r-set
in s elements. Now, on denoting the 1st and sth r-sets by A and B respectively, we have

E (I1Is) = P(A dominates and B dominates)

≤ P(A dominates ^(A ∪ B) and B dominates ^(A ∪ B))

= P(each x ∈ Â ∪ B has a neighbour in A and in B)

=
(
1 − 2(1 − p)r + (1 − p)2r−s

)n−2r+s
. (8)
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In view of (7) and (8), we have

V(Xr ) =

(
n

r

)
ρ −

(
n

r

)2

ρ2

+

(
n

r

) r−1∑
s=0

(
r

s

)(
n − r

r − s

) (
1 − 2(1 − p)r + (1 − p)2r−s

)n−2r+s
. (9)

We claim that the s = 0 term in (9) is the one that dominates the sum. Towards this

end, note that the difference between this term and the quantity
(

n
r

)2
ρ2 may be bounded

as follows: (
n

r

)(
n − r

r

)
(1 − (1 − p)r)2(n−2r) −

(
n

r

)2

(1 − (1 − p)r)2n−2r

=

(
n

r

)2

ρ2

{(
n−r

r

)(
n
r

) (1 − (1 − p)r)−2r − 1

}

≤
(

n

r

)2

ρ2

(
e−r2/n exp

(
2r(1 − p)r

1 − (1 − p)r

)
− 1

)

=

(
n

r

)2

ρ2

(
exp

(
−r2

n
+ 2r(1 − p)r(1 + o(1))

)
− 1

)
, (10)

where the last estimate in (10) holds due to the fact that (1 − p)r → 0 if r = Ln −
L((Ln)(log n)) + ε and p � log2 n/n – which are both facts that have been assumed.
Note also that

2r(1 − p)r(1 + o(1)) >
r2

n

holds if
2(Ln) log n � Ln − L((Ln)(log n)) + ε

is true; the latter condition may be checked to hold for all reasonable choices of p. It
follows that the exponent in (10) is non-negative. Furthermore, r(1 − p)r → 0 since
p � log3/2 n/

√
n. We thus have from (10)(

n

r

)(
n − r

r

)
(1 − (1 − p)r)2(n−2r) −

(
n

r

)2

(1 − (1 − p)r)2n−2r = o([E (Xr )]2). (11)

Next define

f(s) =

(
r

s

)(
n − r

r − s

) (
1 − 2(1 − p)r + (1 − p)2r−s

)n−2r+s
;

we need to estimate
∑r−1

s=1 f(s). We have

f(s) ≤
(

r

s

)
nr−s

(r − s)!

(
1 − 2(1 − p)r + (1 − p)2r−s

)n−2r+s
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≤ 2

(
r

s

)
nr−s

(r − s)!

(
1 − 2(1 − p)r + (1 − p)2r−s

)n

≤ 2

(
r

s

)
nr−s

(r − s)!
exp

{
n

(
(1 − p)2r−s − 2(1 − p)r

)}
=: g(s), (12)

where the next to last inequality above holds due to the assumption that p � log3/2 n/
√

n.
Consider the rate of growth of g as manifested in the ratio of consecutive terms. By (12),

g(s + 1)

g(s)
=

(r − s)2

n(s + 1)
exp

{
np(1 − p)2r−s−1

}
=: h(s). (13)

We claim that h(s) ≥ 1 iff s ≥ s0 for some s0 = s0(n) → ∞, so that g is first decreasing and
then increasing. We shall also show that g(1) ≥ g(r−1), which implies that

∑r−1
s=1 f(s) ≤

rg(1). First note that

h(1) ≤ r2

2n
exp

{
np

(1 − p)2
(1 − p)2r

}

=
r2

2n
exp

{
p

n(1 − p)2−2ε
(Ln log n)2

}
→ 0

since p � log n/
√

n, and that

h(r − 1) ≈ 1

nr
exp

{
(1 − p)ε log2 n

}
≈ p

n log n
exp

{
(1 − p)ε log2 n

}
≥ 1

n3/2
exp

{
(1 − p)ε log2 n

} ≥ 1

provided that p is not of the form 1 − o(1). Now,

h(s) =
(r − s)2

n(s + 1)
exp

{
np(1 − p)2r−s−1

} ≥ 1

iff

exp

{
p(1 − p)−s−1+2ε(Ln log n)2

n

}
≥ n(s + 1)

(r − s)2

iff

(1 − p)s+1 log
n(s + 1)

(r − s)2
≤ p(1 − p)2ε (Ln log n)2

n

iff

(1 − p)s+1−2ε(log n)(1 + δ(s)) ≤ p
(Ln log n)2

n
,

(where δ(s) = Θ(log r/ log n))
iff

(s + 1 − 2ε) = s ≥ log p + 2 log(Ln) + log log n − log n − log(1 + δ(s))

log(1 − p)
. (14)
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First note that ∣∣∣∣ log(1 + δ(s))

log(1 − p)

∣∣∣∣ ≈ δ(s)

p
≤ 2 log r

p log n
≤ 2 log(Ln)

p log n
→ 0

if p � log((log n)/p)/ log n, which is a weaker condition than (6). Also, since log n �
log log n + 2 log(Ln), it follows that the right hand side of (14) is of the form an + o(1),
an → ∞, so that h(s) ≥ 1 iff s ≥ s0, as claimed. Note next that g(1) ≥ g(r − 1) iff

2r
nr−1

(r − 1)!
exp

{
n

(
(1 − p)2r−1 − 2(1 − p)r

)}
≥ 2nr exp

{
n

(
(1 − p)r+1 − 2(1 − p)r

)}
,

i.e., if
nr−1

(r − 1)!
exp

{
n

(
(1 − p)2r−1 − (1 − p)r+1

)} ≥ n,

which in turn is satisfied provided that

nr−1

(r − 1)!
(1 − (1 − p)r)n ≥ n,

or if

E (Xr ) ≥ n2

r
(1 + o(1)).

The last condition above holds since E (Xr) ≥ exp{C/2}, where
C = ((log n)(Ln)p2)/4 +Ln is certainly larger than (say) 6 log n if p is not too small, e.g.,
if p ≥ 24/ log n. In conjunction with the fact that h(1) < 1 and h(r−1) > 1, (9) and (10)
and the above discussion show that

V(Xr )

E 2(Xr)
≤ 1

E (Xr )
+

(
2r(1 − p)r − r2

n

)
(1 + o(1)) +

rg(1)
(
n
r

)
E 2(Xr)

; (15)

we will thus have V(Xr) = o(E 2(Xr)) if E (Xr ) → ∞ provided that we can show that the
last term on the right hand side of (15) tends to zero. We have

rg(1)
(

n
r

)
E 2(Xr)

≤ 2r2nr−1 exp {n ((1 − p)2r−1 − 2(1 − p)r)}
(r − 1)!

(
n
r

)
ρ2

≤ 3
r3

n

(1 − 2(1 − p)r + (1 − p)2r−1)
n

(1 − 2(1 − p)r + (1 − p)2r)n

≤ 3
r3

n

(
1 +

(1 − p)2r−1 − (1 − p)2r

(1 − (1 − p)r)2

)n

≤ 3
r3

n
exp

{
np(1 − p)2r−1

(1 − (1 − p)r)2

}

≤ 3
r3

n
exp

{
p

((Ln)(log n))2

n
(1 + o(1))

}
→ 0,

since p � log n/ 3
√

n, establishing what is required. We are now ready to state our main
result.
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Theorem 4 The domination number of the random graph G(n, p); p = pn ≥ p0(n)
is, with probability approaching unity, equal to bLn − L((Ln)(log n))c + 1 or bLn −
L((Ln)(log n))c + 2, where p0(n) is the smallest p for which

p2/40 ≥ [log
(
(log2 n)/p

)
]/log n

holds.

Proof By Chebychev’s inequality, Lemma 3, and the fact that V(Xr) = o(E 2(Xr)) when-
ever E (Xr ) → ∞,

P(Dn > r) = P(Xr = 0) ≤ P(|Xr − E (Xr )|) ≥ E (Xr )) ≤ V(Xr )

E 2(Xr)
→ 0

if r = bLn − L((Ln)(log n))c + 2. This fact, together with Lemmas 1 and 2, prove the
required result. (Note: strictly speaking, we had shown above that “V”(Xs) → ∞ if
s = Ln − L((Ln)(log n)) + ε = Ln − L((Ln)(log n)) + 1/2. The fact that V(Xr) →
∞ (r = bLn − L((Ln)(log n))c + 2) follows, however, since we could have taken ε =
bLn − L((Ln)(log n))c + 2 − Ln + L((Ln)(log n)) in the analysis above, and bounded all
terms involving ε by noting that 1 ≤ ε ≤ 2.)

3 Almost Sure Results

In this section, we show that one may, with little effort, derive a three point concentration
for the domination number Dn of the subgraph G(n, p) of G(Z+, p), p fixed. Specifically,
we shall prove

Theorem 5 Consider the infinite random graph G(Z+, p), where p is fixed. Let P be
the measure induced on {0, 1}∞ by an infinite sequence {Xn}∞n=1 of Bernoulli (p) random
variables, and denote the domination number of the induced subgraph G({1, 2, . . . , n}, p)
by Dn. Then, with Rn = bLn − L((Ln)(log n))c,

P

(
1 ≤ lim inf

n→∞
(Dn − Rn) ≤ lim sup

n→∞
(Dn − Rn) ≤ 3

)
= 1.

In other words, for almost all infinite sequences ω = {Xn}∞n=1 of p-coin flips, i.e., for all
ω ∈ Ω; P(Ω) = 1, there exists an integer N0 = N0(ω) such that n ≥ N0 ⇒ Rn +1 ≤ Dn ≤
Rn + 3, where Dn is the domination number of the induced subgraph G({1, 2, . . . , n}, p).

Proof Equation (3) reveals that for fixed p,

P(Dn ≤ Rn) ≤ E (XRn )

≤ exp{2Ln − 2L((Ln)(log n)) − (log n)L((Ln)(log n))

− (1 − o(1))Ln log Ln}. (16)
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Since Ln = K log n, the right hand side of (16) is asymptotic to

exp{−3K(1 + o(1)) log n log log n} =
1

n3K(1+o(1)) log log n
.

Thus ∞∑
n=1

P(Dn ≤ Rn) < ∞,

which proves, via the Borel-Cantelli lemma, that

P(Dn ≤ Rn infinitely often) = 0. (17)

Unfortunately, however, the analysis in Section 2 only gives

P(Dn ≥ Rn + 3) = O

(
log3 n

n

)
,

so that we may only conclude (here we are launching the standard “subsequence” argu-
ment for proving almost sure results in probability theory) that

P(Dn2 ≥ Rn2 + 3 infinitely often) = 0. (18)

Using (18), we take any S with |S| = Rn2 + 2 that dominates G(n2, p). Let S ′ consist of
all vertices of G(n2 + 2n, p) := G(1, 2, . . . , n2, . . . , n2 + 2n, p) that are not dominated by
S; clearly we have

|S| + |S ′| ≥ Dn2+j ∀ 1 ≤ j ≤ 2n,

and, in particular, the set S ∪ S ′ dominates G(n2 + 2n, p). But

|S ′| =

2n∑
j=1

Fj,

where the Fj are independent Bernoulli variables with parameter (1−p)Rn2+2, so that the
well-known estimate

P(Bin(n, p) ≥ k) ≤ (np)k

k!
yields

P(|S ′| ≥ 2) ≤ 2n2(1 − p)2Rn2+4

≤ 2n2(1 − p)2 (1 − p)2(Ln2−L((Ln2 )(log n2)))

= 32(1 − p)2 (Ln)2(log n)2

n2
. (19)

We could have, in (19), used a more exact computation, but the end result would have
been the same (up to a constant). In any case, (19) and the Borel-Cantelli lemma reveal
that

P(|S ′| ≥ 2 infinitely often) = 0,
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so that we have, on using equation (18) and the notation “i.o.” for “infinitely often,”

P(Dn ≥ Rn + 4 i.o.) = P(Dn2 ≥ Rn2 + 3 i.o., Dn ≥ Rn + 4 i.o.)

+ P(Dn2 ≤ Rn2 + 2 (n ≥ n0), Dn ≥ Rn + 4 i.o.)

≤ 0 + P(|S ′| ≥ 2 i.o.)

= 0. (20)

The result follows on combining (17) and (20).

4 Open Questions

(1) Noga Alon and David Wilson both commented, after listening to Godbole’s talk at
the 2001 Poznań Random Structures and Algorithms conference, that it is likely that
the two-point concentration result can be extended to a wider range of ps. The delicate
analysis needed to show this remains to be conducted.
(2) Can the results in this paper, which have obvious connections to the so-called “tour-
naments with property Sk” [1], be used to improve the bounds in Section 1.2 of [1]?
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