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Abstract

Consider a connected undirected graph G = (V,E) and a subset of vertices C.
If for all vertices v ∈ V , the sets Br(v) ∩ C are all nonempty and pairwise distinct,
where Br(v) denotes the set of all points within distance r from v, then we call C
an r-identifying code. We give general lower and upper bounds on the best possible
density of r-identifying codes in three infinite regular graphs.

1 Introduction

Let G = (V, E) be a connected undirected graph, finite or infinite; we define Br(v), the
ball of radius r centred at a vertex v ∈ V , by

Br(v) = {x ∈ V : d(x, v) ≤ r},
where d(x, v) denotes the number of edges in any shortest path between v and x. Whenever
d(x, v) ≤ r, we say that x and v r-cover each other (or simply cover if there is no
ambiguity). A set of vertices covers a vertex if at least one of its elements does.

∗Research supported by the Academy of Finland, Grant 44002.
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We call any nonempty subset C of V a code and its elements codewords. A code C
is called r-identifying, or identifying, if the sets Br(v) ∩ C, v ∈ V , are all nonempty and
pairwise distinct. The set Br(v)∩C is called the r-identifying set, or identifying set, of v
and will be denoted by I(v). Two vertices which have different identifying sets are said
to be r-separated, or separated.

The concept of identifying code was introduced in [14]. It was further studied, for
different types of graphs, e.g., in [1]–[13].

In this paper we will study the following three 2-dimensional infinite grids:
- GH , the brick wall (or hexagonal) grid, with vertex set V = Z× Z and edge set

EH = {{u = (i, j), v} : u − v ∈ {(0, (−1)i+j+1), (±1, 0)}}.

- GS, the square lattice, with same vertex set and edge set

ES = {{u, v} : u − v ∈ {(0,±1), (±1, 0)}}.

- GT , the triangular lattice, or square lattice with one diagonal, with same vertex set and
edge set

ET = {{u, v} : u − v ∈ {(0,±1), (±1, 0), (1, 1), (−1,−1)}}.

See Figures 1, 13, 2 and 3. Note that in these three graphs, C = V is r-identifying for
all r.

Denote by Qn the set of vertices (x, y) ∈ V = Z× Z with |x| ≤ n and |y| ≤ n. Then
we define the density of a code C as

D(C) = lim sup
n→∞

|C ∩ Qn|
|Qn| .

For a given graph G = (V, E) and a given integer r, we search for r-identifying codes with
minimum density, denoted by D(G, r).

The paper is organized as follows: in Section 2, we improve lower bounds on D(G, r)
for the triangular and square lattices, as well as for the brick wall grid, valid for all values
of r. Sections 3 and 4 give general constructions in the triangular lattice and brick wall
grid, respectively. In the Conclusion, we gather all the general results known to us for
these three grids and show their asymptotical behaviour (when r goes to infinity).

Note that in [4], the results proved here are announced, and the three grids are studied
for small values of r. The square lattice with two diagonals is considered in [4] and [3].

2 General lower bounds

We consider here any of the three aforementioned infinite graphs and denote it by G =
(V, E). For u, v ∈ V , we denote by ∆r(u, v) the symmetric difference between Br(u) and
Br(v). The set C∩∆r(u, v) is the set of codewords r-separating u from v, and is therefore
nonempty if C is r-identifying.
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Figure 1: The brick wall (hexagonal) grid (part).

Figure 2: The square lattice (part).

Figure 3: The triangular lattice (part).
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Proposition 1 We consider three vertices x, y, z ∈ V and an r-identifying code C ⊆ V .
The set Hr(x, y, z) = ∆r(x, y) ∪ ∆r(y, z) ∪ ∆r(z, x) contains at least two codewords.

Proof. Since C is r-identifying, ∆r(x, y) contains at least one codeword, c. We can
assume, without loss of generality, that d(x, c) ≤ r and d(y, c) > r.

First case. Assume that d(z, c) ≤ r. The vertices x and z are not separated by c; so there
is another codeword c′ separating x from z; c′ also belongs to Hr(x, y, z); the proposition
is true.

Second case. Assume now that d(z, c) > r. The vertices y and z are not separated
by c; so there is another codeword c′ separating them; c′ also belongs to Hr(x, y, z); the
proposition is true. �

Note that this proposition holds for any connected graph. We define the size of a finite
set S ⊂ Z

2 as the maximum between the width of S (which is the difference between the
maximum and the minimum abscissae of points of S) and the height of S (which is the
difference between the maximum and the minimum ordinates of points of S).

Proposition 2 Consider a finite set E0,0 ⊆ Z
2, with cardinality e. Denote by Ei,j the set

of points obtained from E0,0 by a translation of vector (i, j), and set E = {Ei,j : i ∈ Z, j ∈
Z}. Then each point in Z

2 belongs to e elements Ei,j of E .

Proof. Let E0,0 = {a1, . . . , ae}. Now x ∈ Ei,j if and only if x = ak + (i, j) for some k in
{1, . . . , e}, that is, if and only if (i, j) = x − ak; so there are exactly e choices for (i, j).

�

Theorem 1 improves on D(GT , r) ≥ 1/(4r + 2) from [9].

Theorem 1 The minimum density of an r-identifying code in the triangular lattice sat-
isfies

D(GT , r) ≥ 2

6r + 3
.

Proof. We call a triangle any 3-tuple (x, y, z) such that there exist i ∈ Z and j ∈ Z with
x = (i, j), y = (i, j + 1) and z = (i + 1, j + 1), see Figures 4 and 5.

It is easy to check that, in the triangular lattice:

|Hr(triangle)| = 6r + 3.

Moreover, Hr((i, j), (i, j + 1), (i + 1, j + 1)) is the translate of Hr((0, 0), (0, 1), (1, 1)) by
the vector (i, j). Now we can use Proposition 2 with E0,0 = Hr((0, 0), (0, 1), (1, 1)): for
each vertex v of the lattice, there exist exactly 6r + 3 triangle(s) such that Hr(triangle)
contains v.

Denote by p the size of Hr(triangle); we suppose that C is an r-identifying code and
we consider, with n ∈ N , 2n ≥ p, the set:

{(triangle, c) : Hr(triangle) ⊆ Qn, c ∈ C ∩ Qn, c ∈ Hr(triangle)}.
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Figure 4: A triangle.
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Figure 5: Hr(triangle) for the triangular lattice.
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Using Proposition 1, we see that the cardinality of this set is at least 2 × |{triangle :
Hr(triangle) ⊆ Qn}|. On the other hand, it is at most |C ∩ Qn| × (6r + 3).

Since
|{triangle : Hr(triangle) ⊆ Qn}| ≥ (2n − p + 1)2,

we obtain:
|C ∩ Qn|
|Qn| ≥ 2

6r + 3
× (2n − p + 1)2

(2n + 1)2
.

By letting n tend to infinity, we obtain the result. �

Theorem 2 improves on D(GH , r) ≥ 1/(4r + 4) from [9].

Theorem 2 The minimum density of an r-identifying code in the brick wall grid satisfies

D(GH , r) ≥ 2

5r + 3
if r is even and D(GH , r) ≥ 2

5r + 2
if r is odd.

Proof. Since the brick wall grid is not globally invariant by all translations, we have to
adapt slightly our previous method. We now call a triangle any 3-tuple (x, y, z) such that
there exist i ∈ Z and j ∈ Z with x = (i, j), y = (i + 1, j), z = (i + 2, j), see Figure 6. We
denote by E0,0 the set Hr((0, 0), (1, 0), (2, 0)) and E1,0 the set Hr((1, 0), (2, 0), (3, 0)). One
can remark that E1,0 is obtained from E0,0 by the translation of vector (1, 0) followed by
the symmetry with respect to the X-axis. Denote by Ei,j the set of vertices obtained:
- if i + j is even, from E0,0 by the translation of vector (i, j);
- if i + j is odd, from E1,0 by the translation of vector (i − 1, j) .

It is clear that Ei,j is the set Hr((i, j), (i + 1, j), (i + 2, j)).
We consider also the set E = {Ei,j : i ∈ Z, j ∈ Z}. One can observe, using considera-

tions of horizontal symmetry, first that the sets Ei,j all have the same cardinality, denoted
here by e, and second that the number of times a vertex is in a set Ei,j does not depend
on the considered vertex; it follows, using the same type of argument as in the proof of
Proposition 2, that each vertex of the infinite graph belongs to e elements Ei,j ∈ E .

Now, the proof is nearly the same as the previous proof; it is only necessary to compute
the value of e to obtain the result.

One readily checks that, for the brick wall grid:
- |Hr(triangle)| = 5r + 3 if r is even;
- |Hr(triangle)| = 5r + 2 if r is odd. �

Remark. With the same argument, it is possible to show that the minimum density of
an r-identifying code in the square lattice satisfies

D(GS, r) ≥ 2

6r + 3
;

but the following theorem will give a better lower bound, also improving on D(GS, r) ≥
2/(7r + 4) from [13].
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Figure 6: Hr(triangle) for the brick wall grid.
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Figure 7: A square.

Theorem 3 The minimum density of an r-identifying code in the square lattice satisfies

D(GS, r) ≥ 3

8r + 4
.

Proof. In this proof, we call a square any 4-tuple (x, y, z, t) such that there exist i ∈ Z

and j ∈ Z with x = (i, j), y = (i + 1, j), z = (i + 1, j + 1) and t = (i, j + 1), see Figure 7.
Consider the set

Kr(x, y, z, t) = ∆r(x, y) ∪ ∆r(x, z) ∪ ∆r(x, t) ∪ ∆r(y, z) ∪ ∆r(y, t) ∪ ∆r(z, t),

see Figure 8.
We will prove first that, if we have an r-identifying code for the square lattice, then

Kr(x, y, z, t) contains at least three codewords (cf. Proposition 1). We can assume,
without loss of generality, that Kr(x, y, z, t) contains a codeword c = (i′, j′) with: i′ ≤ i
and j′ ≤ j. We have:

d(c, y) = d(c, x) + 1, d(c, z) = d(c, x) + 2, d(c, t) = d(c, x) + 1, (1)
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Figure 8: Kr(square) for the square lattice.

cf. Figure 7. Since x belongs to Kr(x, y, z, t), d(c, x) = r − 1 or d(c, x) = r. First,
if d(c, x) = r, then by (1), c does not cover y, z or t, and thus does not belong to
∆r(y, z) ∪∆r(z, t) ∪∆r(y, t), which is Hr(y, z, t); from Proposition 1, Hr(y, z, t) contains
at least two codewords and they are distinct from c; so Kr(x, y, z, t) contains at least three
codewords.

If d(c, x) = r − 1, then c does not separate between x, y and t, i.e., c does not belong
to Hr(x, y, t). Using again Proposition 1, we see that Kr(x, y, z, t) must contain at least
three codewords.

In other words, in the square lattice, one codeword necessarily separates a square into
a singleton and a triangle, and the triangle needs two more codewords.

Moreover, it is easy to check that |Kr(x, y, z, t)| = 8r + 4. Using the same argument
as in the proof of Theorem 1, replacing triangle by square, and the two codewords for a
triangle by three codewords for a square, we obtain the result. �

3 A general construction for the triangular lattice

In this section, we denote a vertex P by P = (i, j), and a vertex Pk by Pk = (ik, jk). For
i ∈ Z, we set ε(i) = 0 if i is even and ε(i) = 1 if i is odd.

The distance d between two vertices of the triangular lattice is given by:
- d(P1, P2) = max(|i2 − i1|, |j2 − j1|) if (i2 − i1) × (j2 − j1) ≥ 0,
- d(P1, P2) = |i2 − i1| + |j2 − j1| otherwise.

We give three theorems, corresponding to the cases r odd, r a multiple of 4 and r even
and not a multiple of 4.

Theorem 4 Let r be a positive odd integer. There is an r-identifying code in the trian-

gular lattice with density
1

2r + 2
.
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Proof. Let r be a positive odd integer. We define, for k belonging to Z, a set Ck of
vertices by:

Ck = {(k(r + 1), α) : α ∈ Z, α even}.
We claim that C, the union of the sets Ck for k ∈ Z, is an r-identifying code for the

triangular lattice. Figure 9 illustrates the case r = 5.

Figure 9: A 5-identifying code for the triangular lattice. Codewords are in black.

A vertex P = (i, j) is r-covered by Ck if and only if:

k(r + 1) − r ≤ i ≤ k(r + 1) + r.

So, all the vertices are covered. Furthermore, the minimum value of k, denoted by k(P ),
k ∈ Z, such that P = (i, j) is covered by an element of Ck is:

k(P ) =
⌈ i − r

r + 1

⌉
.

Now we show that any two vertices P1 and P2 are r-separated.
A vertex P = (i, j) is such that k(P ) = 0 if and only if: 0 ≤ i ≤ r. We consider such

a vertex and denote by Jk(P ) the set of ordinates of codewords covering P and belonging
to Ck.

A codeword (0, α) where α ∈ Z is even, that is to say a codeword of C0, covers P if
and only if:

{
i + α − j ≤ r
j − α ≤ r.

So:

J0(P ) = {α ∈ Z : α even, j − r + 1 − ε(j) ≤ α ≤ j − i + r − 1 + ε(i + j)}. (2)
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In the same way, we obtain that:
if i = 0, J1(P ) is empty

and otherwise:

J1(P ) = {α ∈ Z : α even, j − i + 2 − ε(i + j) ≤ α ≤ j + r − 1 + ε(j)}. (3)

We consider two distinct vertices P1 and P2 and we suppose that they are not r-separated.
This clearly implies that k(P1) = k(P2). We can assume, without loss of generality, that
k(P1) = k(P2) = 0 (the other cases are obtained by translation). So:

{
0 ≤ i1 ≤ r
0 ≤ i2 ≤ r.

Suppose first that i1 = i2 = 0; by (2), we have:

{
j1 − ε(j1) = j2 − ε(j2)
j1 + ε(j1) = j2 + ε(j2),

so: j1 = j2; P1 = P2, a contradiction.
Assume now that i1 = 0 and i2 > 0; J1(P1) is empty and J1(P2) is not, a contradiction

with the fact that P1 and P2 are not separated.
Suppose finally that i1 > 0 and i2 > 0; we have, by (2) and (3):




j1 − ε(j1) = j2 − ε(j2)
j1 − i1 + ε(i1 + j1) = j2 − i2 + ε(i2 + j2)
j1 − i1 − ε(i1 + j1) = j2 − i2 − ε(i2 + j2)
j1 + ε(j1) = j2 + ε(j2).

We easily deduce that P1 = P2, again a contradiction. �

Theorem 5 If r ≥ 4 is divisible by four, then there is an r-identifying code with density
1

2r + 4
in the triangular lattice.

Proof. It is now convenient to adopt a new representation of the triangular lattice
and draw it as in Figure 10. We denote by Xi, i ∈ ZZ, and by Yj, j ∈ ZZ, the vertical
and horizontal lines, respectively, formed by the lattice points. We take as codewords
of C all the lattice points in the sets Xi ∩ Yj with i even, j divisible by r + 2 and
i/2 ≡ j/(r + 2) mod 2. The case r = 4 is given in Figure 10. Clearly the density of C is
1/(2r + 4).

Assume that x is an unknown vertex, and that we know I(x). We now show that
based on I(x) we can unambiguously identify x.

If j is divisible by r+2, we see from Figure 11 that I(x) contains at least r/2 codewords
of Yj if and only if x ∈ Yk for some k satisfying the condition j − r − 1 ≤ k ≤ j + r + 1
or x is a codeword in Yj−r−2 or Yj+r+2. In particular, x is a codeword if and only if there
is an index j such that I(x) contains r/2 codewords from Yj and r/2 from Yj−2r−4. And
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Figure 10: An r-identifying code with density 1/(2r + 4) for the triangular lattice when
r = 4. Codewords are in black.
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Figure 11: The number beside a vertex x indicates how many codewords in Yj+2r+4

r-cover x.

the electronic journal of combinatorics 8 (2001), #R39 12



if so, then x ∈ Yj−r−2 and we know that it is the middle point of I(x) ∩ Yj−r−2. Assume
therefore that x is not a codeword.

Let j be the smallest index such that |I(x)∩Yj | ≥ r/2. Then x is either a noncodeword
in Yj or is in some Yk, j + 1 ≤ k ≤ j + r + 1.

Let j′ be the largest index such that |I(x) ∩ Yj′| ≥ r/2. There are two possibilities:
either j′ = j or j′ = j + r +2. If j′ = j, then we know that x is a noncodeword in Yj, and
it is the unique point lying between the two middle points of I(x)∩ Yj. We can therefore
assume that j′ = j+r+2, in which case we know that x is in some Yk, j+1 ≤ k ≤ j+r+1.

Let Y = ∪j+1≤k≤j+r+1Yk. If c ∈ C∩Yj+r+2∩Xi, then Br(c)∩Y = Y ∩ (∪i−r≤k≤i+rXk).
We know that for exactly one of the two lines Yj and Yj+r+2, the codewords are in the lines
Xi with i divisible by four. By taking the left-most codeword on that line that still covers
x, we find an index 4t such that x ∈ X4t−3 ∪ X4t−2 ∪ X4t−1 ∪ X4t. Using the other line,
and taking the left-most codeword on it that still covers x, we find an index 4t′ + 2 such
that x ∈ X4t′−1 ∪ X4t′ ∪ X4t′+1 ∪ X4t′+2. The intersection of these two gives us an index
2s such that x ∈ X2s−1 ∪X2s. In the same way, by considering the right-most codewords
in Yj+r+2 and Yj that still cover x, we find an index 2s′ such that x ∈ X2s′ ∪ X2s′+1. The
intersection of these two finally gives us the index i for which x ∈ Xi.

Denote f(x) = |I(x) ∩ Yj+2r+4| and g(x) = |I(x) ∩ Yj−r−2|. Assume that x ∈ Yj+k,
1 ≤ k ≤ r + 1.

Assume first that there are no codewords on the line Xi containing x. Then using
Figure 11, we see that for k = 1, 3, 5, . . . , r + 1 the pairs (f(x), g(x)) are (0, r/2 − 1),
(0, r/2−2), (1, r/2−3), (2, r/2−4), . . . , (r/2−4, 2), (r/2−3, 1), (r/2−2, 0), (r/2−1, 0)
and all these pairs are different (since r ≥ 4), and we can identify x.

Assume second that there are codewords on the line Xi containing x. Without loss of
generality the point in Xi ∩Yj is a codeword; the case in which Xi ∩Yj+r+2 is a codeword
is symmetric. For k = 2, 4, . . . , r the pairs (f(x), g(x)) are (0, r/2 − 2), (1, r/2 − 2),
(1, r/2 − 4), (3, r/2 − 4), . . . , (r/2 − 3, 2), (r/2 − 3, 0), (r/2 − 1, 0), and we can again
identify x. �

In view of the previous proof it is not suprising that we can modify the construction
slightly and obtain the following result.

Theorem 6 If r is even and not divisible by four, then there is an r-identifying code with

density
1

2r + 2
in the triangular lattice.

Proof. We take as codewords of C all the lattice points in the sets Xi ∩ Yj where (i, j)
is of the form (4a, 0) + b(2, 2r + 2) or (4a, r + 2) + b(2, 2r + 2) where a, b ∈ ZZ. Clearly the
density of C is 1/(2r + 2).

Let x be the unknown vertex for which the set I(x) is known.
We follow the same strategy as in the previous proof. As the first step we try to find

an index j divisible by 2r + 2 such that we know that x ∈ Yk, j − r − 1 ≤ k ≤ j (Case 1)
or we know that x ∈ Yk, j + 1 ≤ k ≤ j + r (Case 2).

From Figure 12 we see that we can choose an index j′ divisible by 2r + 2 such that
|I(x)∩Yj′| ≥ r/2. Using Figure 12 we see that then either 1) x ∈ Yk for some j′− r−1 ≤
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Figure 12: The number beside a vertex x indicates how many codewords in Yj+2r+2

r-cover x.
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k ≤ j′ + r + 1 or 2) x ∈ Yj′−r−2 ∪ Yj′+r+2. However, we can immediately check if 2) holds:
|I(x) ∩ Yj′+2r+2| = r/2 + 1 if and only if 2) holds and x ∈ Yj′+r+2: we can then choose
j = j′ + 2r + 2 and move to Case 1. Similarly |I(x)∩ Yj′−2r−2| = r/2 + 1 if and only if 2)
holds and x ∈ Yj′−r−2: we can now choose j = j′ − 2r − 2 and move to Case 2.

So, assume that we have concluded that 2) did not hold. Then we know that j′−r−1 ≤
k ≤ j′ + r + 1.

Furthermore, |I(x) ∩ Yj′+r+2| ≥ r/2 if and only if either x ∈ Yk for some j′ + 1 ≤
k ≤ j′ + r + 1 or x is a codeword on Yj′. However, the latter holds if and only if
|I(x)∩Yj′−r| = r/2+1: if it does, we take j = j′ and move to Case 1. Finally, x ∈ Yj′+r+1

if and only if |I(x)∩Yj′+2r+2| = r/2 and |I(x)∩Yj′| = r/2: if yes, then we take j = j′+2r+2
and move to Case 1. Otherwise, we have been able to decide that either j′−r−1 ≤ k ≤ j′,
then take j = j′ and move to Case 1; or that j′ + 1 ≤ k ≤ j′ + r, then again take j = j′

and move to Case 2.
Case 1: j − r − 1 ≤ k ≤ j. Then the codewords on Yj and Yj−r are not above each

other, and exactly the same argument as in the previous proof gives us the unique index i
for which x ∈ Xi. Define f(x) = |I(x)∩Yj+r+2| and g(x) = |I(x)∩Yj−2r−2|. Assume that
x ∈ Yj−h, h ∈ {0, 1, 2, . . . , r + 1}. If Xi ∩ C = ∅, then we can immediately tell on which
Yk the vertex x lies, because the values g(x) for h = 1, 3, . . . , r + 1 are all different: g(x)
takes all the values from 0 to r/2. Assume then that Xi ∩ Yj ⊆ C. (The remaining cases
are symmetric.) Then the pairs (f(x), g(x)) for h = 0, 2, 4, . . . , r are (r/2, 0), (r/2− 2, 0),
(r/2− 2, 2), (r/2− 4, 2), . . . , (1, r/2− 3), (1, r/2− 1), (0, r/2− 1). They are all different,
and we can identify x.

Case 2: j + 1 ≤ k ≤ j + r. Denote f(x) = |I(x) ∩ Yj+2r+2| and g(x) = |I(x) ∩ Yj−r|.
Now the codewords on Yj and Yj+r+2 are above each other — without loss of generality

the codewords are in the columns Xi with i divisible by four — and we cannot immediately
deduce the index i for which x ∈ Xi. Anyway, using the right-most codeword in Yj+r+2

that still covers x we find an index 4t such that x ∈ X4t−2 ∪X4t−1 ∪X4t ∪X4t+1 and using
the left-most codeword in Yj that covers x we find an index 4t′ such that x ∈ X4t′−1∪X4t′∪
X4t′+1 ∪ X4t′+2. The intersection of these sets is either X4t−2 or X4t−1 ∪ X4t ∪ X4t+1; in
the latter case, we can then decide whether or not x ∈ X4t: if no, then f(x)+ g(x) = r/2,
which is odd; if yes, then f(x) + g(x) is the sum of two even numbers and hence even.

All these together imply that if x ∈ X2s for some s, then we know the index 2s; and
otherwise we have found an index 4t such that x ∈ X4t−1 ∪ X4t+1.

Denote by h the index (1 ≤ h ≤ r) such that x ∈ Yj+h.
Assume first that x ∈ X4t for some t. Then the pairs (f(x), g(x)) for h = 2, 4, . . . , r

are (0, r/2 − 1), (2, r/2 − 1), (2, r/2 − 3), . . . , (r/2 − 3, 2), (r/2 − 1, 2), (r/2 − 1, 0), and
we are done.

Assume second that x ∈ X4t−2 for some t. Then the pairs (f(x), g(x)) for h =
2, 4, . . . , r are (1, r/2), (1, r/2− 2), (3, r/2− 2), . . . , (r/2− 2, 3), (r/2− 2, 1) (r/2, 1), and
we are again done.

Assume finally that x ∈ X4t−1 ∪ X4t+1. Then we immediately find the index k for
which x ∈ Yk because all the relevant values of f(x) are different. It suffices to decide
whether x ∈ X4t−1 or x ∈ X4t+1. We know that f(x) + g(x) = r/2. Since r/2 is odd,
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Figure 13: An r-identifying code in the hexagonal (brick wall) grid for r = 8. Codewords
are in black.

either f(x) or g(x) is odd; say f(x). Because X4t ∩ Yj+2r+2 = ∅ (also X4t ∩ Yj−r = ∅,
so the case g(x) odd is similar), we know that in I(x) ∩ Yj+2r+2 there is an odd number
of points to the left of the line X4t and an even number to the right (or the other way
around). However, for the two points in Yk ∩ X4t−1 and Yk ∩ X4t+1 the identifying sets
are mirror images with respect to the line X4t, and therefore cannot be the same. �

Remark. The only values of r for which better constructions are known are r = 3 and
r = 5; see [4].

4 A general construction for the brick wall grid

We first give a construction for r a multiple of 4, then adapt it to the cases r ≡ 1, 2 or 3
mod 4.

Theorem 7 If r ≥ 8 is divisible by four, then there is an r-identifying code with density
8r − 8

9r2 − 16r
in the brick wall (hexagonal) grid.

Proof. In this proof it is convenient to use the hexagonal representation of the grid.
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Let the lines Ai, Yi, Zi be as in Figure 13, and let Xi always denote the vertical line
that goes through the point in Ai∩Zi. We use the lines Xi and Yj to indicate the locations
of the vertices: we denote by (i, j) the unique vertex in the intersection of Xi and Yj.

Denote
L(0, 0) = {(0, 0), (2, 0), . . . , (2r − 4, 0)}

and in general
L(i, j) = (i(2r − 4 + r/4), ir/2 + jr) + L(0, 0).

We show that C, the union of all L(i, j), i, j ∈ ZZ, is an r-identifying code.
The dimensions of the tile become r/2 × (2r − 4 + r/4). Each tile contains r − 1

codewords, which gives the claimed density.
We denote the union of the lines Y0, Y1, . . . , Yr by Y .
One readily checks that for the vertex y ∈ Y0 ∩ Zk the intersection Br(y) ∩ Y is the

finite area restricted by the lines Y0, Yr, Ak+r and Zk−r, and that for the vertex z ∈ Yr∩Zk

the intersection Br(z) ∩ Y is the finite area restricted by the lines Y0, Yr, Ak and Zk+r.
Consequently, the set of vertices in Y that are covered by both the codewords (2r −

4, 0) ∈ L(0, 0) ∩ Z2r−4 and (2r − 4, r) ∈ L(0, 1) ∩ Z3r/2−4 consists of the area restricted
by Yr, A3r−4, Z5r/2−4, Y0, A3r/2−4 and Zr−4. Moreover, one easily verifies that all these
points are within distance r from the left-most codeword (2r−4+r/4, r/2) of L(1, 0) and
the vertex (2r − 4 − r/4, r/2).

Assume that x is the unknown vertex, and that we know I(x). We now show that
based on I(x) we can unambiguously identify x.

In particular, for every vertex x, we know there are indices i and j such that I(x)
intersects both L(i, j) and L(i, j + 1). Without loss of generality, assume that i = j = 0.
In particular, we then have x ∈ Y .

Case 1: Assume first that I(x) contains neither (0, 0) nor (2r − 4, 0). Then x /∈ Y0.
The case when I(x) contains neither (0, r) nor (2r − 4, r) is symmetric. We know that
the set I(x) ∩ Y0 is symmetric with respect to the vertical line passing through x; hence
we can immediately deduce on which vertical line Xh the point x is. Without loss of
generality, let us assume that Xh passes through (r − 2, 0) (the middle point of L(0, 0))
or is to the right of it. If we look at any point y ∈ Xh ∩ A2k, h < 2k < h + r/2, we
know by the construction that the point in Y0 ∩ A2k−r is a codeword, and x is the point
in Xh ∩A2k or below it if and only if I(x) contains the codeword in Y0 ∩A2k−r. Similarly,
x is the point in Xh ∩ A2k, h < 2k < h + r/2, or above it if and only if I(x) contains a
certain codeword in L(0, 1). If x ∈ Yr, we immediately know it, because then x is covered
by codewords from L(0, s) for three different values of s. It is now clear that in all cases
we can identify x.

Case 2: Assume second that I(x) contains both (2r− 4, 0) and (0, r). The case when
I(x) contains both (2r − 4, r) and (0, 0) is symmetric. Since x is within distance r from
(2r − 4, 0), it has to lie on the line Zr−4 or to the right of it. Since x is within distance
r from (0, r), it has to lie on the line Zr/2 or to the left of it. Because r ≥ 8, we have
r − 4 > r/2, unless r = 8. If r = 8, x ∈ Z4, and the case is clear from Figure 13.

Case 3: By Case 1, we can assume that I(x) contains at least one of the points (0, 0)
and (2r − 4, 0) and at least one of the points (0, r) and (2r − 4, r). By Case 2, we can
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assume without loss of generality that (2r − 4, 0) ∈ I(x), (2r − 4, r) ∈ I(x), (0, 0) /∈ I(x),
and (0, r) /∈ I(x). By taking the right-most point of L(0, 1) that does not cover x, we
find an index k such that x ∈ Z2k ∪Z2k−1. By taking the right-most point of L(0, 0) that
does not cover x, we find an index h such that x ∈ A2h ∪ A2h−1. The hexagonal grid is
a bipartite graph, and A2h ∩ Z2k−1 is empty, likewise A2h−1 ∩ Z2k. So we know that x is
either the point in A2h∩Z2k or the point in A2h−1∩Z2k−1. In particular, we already know,
whether or not x lies on a line Yj for some j ≥ r/2. Without loss of generality, assume
that it does not. We know that x ∈ A2h−1 ∪A2h. We have already seen that the fact that
(2r−4, 0) and (2r−4, r) both belong to I(x) implies that x is within distance r from both
(2r − 4 + r/4, r/2) and (2r − 4 − r/4, r/2). Because r ≥ 8, the distance from the point
(2r − 4− r/4, r/2) to the right-most point of L(1, 0) is r/2 + 2r − 4 ≥ 2r, and, moreover,
the only point within distance r from both (2r − 4 − r/4, r/2) and the right-most point
of L(1, 0) is one of the codewords in L(1, 0), which we can immediately identify. Hence
we can assume that x is not covered by the right-most point of L(1, 0). This means that
we can take the left-most point of L(1, 0) that does not cover x, and obtain an index t
such that x ∈ A2t ∪ A2t+1. But the intersection of A2t ∪ A2t+1 and A2h ∪ A2h−1 gives us
the unique index i for which x ∈ Ai. Then we of course know, whether x is the point in
A2h ∩ Z2k or the one in A2h−1 ∩ Z2k−1. �

Theorem 8 In the hexagonal grid, for r ≥ 9, there is an r-identifying code with density

8

9r − 25
if r ≡ 1 mod 4;

8

9r − 34
if r ≡ 2 mod 4;

8r − 16

(r − 3)(9r − 43)
if r ≡ 3 mod 4.

Sketch of the proof. Let s be a multiple of 4. Consider the code C defined in the
previous proof, and define

L′(0, 0) = L(0, 0) ∪ {(2s − 2, 0)}, L′′(0, 0) = L′(0, 0) ∪ {(2s, 0)},

C ′ =
⋃
i,j

(
L′(0, 0) + (i(2s − 4 + s/4), is/2 + js)

)
,

C ′′ =
⋃
i,j

(
L′′(0, 0) + (i(2s − 4 + s/4), is/2 + js)

)
.

In other words, we add one or two codeword(s) to the right of each subcode L(i, j) and
keep the same tile and translation.

We claim that C ′ is (s+1)- and (s+2)-identifying, and that C ′′ is (s+3)-identifying.
The density of C ′ is 8s/(9s2 − 16s), which is equal to 8/(9r − 25) when r = s + 1 and
to 8/(9r − 34) when r = s + 2. The density of C ′′ is 8(s + 1)/(9s2 − 16s), equal to
(8r − 16)/(r − 3)(9r − 43) for r = s + 3.

The proof of the fact that C ′ (respectively, C ′′) is (s + 1)- and (s + 2)-identifying
(respectively, (s + 3)-identifying) is very similar to the previous proof and presents no
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further interest; therefore, it is omitted here. We simply draw the reader’s attention
to the following: the proof can be divided into the same three cases as in the proof of
Theorem 7, by considering the left-most and right-most codewords of L(0, 0) and L(0, 1)
(here and in the following, L is used — improperly — to designate L′ or L′′). Since the
radius is increased by 1, 2 or 3, we must add to the set Y the lines Y−1 and Ys+1, then Y−2

and Ys+2, then Y−3 and Ys+3, in order to be able to conclude that x ∈ Y if I(x) intersects
both L(0, 0) and L(0, 1).

In Case 1, we cannot immediately know when x ∈ Ys, because other vertices are also
covered by both L(0, 0), L(0, 1) and L(0, 2). However the argument involving the lines
Ai suffices, plus in some cases the following argument: within a small triangle located
at the upper part of Y , in the middle of L(0, 1), two points spotted by L(0, 0) can both
be covered by all points in L(0, 1) and therefore are not immediately separated, but then
L(0, 2) separates them. The point of adding codeword(s) to the right of L(0, 1) is precisely
to reduce the size of this triangle so that L(0, 2) can fully work on it.

In Case 2, the subscripts for the lines Z change a little but remain in s and s/2, and
the small cases (where the spheres centred at the left-most codeword of L(0, 1) and at the
right-most codeword of L(0, 0) intersect) can be checked by hand.

Case 3 is very similar and we get pairs of points which, except for small values of
the radius, will be separated by L(1, 0). For these small values, other subcodes L(i, j)
intervene. �

Remark. For small values of r (up to 30), there exist specific, better constructions,
see [4].

5 Conclusion

Gathering the general lower (Theorems 1–3) and upper (Theorems 4–8) bounds obtained
here, plus the upper bound established in [13] in the case of the square lattice, we obtain
the following results. For the brick wall grid:

for r even,
2

5r + 3

for r odd,
2

5r + 2




≤ D(GH , r) ≤




8r − 8

9r2 − 16r
for r ≡ 0 mod 4,

8

9r − 25
for r ≡ 1 mod 4,

8

9r − 34
for r ≡ 2 mod 4,

8r − 16

(r − 3)(9r − 43)
for r ≡ 3 mod 4.

For the square lattice:
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3

8r + 4
≤ D(GS, r) ≤




2

5r
for r even,

2r

5r2 − 2r + 1
for r odd.

For the triangular lattice:

2

6r + 3
≤ D(GT , r) ≤




1

2r + 4
for r ≡ 0 mod 4,

1

2r + 2
for r ≡ 1, 2 or 3 mod 4.

When r goes to infinity, we see that

2/5r . D(GH , r) . 8/9r,

3/8r . D(GS, r) . 2/5r,

1/3r . D(GT , r) ≤ 1/2r.

For small values of r, see [4].
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