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Abstract

Plantholt and Tipnis (1991) proved that for any even integer r, a regular multi-
graph G with even order n, multiplicity x(G) < r and degree high relative to n and
r is 1-factorable. Here we extend this result to include the case when r is any odd
integer. Héggkvist and Perkovi¢ and Reed (1997) proved that the One-factorization
Conjecture for simple graphs is asymptotically true. Our techniques yield an ex-
tension of this asymptotic result on simple graphs to a corresponding asymptotic
result on multigraphs.

1 Introduction

Let G be a multigraph with vertex set V(G) and edge set E(G). We denote the maximum
degree of G by A(G), the minimum degree of G by §(G) and the multiplicity of G, that
is, the maximum number of parallel edges between any pair of vertices of G by u(G). G
is said to be simple if u(G) = 1. We say that G is 1-factorable if the edges of G can
be partitioned into 1-factors of G. We denote by simp(G), the simple graph underlying
G, i.e. simp(G) is the graph obtained by replacing all edges of G with multiplicity
greater than one by single edges. In this paper, a decomposition of GG into edge-disjoint
subgraphs Hy, H, ..., Hy of G means a partition of F(G) into the union of the edge sets
of Hy, Hs, ..., Hy, and we abuse the notation and write G = H; U Hy U ... U Hy instead
of E(G) = E(H,)UE(H2)U...UE(H). The reader is referred to Bondy and Murty [2]
for all terminology undefined in this paper. The following long-standing conjecture whose
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origin is unclear claims that any regular, simple graph of even order and with degree at
least half the number of vertices is 1-factorizable (see [10]).

One-factorization Conjecture Let G be a A-reqular simple graph with even order n.
IfA > %n then G is 1-factorable.

This conjecture is best possible as indicated by the example when G consists of two
disjoint copies of K3. An example of a connected graph to illustrate that Conjecture 1 is
best possible is obtained by taking two disjoint copies of K5 — e where e is any edge of
K5 and joining the corresponding end-vertices of e in the two copies of K5 — e by edges.
Chetwynd and Hilton [3] proved that Conjecture 1 is true if we replace the condition that

A(G) > 3n in Conjecture 1 by the stronger condition that A(G) > @n

Theorem 1 (Chetwynd and Hilton [3]) Let G be a simple graph with even order n. If G
1s A-reqular with A > @n then G is 1-factorable.

Hégkvist [6] and Perkovi¢ and Reed [7] proved that Conjecture 1 is asymptotically
true.

Theorem 2 (Haggkvist [6], Perkovi¢ and Reed [7]) For every € > 0, there exists N (e)
such that if G is a simple graph that is A-reqular with even order n > N(€) and with
A > (34 €)n, then G is I-factorable.

We offer the following natural extension of the One-factorization conjecture to multi-
graphs.

Multigraph One-factorization Conjecture Let G be a A-reqular multigraph with
even order n and multiplicity u(G) <r. If A > %Tn then G is 1-factorable.

In this paper we prove extensions of Theorems 1 and 2 to multigraphs as given in
Theorems 3 and 4 below.

Theorem 3 Let G be a A-regular multigraph with even order n and multiplicity n(G) < r.
(i) If r is even and A > (@n + 1|r, then G is 1-factorable.

(i) If r is odd and A > (@n + 2|r + 1, then G is 1-factorable.

Theorem 4 For every € > 0, there exists N*(¢) such that if G is a A-reqular multigraph
with u(G) <1 and even order n > N*(¢), then G is 1-factorizable if

(i) ris even and A > (3 + €)rn, or

(it) ris odd and A > (5 + 5= + €)rn.
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The proof of part (i) of Theorem 3 appeared in [8]. The approach taken in this proof
was to decompose the edges of the multigraph G with even order n and multiplicity
1(G) < r (where r is even) into a relatively small number of 1-factors of G and a number
of regular, simple graphs, each with degree high relative to n. Theorem 1 was then applied
to each of the simple graphs in the decomposition to yield a 1-factorization of the original
multigraph G. In Section 2 of this paper we use this decomposition result for the case
when r is even and Tutte’s f-factor theorem [9] to obtain a similar decomposition of the
edges of G with even order n and multiplicity u(G) < r, where r is odd. In Section 3 we
use our decomposition result from Section 2 to prove Theorem 3 and Theorem 4.

2 Decomposition of regular multigraphs into regular
simple graphs

The following decomposition result for regular multigraphs G with even order n, multi-
plicity u(G) < r, where r is even, and with degree high relative to n and r was proved
in [8]. Many similar results on decompositions of multigraphs into simple graphs were
obtained in [5].

Theorem 5 (Plantholt and Tipnis [8]) Let G be a A-reqular multigraph with even order
n and multiplicity p(G) < r, where r is an even integer. If A = kr 4+ r for some integer
k> ]%, then the edges of G can be decomposed into r 1-factors of G and r k-reqular simple
graphs.

We will prove the following theorem that extends Theorem 5 to the case when r > 1 is
an odd integer.

Theorem 6 Let G be a A-regular multigraph with even order n and multiplicity u(G) < r,
where r > 1 1s an odd integer. If A = kr +2r + 1 for some integer k > 5 + 5, then the
edges of G can be decomposed into 2r 1-factors of G, a (k + 1)-regular simple graph, and
(r — 1) k-regular simple graphs.

In order to prove Theorem 6 we will need Theorem 7 and Theorem 8 stated below.
Theorem 7 is a classic result of Dirac [4] giving a sufficient condition for the existence of
a Hamilton cycle in a simple graph and Theorem 8 is a classic result of Tutte [9] giving
a necessary and sufficient condition for the existence of an f-factor in a multigraph G.

Theorem 7 (Dirac [4]) Let G be a simple graph with order n > 3. If 6(G) > sn then G
contains a Hamilton cycle.

We now define some terminology needed to state Tutte’s f-factor theorem. See Bollobas
[1] for most of this terminology and the statement of Theorem 8. We will denote the
degree of vertex v € V(G) by degs(v). Let G be a multigraph and suppose that each
v € V(G) is assigned a positive integer f(v). An f-factor of G is a spanning subgraph
F of G such that degp(v) = f(v) for each v € V(G). For X, Y C V(G) we denote
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by (X,Y;G) the set of edges of G that have one end-vertex in X and the other end-
vertex in Y. For disjoint subsets D,S C V(G) and a component C' of G — D — S, we
define p(D, S;C) = [(C,S;G)|[+ >_,cc f(x). Component C'is said to be an odd or even
component of G — D — S with respect to D and S according as p(D, S; C') is odd or even.
The number of all odd components of G — D — S is denoted by ¢[D, S; G].

Theorem 8 (Tutte [9]) Let G be a multigraph and suppose that each v € V(G) is assigned
a positive integer f(v). Then, G has an f-factor if and only if

q[D, $;G1+ > fx) < degy plx)+ Y f()

zeS z€eSs €D

for all disjoint subsets D, S C V(G).

We mention here that in proving Theorem 5, we will only use the sufficiency of a condition
stronger than the condition in Theorem 8 to guarantee an f-factor in a certain multigraph.
We need two Lemmas before we turn to the proof of Theorem 6.

Lemma 1 Let G be a A-reqular multigraph with mazimum multiplicity p(G) < r and

T

suppose that A = rs. Suppose that G contains [5] edge-disjoint Hamilton cycles such
that for all u,v € V(Q), if t of these Hamilton cycles contain an edge of the form (u,v),
then the multiplicity of the edge uwv in G is at most r —t. Then, G contains a simple

s-factor F' such that p(G — F) <r —1.

Proof. Let G’ be the graph obtained from G by deleting all sets of r parallel edges. Note
that since degq(v) is a multiple of r for each v € V(G), degq(v) is also a multiple of r for
each v € V(G"). Moreover, since G’ contains all edges from the [ ] Hamilton cycles in G,
degg(v) > 0 for each v € V(G'). Define f(v) = Ldegg (v) for each v € V(G'). Then, it
is clear that G contains a simple s-factor I such that (G — F) <r — 1 if and only if G
has a simple f-factor.

From Theorem 8, to show that G’ has a simple f-factor it suffices to show that

q[D, $;simp(G)] + Y f(2) < Y degyumpr—ny(@) + ) f(2) (1)
zes zes xeD
for all disjoint subsets D, S C V (simp(G’)).

Let D, S C V(simp(G’)) be disjoint subsets. It is easy to check that each term in
inequality (1) is zero if D = () and S = (). So, for the rest of the proof, assume that
DUS # (. Let C denote the multigraph simp(G’) — D — S and suppose that the
multigraph C' consists of k£ components. We examine in turn, the three summations in
inequality (1). First, by the definition of f, we have that

S ) = 3 degy () = - 3 desorpyfa) + (5, D: )] &)

z€eS €S €S

To examine the second sum in inequality (1), let G’_ be the multigraph whose underlying
simple graph is simp(G’) and the multiplicity of each of whose edges is . Let [ denote
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the number of edges (including multiplicity) from the [§] edge-disjoint Hamilton cycles
of G (as in the statement of Lemma 1) that are also in (C,S;G). The definition of G',
implies that

1
Z degsimp(G/fD) (ZE) = Z degsimp(G;*D) (l‘) - ; Z deg(G
z€eS €S z€eS

Now, since for all u,v € V(G), if ¢ of the [5] edge-disjoint Hamilton cycles of G (as in
the statement of Lemma 1) contain an edge of the form (u,v), then the multiplicity of
the edge uv in G is at most r — ¢, we have that

[
Z deg51mp G'— Z deg(G/ — ) > + Z deg(G/ )( ) (3)
z€eS :EES :EES
Finally, for the third sum in inequality (1), the definition of f implies

S ) = =3 dega () >

zeD zeD

S |-

/ 1 /

Note that since G contains [§ | Hamilton cycles and none of the edges in these Hamilton
cycles have multiplicity r, we have that [(C, DJS;G")| > [5]2k. Hence we have that,

—_

> flx) == DSG’)|+—|(D(JG)|>—|(DSG)|+ (rk—l) (4)

zeD

\2

Now, combining the fact that ¢[D, S; G'| < k with equation (2) and inequalities (3) and
(4) easily yields the desired inequality (1).

Lemma 2 Let G be a A-reqular multigraph with even order n and multiplicity u(G) < r,
where v > 1 is an odd integer. If A = kr +2r + 1 for some integer k > 4§ + 5=, then G
contains 5] identical pairs of edge-disjoint Hamilton cycles.

Proof. For a multigraph H, denote by H2 the spanning subgraph of H whose edge set
consists of all edges of H with multiplicity at least two. Suppose that H is a A-regular
multigraph with even order n and multiplicity u(H) < r, where r > 1 is an odd integer.
If A > % + 3 then degg,,y2)(v) > 5 for each v € V/(H), because degg,,u2)(v) < 5 for
some v € V(H) implies that degy(v) < 5+ (n—1) —§ = &t + § — 1, a contradiction.
Now let G be a A-regular multigraph with even order n and multiplicity pu(G) < r,
where r > 1 is an odd integer, and A(G) = kr + 2r + 1 for some integer k > § + .
Then, A(G) > & + 5 + 2r + 1 and so, degg,,,g2)(v) > 5 for each v € V(simp(G2)).
Hence, Theorem 7 implies that simp(G2) contains a Hamilton cycle which in turn implies
that G contains a pair of identical Hamilton cycles. We remove this pair of identical
Hamilton cycles from G and claim that we can iterate this procedure [7] times. This
claim is justified because iterating the procedure ¢ times leaves a regular multigraph G;
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with even order n and multiplicity u(G;

;) < r, where r > 1 is an odd integer, and with
AG)>F+5+2r+1—4i>F +5ifi <

(151 =1).
We now use the results in Lemma 1 and Lemma 2 to prove Theorem 6.

Theorem 6 Let G be a A-reqular multigraph with even order n and multiplicity in(G) < r,
where r > 1 is an odd integer. If A = kr +2r + 1 for some integer k > 4 + -, then the
edges of G can be decomposed into 2r 1-factors of G, a (k + 1)-regular simple graph, and
(r — 1) k-regular simple graphs.

Proof. Let G be any A-regular multigraph with even order n and multiplicity u(G) <,
where r > 1 is an odd integer, and suppose that A = kr +2r+1= (k+ 1)r+ (r + 1)
for some integer & > % + 3-. Lemma 2 above implies that G contains [Z] identical
pairs of edge-disjoint Hamilton cycles. Denote these identical pairs of Hamilton cycles by
(Hia,Hip)fori=1,2,...,[5]. Let G' = G—Hya—Hy s —.. .— Hpzy . Clearly, G’ is an
7(k + 1)-regular multigraph with maximum multiplicity x(G) < r. Also, G’ contains [ 7]
edge-disjoint Hamilton cycles, Hy g, Ha B, . . ., H[z) g, such that for all u,v € V(G'), if t of
these Hamilton cycles contain an edge of the form (u,v), then the multiplicity of the edge
wv in G’ is at most r —t. Now, Lemma 1 implies that G’ contains a simple (k+ 1)-factor F’
such that u(G'—F) <r—1. Let G" = G'— F. Clearly, G" is a (k(r—1)+ (r —1))-regular
multigraph with even order n and with k > 4 4 Z-. Since (r — 1) is even, Theorem 5
implies that the edges of G” can be decomposed into (r — 1) 1-factors, Fy, I, ..., Fi,_y),

of G”, and (r — 1) k-regular simple graphs Si,Ss,. .., S(—1). Overall we have that
G=(HaUHyn...UH o) UFUFLUF...UF 1) U(S1USy ... US,_1)),

where (H; 4, H;p) for i = 1,2,...,[%] are Hamilton cycles of G, I, Fy, ..., F,_1) are

1-factors of G, F' is a simple (k +1)-factor of G, and Sy, Ss, ..., S(—1) are k-regular simple

subgraphs of G. Since n is even, each of the Hamilton cycles H; 4 for i = 1,2,...,[{]

give two 1-factors of G. This gives a decomposition of the edges of GG into 2r 1-factors of
G, a (k + 1)-regular simple graph, and (r — 1) k-regular simple graphs.

3 1-factorization of regular multigraphs of even order
and high degree

In this section we use our decomposition result in Theorem 6 of Section 2 and Theorems
1 and 2 on simple graphs in the Introduction to prove Theorems 3 and 4 on multigraphs
in the Introduction.

Theorem 3 Let G be a A-reqular multigraph with even order n and multiplicity 1(G) < r.
(i) If r is even and A > f@n + 1]r, then G is 1-factorable.

(i) If r is odd and A > (@n + 2|r + 1, then G is 1-factorable.
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Proof. If ris even and A > (@n + 1]r, then it is clear that by repeated application
of Theorem 7 we can remove 1-factors of G till we are left with a multigraph G’ that is
A'-regular with even order n, multiplicity u(G) < r, and where A’ = kr + r for some

integer k > @n Now, Theorem 5 implies that the edges of G’ can be decomposed into
r 1-factors and r k-regular simple graphs. Applying Theorem 1 from the Introduction to
each of these k-regular simple graphs in the decomposition of G’ yields a 1-factorization of
the edges of G. If r is odd and A > (@n + 2]r + 1, similar applications of Theorem 7,
followed by an application of the decomposition result in Theorem 6, and finally followed
by several applications of Theorem 1 yields a 1-factorization of the edges of G.

Theorem 4 For every € > 0, there exists N*(e) such that if G is a A-regular multigraph
with u(G) <1 and even order n > N*(¢), then G is 1-factorable if

(i) 7 is even and A > (3 + €)rn, or

(i) v is odd and A > (5 + 5= + €)rn.

Proof. Let ¢ > 0 be given. Theorem 2 of the Introduction implies that there exists

N(%) such that if G is a simple graph that is A-regular with even order n > N(§) and

with A > (3 + £)n, then G is 1-factorizable. Let M*(e) = max{N(%),[2]}. Now,
suppose that G is a A-regular multigraph with even order n > M*(¢), with multiplicity
p(G') < r, where 7 is even, and with A > (3 + €)rn. Then, we have that A > (3 +€)rn =
(3 + )rn+ Zrn > (3 + §)rn+ 2r. Now by repeated application of Theorem 7 to G,
remove at most (r — 1) 1-factors of G to get a multigraph G’ that is A*-regular with even
order n > M*(e), with multiplicity u(G) < r, where r is even, and with A* = rs for some

integer s > (% + £)n + 1. Theorem 5 implies that the edges of G’ can be decomposed

into r 1-factors of G’ and r simple graphs that are regular with degree s — 1 > (% + 5)n.
Theorem 2 implies that each of these r (s — 1)-regular simple graphs are 1-factorable.
This in turn yields a 1-factorization of G’ and hence a 1-factorization of G.

Let L*(e) = max{N(5),[2]}. Now, suppose that G is a A-regular multigraph with
even order n > L*(e), with multiplicity p(G) < r, where r > 1 is odd, and with A >
(3 + 5= + €)rn. Then, we have that A > (5 4+ 5 + €)rn = (5 + 5 + S)rn+ §rn >
(% + % + §)rn 4 3r. Now by repeated application of Theorem 7 to G, remove at most
(r—1) 1-factors of G to get a multigraph G’ that is A*-regular with even order n > L*(e),
with multiplicity u(G) < r, where r > 1 is odd, and with A* = rs + 1 for some integer
5> (% + 217 + 5)n + 2. Theorem 6 implies that the edges of G’ can be decomposed into
2r 1-factors of G', one (s — 1)-regular simple graph, and (r — 1) simple graphs that are
regular with degree s —2 > (3 + + + 5)n. Theorem 2 implies that each of these (r — 1)
(s — 2)-regular simple graphs are 1-factorizable. This in turn yields a 1-factorization of
G’ and hence a 1-factorization of G.

Finally, taking N*(e) = max{M*(¢), L*(¢)} proves the theorem.

We note that the weakest result is obtained in Theorem 4 when r = 3. This implies
the following Corollary of Theorem 4.
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Corollary For every € > 0, there exists N*(€) such that if G is a A-reqular multigraph
with multiplicity (G) < r, even order n > N*(¢), and with A > (3 + €)rn, then G is
1-factorable.
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