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Abstract

Plantholt and Tipnis (1991) proved that for any even integer r, a regular multi-
graph G with even order n, multiplicity µ(G) ≤ r and degree high relative to n and
r is 1-factorable. Here we extend this result to include the case when r is any odd
integer. Häggkvist and Perković and Reed (1997) proved that the One-factorization
Conjecture for simple graphs is asymptotically true. Our techniques yield an ex-
tension of this asymptotic result on simple graphs to a corresponding asymptotic
result on multigraphs.

1 Introduction

Let G be a multigraph with vertex set V (G) and edge set E(G). We denote the maximum
degree of G by ∆(G), the minimum degree of G by δ(G) and the multiplicity of G, that
is, the maximum number of parallel edges between any pair of vertices of G by µ(G). G
is said to be simple if µ(G) = 1. We say that G is 1-factorable if the edges of G can
be partitioned into 1-factors of G. We denote by simp(G), the simple graph underlying
G, i.e. simp(G) is the graph obtained by replacing all edges of G with multiplicity
greater than one by single edges. In this paper, a decomposition of G into edge-disjoint
subgraphs H1, H2, . . . , Hk of G means a partition of E(G) into the union of the edge sets
of H1, H2, . . . , Hk, and we abuse the notation and write G = H1 ∪ H2 ∪ . . . ∪ Hk instead
of E(G) = E(H1) ∪E(H2) ∪ . . .∪E(Hk). The reader is referred to Bondy and Murty [2]
for all terminology undefined in this paper. The following long-standing conjecture whose
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origin is unclear claims that any regular, simple graph of even order and with degree at
least half the number of vertices is 1-factorizable (see [10]).

One-factorization Conjecture Let G be a ∆-regular simple graph with even order n.
If ∆ ≥ 1

2
n then G is 1-factorable.

This conjecture is best possible as indicated by the example when G consists of two
disjoint copies of K3. An example of a connected graph to illustrate that Conjecture 1 is
best possible is obtained by taking two disjoint copies of K5 − e where e is any edge of
K5 and joining the corresponding end-vertices of e in the two copies of K5 − e by edges.
Chetwynd and Hilton [3] proved that Conjecture 1 is true if we replace the condition that

∆(G) ≥ 1
2
n in Conjecture 1 by the stronger condition that ∆(G) ≥

√
7−1
2

n.

Theorem 1 (Chetwynd and Hilton [3]) Let G be a simple graph with even order n. If G

is ∆-regular with ∆ ≥
√

7−1
2

n then G is 1-factorable.

Hägkvist [6] and Perković and Reed [7] proved that Conjecture 1 is asymptotically
true.

Theorem 2 (Häggkvist [6], Perković and Reed [7]) For every ε > 0, there exists N(ε)
such that if G is a simple graph that is ∆-regular with even order n > N(ε) and with
∆ ≥ (1

2
+ ε)n, then G is 1-factorable.

We offer the following natural extension of the One-factorization conjecture to multi-
graphs.

Multigraph One-factorization Conjecture Let G be a ∆-regular multigraph with
even order n and multiplicity µ(G) ≤ r. If ∆ ≥ 1

2
rn then G is 1-factorable.

In this paper we prove extensions of Theorems 1 and 2 to multigraphs as given in
Theorems 3 and 4 below.

Theorem 3 Let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r.

(i) If r is even and ∆ ≥ d
√

7−1
2

n + 1er, then G is 1-factorable.

(ii) If r is odd and ∆ ≥ d
√

7−1
2

n + 2er + 1, then G is 1-factorable.

Theorem 4 For every ε > 0, there exists N∗(ε) such that if G is a ∆-regular multigraph
with µ(G) ≤ r and even order n > N∗(ε), then G is 1-factorizable if

(i) r is even and ∆ ≥ (1
2

+ ε)rn, or

(ii) r is odd and ∆ ≥ (1
2

+ 1
2r

+ ε)rn.
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The proof of part (i) of Theorem 3 appeared in [8]. The approach taken in this proof
was to decompose the edges of the multigraph G with even order n and multiplicity
µ(G) ≤ r (where r is even) into a relatively small number of 1-factors of G and a number
of regular, simple graphs, each with degree high relative to n. Theorem 1 was then applied
to each of the simple graphs in the decomposition to yield a 1-factorization of the original
multigraph G. In Section 2 of this paper we use this decomposition result for the case
when r is even and Tutte’s f -factor theorem [9] to obtain a similar decomposition of the
edges of G with even order n and multiplicity µ(G) ≤ r, where r is odd. In Section 3 we
use our decomposition result from Section 2 to prove Theorem 3 and Theorem 4.

2 Decomposition of regular multigraphs into regular

simple graphs

The following decomposition result for regular multigraphs G with even order n, multi-
plicity µ(G) ≤ r, where r is even, and with degree high relative to n and r was proved
in [8]. Many similar results on decompositions of multigraphs into simple graphs were
obtained in [5].

Theorem 5 (Plantholt and Tipnis [8]) Let G be a ∆-regular multigraph with even order
n and multiplicity µ(G) ≤ r, where r is an even integer. If ∆ = kr + r for some integer
k ≥ n

2
, then the edges of G can be decomposed into r 1-factors of G and r k-regular simple

graphs.

We will prove the following theorem that extends Theorem 5 to the case when r > 1 is
an odd integer.

Theorem 6 Let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r,
where r > 1 is an odd integer. If ∆ = kr + 2r + 1 for some integer k ≥ n

2
+ n

2r
, then the

edges of G can be decomposed into 2r 1-factors of G, a (k + 1)-regular simple graph, and
(r − 1) k-regular simple graphs.

In order to prove Theorem 6 we will need Theorem 7 and Theorem 8 stated below.
Theorem 7 is a classic result of Dirac [4] giving a sufficient condition for the existence of
a Hamilton cycle in a simple graph and Theorem 8 is a classic result of Tutte [9] giving
a necessary and sufficient condition for the existence of an f -factor in a multigraph G.

Theorem 7 (Dirac [4]) Let G be a simple graph with order n ≥ 3. If δ(G) ≥ 1
2
n then G

contains a Hamilton cycle.

We now define some terminology needed to state Tutte’s f -factor theorem. See Bollobás
[1] for most of this terminology and the statement of Theorem 8. We will denote the
degree of vertex v ∈ V (G) by degG(v). Let G be a multigraph and suppose that each
v ∈ V (G) is assigned a positive integer f(v). An f -factor of G is a spanning subgraph
F of G such that degF (v) = f(v) for each v ∈ V (G). For X, Y ⊆ V (G) we denote
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by (X, Y ; G) the set of edges of G that have one end-vertex in X and the other end-
vertex in Y . For disjoint subsets D, S ⊆ V (G) and a component C of G − D − S, we
define ρ(D, S; C) = |(C, S; G)| + ∑

x∈C f(x). Component C is said to be an odd or even
component of G−D−S with respect to D and S according as ρ(D, S; C) is odd or even.
The number of all odd components of G − D − S is denoted by q[D, S; G].

Theorem 8 (Tutte [9]) Let G be a multigraph and suppose that each v ∈ V (G) is assigned
a positive integer f(v). Then, G has an f -factor if and only if

q[D, S; G] +
∑

x∈S

f(x) ≤
∑

x∈S

degG−D(x) +
∑

x∈D

f(x)

for all disjoint subsets D, S ⊆ V (G).

We mention here that in proving Theorem 5, we will only use the sufficiency of a condition
stronger than the condition in Theorem 8 to guarantee an f -factor in a certain multigraph.
We need two Lemmas before we turn to the proof of Theorem 6.

Lemma 1 Let G be a ∆-regular multigraph with maximum multiplicity µ(G) ≤ r and
suppose that ∆ = rs. Suppose that G contains d r

2
e edge-disjoint Hamilton cycles such

that for all u, v ∈ V (G), if t of these Hamilton cycles contain an edge of the form (u, v),
then the multiplicity of the edge uv in G is at most r − t. Then, G contains a simple
s-factor F such that µ(G − F ) ≤ r − 1.

Proof. Let G′ be the graph obtained from G by deleting all sets of r parallel edges. Note
that since degG(v) is a multiple of r for each v ∈ V (G), degG′(v) is also a multiple of r for
each v ∈ V (G′). Moreover, since G′ contains all edges from the d r

2
e Hamilton cycles in G,

degG′(v) > 0 for each v ∈ V (G′). Define f(v) = 1
r
degG′(v) for each v ∈ V (G′). Then, it

is clear that G contains a simple s-factor F such that µ(G − F ) ≤ r − 1 if and only if G′

has a simple f -factor.
From Theorem 8, to show that G′ has a simple f -factor it suffices to show that

q[D, S; simp(G′)] +
∑

x∈S

f(x) ≤
∑

x∈S

degsimp(G′−D)(x) +
∑

x∈D

f(x) (1)

for all disjoint subsets D, S ⊆ V (simp(G′)).
Let D, S ⊆ V (simp(G′)) be disjoint subsets. It is easy to check that each term in

inequality (1) is zero if D = ∅ and S = ∅. So, for the rest of the proof, assume that
D ∪ S 6= ∅. Let C denote the multigraph simp(G′) − D − S and suppose that the
multigraph C consists of k components. We examine in turn, the three summations in
inequality (1). First, by the definition of f , we have that

∑

x∈S

f(x) =
1

r

∑

x∈S

degG′(x) =
1

r

∑

x∈S

deg(G′−D)(x) +
1

r
|(S, D; G′)|. (2)

To examine the second sum in inequality (1), let G′
+ be the multigraph whose underlying

simple graph is simp(G′) and the multiplicity of each of whose edges is r. Let l denote
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the number of edges (including multiplicity) from the d r
2
e edge-disjoint Hamilton cycles

of G (as in the statement of Lemma 1) that are also in (C, S; G). The definition of G′
+

implies that

∑

x∈S

degsimp(G′−D)(x) =
∑

x∈S

degsimp(G′
+−D)(x) =

1

r

∑

x∈S

deg(G′
+−D)(x).

Now, since for all u, v ∈ V (G), if t of the d r
2
e edge-disjoint Hamilton cycles of G (as in

the statement of Lemma 1) contain an edge of the form (u, v), then the multiplicity of
the edge uv in G is at most r − t, we have that

∑

x∈S

degsimp(G′−D)(x) =
1

r

∑

x∈S

deg(G′
+−D)(x) ≥ l

r
+

1

r

∑

x∈S

deg(G′−D)(x). (3)

Finally, for the third sum in inequality (1), the definition of f implies

∑

x∈D

f(x) =
1

r

∑

x∈D

degG′(x) ≥ 1

r
|(D, S; G′)| + 1

r
|(D, C; G′)|.

Note that since G contains d r
2
e Hamilton cycles and none of the edges in these Hamilton

cycles have multiplicity r, we have that |(C, D
⋃

S; G′)| ≥ d r
2
e2k. Hence we have that,

∑

x∈D

f(x) ≥ 1

r
|(D, S; G′)| + 1

r
|(D, C; G′)| ≥ 1

r
|(D, S; G′)| + 1

r
(rk − l). (4)

Now, combining the fact that q[D, S; G′] ≤ k with equation (2) and inequalities (3) and
(4) easily yields the desired inequality (1).

Lemma 2 Let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r,
where r > 1 is an odd integer. If ∆ = kr + 2r + 1 for some integer k ≥ n

2
+ n

2r
, then G

contains d r
2
e identical pairs of edge-disjoint Hamilton cycles.

Proof. For a multigraph H , denote by H2 the spanning subgraph of H whose edge set
consists of all edges of H with multiplicity at least two. Suppose that H is a ∆-regular
multigraph with even order n and multiplicity µ(H) ≤ r, where r > 1 is an odd integer.
If ∆ ≥ nr

2
+ n

2
then degsimp(H2)(v) ≥ n

2
for each v ∈ V (H), because degsimp(H2)(v) < n

2
for

some v ∈ V (H) implies that degH(v) < rn
2

+ (n − 1) − n
2

= rn
2

+ n
2
− 1, a contradiction.

Now let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r,
where r > 1 is an odd integer, and ∆(G) = kr + 2r + 1 for some integer k ≥ n

2
+ n

2r
.

Then, ∆(G) ≥ nr
2

+ n
2

+ 2r + 1 and so, degsimp(G2)(v) ≥ n
2

for each v ∈ V (simp(G2)).
Hence, Theorem 7 implies that simp(G2) contains a Hamilton cycle which in turn implies
that G contains a pair of identical Hamilton cycles. We remove this pair of identical
Hamilton cycles from G and claim that we can iterate this procedure d r

2
e times. This

claim is justified because iterating the procedure i times leaves a regular multigraph Gi
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with even order n and multiplicity µ(Gi) ≤ r, where r > 1 is an odd integer, and with
∆(Gi) ≥ nr

2
+ n

2
+ 2r + 1 − 4i ≥ nr

2
+ n

2
if i ≤ (d r

2
e − 1).

We now use the results in Lemma 1 and Lemma 2 to prove Theorem 6.

Theorem 6 Let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r,
where r > 1 is an odd integer. If ∆ = kr + 2r + 1 for some integer k ≥ n

2
+ n

2r
, then the

edges of G can be decomposed into 2r 1-factors of G, a (k + 1)-regular simple graph, and
(r − 1) k-regular simple graphs.

Proof. Let G be any ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r,
where r > 1 is an odd integer, and suppose that ∆ = kr + 2r + 1 = (k + 1)r + (r + 1)
for some integer k ≥ n

2
+ n

2r
. Lemma 2 above implies that G contains d r

2
e identical

pairs of edge-disjoint Hamilton cycles. Denote these identical pairs of Hamilton cycles by
(Hi,A, Hi,B) for i = 1, 2, . . . , d r

2
e. Let G′ = G−H1,A−H2,A− . . .−Hd r

2
e,A. Clearly, G′ is an

r(k + 1)-regular multigraph with maximum multiplicity µ(G) ≤ r. Also, G′ contains d r
2
e

edge-disjoint Hamilton cycles, H1,B, H2,B, . . . , Hd r
2
e,B, such that for all u, v ∈ V (G′), if t of

these Hamilton cycles contain an edge of the form (u, v), then the multiplicity of the edge
uv in G′ is at most r−t. Now, Lemma 1 implies that G′ contains a simple (k+1)-factor F
such that µ(G′−F ) ≤ r−1. Let G′′ = G′−F . Clearly, G′′ is a (k(r−1)+(r−1))-regular
multigraph with even order n and with k ≥ n

2
+ n

2r
. Since (r − 1) is even, Theorem 5

implies that the edges of G′′ can be decomposed into (r − 1) 1-factors, F1, F2, . . . , F(r−1),
of G′′, and (r − 1) k-regular simple graphs S1, S2, . . . , S(r−1). Overall we have that

G = (H1,A ∪ H2,A . . . ∪ Hd r
2
e,A) ∪ F ∪ (F1 ∪ F2 . . . ∪ F(r−1)) ∪ (S1 ∪ S2 . . . ∪ S(r−1)),

where (Hi,A, Hi,B) for i = 1, 2, . . . , d r
2
e are Hamilton cycles of G, F1, F2, . . . , F(r−1) are

1-factors of G, F is a simple (k+1)-factor of G, and S1, S2, . . . , S(r−1) are k-regular simple
subgraphs of G. Since n is even, each of the Hamilton cycles Hi,A for i = 1, 2, . . . , d r

2
e

give two 1-factors of G. This gives a decomposition of the edges of G into 2r 1-factors of
G, a (k + 1)-regular simple graph, and (r − 1) k-regular simple graphs.

3 1-factorization of regular multigraphs of even order

and high degree

In this section we use our decomposition result in Theorem 6 of Section 2 and Theorems
1 and 2 on simple graphs in the Introduction to prove Theorems 3 and 4 on multigraphs
in the Introduction.

Theorem 3 Let G be a ∆-regular multigraph with even order n and multiplicity µ(G) ≤ r.

(i) If r is even and ∆ ≥ d
√

7−1
2

n + 1er, then G is 1-factorable.

(ii) If r is odd and ∆ ≥ d
√

7−1
2

n + 2er + 1, then G is 1-factorable.
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Proof. If r is even and ∆ ≥ d
√

7−1
2

n + 1er, then it is clear that by repeated application
of Theorem 7 we can remove 1-factors of G till we are left with a multigraph G′ that is
∆′-regular with even order n, multiplicity µ(G) ≤ r, and where ∆′ = kr + r for some

integer k ≥
√

7−1
2

n. Now, Theorem 5 implies that the edges of G′ can be decomposed into
r 1-factors and r k-regular simple graphs. Applying Theorem 1 from the Introduction to
each of these k-regular simple graphs in the decomposition of G′ yields a 1-factorization of
the edges of G. If r is odd and ∆ ≥ d

√
7−1
2

n + 2er + 1, similar applications of Theorem 7,
followed by an application of the decomposition result in Theorem 6, and finally followed
by several applications of Theorem 1 yields a 1-factorization of the edges of G.

Theorem 4 For every ε > 0, there exists N∗(ε) such that if G is a ∆-regular multigraph
with µ(G) ≤ r and even order n > N∗(ε), then G is 1-factorable if

(i) r is even and ∆ ≥ (1
2

+ ε)rn, or

(ii) r is odd and ∆ ≥ (1
2

+ 1
2r

+ ε)rn.

Proof. Let ε > 0 be given. Theorem 2 of the Introduction implies that there exists
N( ε

3
) such that if G is a simple graph that is ∆-regular with even order n > N( ε

3
) and

with ∆ ≥ (1
2

+ ε
3
)n, then G is 1-factorizable. Let M∗(ε) = max{N( ε

3
), d3

ε
e}. Now,

suppose that G is a ∆-regular multigraph with even order n > M∗(ε), with multiplicity
µ(G′) ≤ r, where r is even, and with ∆ ≥ (1

2
+ ε)rn. Then, we have that ∆ ≥ (1

2
+ ε)rn =

(1
2

+ ε
3
)rn + 2ε

3
rn > (1

2
+ ε

3
)rn + 2r. Now by repeated application of Theorem 7 to G,

remove at most (r− 1) 1-factors of G to get a multigraph G′ that is ∆∗-regular with even
order n > M∗(ε), with multiplicity µ(G) ≤ r, where r is even, and with ∆∗ = rs for some
integer s > (1

2
+ ε

3
)n + 1. Theorem 5 implies that the edges of G′ can be decomposed

into r 1-factors of G′ and r simple graphs that are regular with degree s − 1 > (1
2

+ ε
3
)n.

Theorem 2 implies that each of these r (s − 1)-regular simple graphs are 1-factorable.
This in turn yields a 1-factorization of G′ and hence a 1-factorization of G.

Let L∗(ε) = max{N( ε
2
), d6

ε
e}. Now, suppose that G is a ∆-regular multigraph with

even order n > L∗(ε), with multiplicity µ(G) ≤ r, where r > 1 is odd, and with ∆ ≥
(1

2
+ 1

2r
+ ε)rn. Then, we have that ∆ ≥ (1

2
+ 1

2r
+ ε)rn = (1

2
+ 1

2r
+ ε

2
)rn + ε

2
rn >

(1
2

+ 1
2r

+ ε
2
)rn + 3r. Now by repeated application of Theorem 7 to G, remove at most

(r−1) 1-factors of G to get a multigraph G′ that is ∆∗-regular with even order n > L∗(ε),
with multiplicity µ(G) ≤ r, where r > 1 is odd, and with ∆∗ = rs + 1 for some integer
s > (1

2
+ 1

2r
+ ε

2
)n + 2. Theorem 6 implies that the edges of G′ can be decomposed into

2r 1-factors of G′, one (s − 1)-regular simple graph, and (r − 1) simple graphs that are
regular with degree s − 2 > (1

2
+ 1

r
+ ε

2
)n. Theorem 2 implies that each of these (r − 1)

(s − 2)-regular simple graphs are 1-factorizable. This in turn yields a 1-factorization of
G′ and hence a 1-factorization of G.

Finally, taking N∗(ε) = max{M∗(ε), L∗(ε)} proves the theorem.

We note that the weakest result is obtained in Theorem 4 when r = 3. This implies
the following Corollary of Theorem 4.
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Corollary For every ε > 0, there exists N∗(ε) such that if G is a ∆-regular multigraph
with multiplicity µ(G) ≤ r, even order n > N∗(ε), and with ∆ ≥ (2

3
+ ε)rn, then G is

1-factorable.
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