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Abstract: We prove a conjecture of Irving Kaplansky which asserts that between any
pair of consecutive positive squares there is a set of distinct integers whose product is
twice a square. Along similar lines, our main theorem asserts that if prime p divides
some integer in [z, z + 3

√
z/2 + 1) (with z ≥ 11) then there is a set of integers in the

interval whose product is p times a square. This is probably best possible, because it
seems likely that there are arbitrarily large counterexamples if we shorten the interval
to [z, z + 3

√
z/2).
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1. Introduction

In optimized versions of several modern algorithms (such as the quadratic sieve),
one gradually constructs a set of integers, and tries to efficiently find a (nonempty) subset
whose product is a square before the set gets too large. Recently researchers have been
analyzing when it is likely that there is a subset of a given set whose product is a square.
In [3] Pomerance shows that if we randomly select exp(

√
(2 + ε) logx log logx) integers

up to x then, with probability → 1 as x→∞, there is a subset of these integers whose
product is a square; whereas if we only have exp(

√
(2− ε) logx log log x) such integers

then the probability → 0 as x → ∞. This allows him to give a plausible heuristic
to analyze the running time of several important practical algorithms; however, this is
only a heuristic since the sets of integers constructed are not really random numbers but
rather are determined by some procedure. To unconditionally analyze these algorithms,
we need to understand whether there is a subset of certain types of given sets whose
product is a square, though this appears to be extremely difficult in the cases of interest.

In this paper we study this type of problem, and variants, where our given set
of integers is perhaps as simple as is possible, the integers in a short interval. In a
conversation with the second named author in July 1994, Irving Kaplansky conjectured
that there is a set of distinct integers, between any pair of consecutive squares, whose
product is twice a square. We deduce this as a (trivial) corollary to our

Theorem 1. For every integer u ≥ 2, there is a set of integers in the closed interval
[(u− 1)2, u2] whose product is twice a square.

We conjecture there is a set of at most three integers in [(u−1)2, u2] whose product
is twice a square (see Section 6 for a discussion where we also prove that there is such
a set of just two integers for almost all u, but not for all u).

Our proof of Theorem 1 uses the ‘Walk method’ of [2]. For the interval from 16 to 25,
for example, we consider the sequence 5, 4, 6, 3, 7, 3, 8, 2, 9. Note that the product of any
two consecutive integers in this sequence lies in the closed interval [16, 25]. Therefore,
as we ‘walk’ along thesequence from 4 to 2, we get the pairs 4 × 6, 6 × 3, 3 × 7, 7 ×
3, 3 × 8, 8 × 2 giving the integers 24, 18, 21, 21, 24, 16 from the interval, whose product
is (4× 6)(6× 3)(3× 7)(7× 3)(3× 8)(8× 2) = 4(6 × 3× 7× 3× 8)22 = 2 × 60482. To
deduce Kaplansky’s conjecture, we need to cull pairs of the same integer (21 and 24),
as well as squares (16), from our sequence 24, 18, 21, 21, 24, 16, to obtain the set {18}.
In the proof of Theorem 1 we generalize this method to the interval between any pair
of consecutive squares.

Kaplansky’s problem is susceptible to various generalizations. For example, when
is there a set of integers in [(u−1)2, u2] whose product is 3 times a square? Or 5 times a
square? etc. Alternatively, we might ask for ‘large’ intervals which do not contain a set
of integers whose product is twice a square. We will attack these and related problems
in the rest of this article.

Our main theorem is the following:

Theorem 2. Fix the real number z ≥ 10.22. Suppose that prime p divides some integer
in the interval J = [z, z+ 3

√
z/2 + 1). Then the product of some subset of the integers
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in J , equals p times a square.

If we allow z to run only through integers, then the theorem holds for all integers
z ≥ 1. However, for z = 10.21 we have J ⊂ (10, 18), and there is no set of integers
in this interval whose product is twice a square. An easy consequence of Theorem 2 is
that the product of some subset of the integers in J equals n times a square, whenever
squarefree n divides the product of the integers in J . For, if a and b are coprime,
squarefree integers, and A and B are sets of integers such that the product of the
elements in A (and in B) equals a (and b, respectively) times the square of an integer,
then the product of the elements in (A∪B) \ (A ∩B) equals ab times the square of an
integer.

The interval in Theorem 2 cannot be taken to be much shorter as we see from
the following examples: If p and 2p + 1 are both primes, then consider the interval
(2p2−p, 2p2+2p). The only integer in the interval divisible by 2p+1 is (2p+1)p = 2p2+p,
whereas the integers in the interval divisible by p are 2p2 and (2p+ 1)p. Therefore, no
subset of the integers in the interval can possibly have a product equal to p or 2p + 1
times a square. It is believed that there are infinitely many prime pairs p, 2p + 1; and
therefore that there are infinitely many primes p which divide an integer in an interval
[z, z+ 3

√
z/2 + 3/4 +O(1/

√
z)], such that no subset of the integers in the interval have

product equal to p times a square.
There is an analogous construction with prime pairs p, 2p − 1. Theorem 3 below

classifies all primes p and intervals J (starting at z with interval length ≥ 5
√
z/6 + 1),

such that p divides some integer in J , yet no subset of the integers in the interval have
product equal to p times a square. The interval Iu = [(u− 1)2, u2], is a subinterval of
[z, z+3

√
z/2) with z = (u−1)2. The primes 911 and 1823 both divide 911 ·1823, which

lies in the interval [12882, 12892], but there is no subset of the integers in this interval
which has product equal to 911 times a square. We ask, for which primes p that divide
some integer in Iu, does there exist a set of integers in Iu whose product equals p times
a square? In Proposition 2 we will see that this is so for any prime p ≤ u3/4/30, and
then show that this is so for any prime p ≤ Cu/ logu, where C is some constant > 0,
assuming:

Conjecture B. There exists some constant c > 0 such that there is an integer, all of
whose prime factors are ≤ √x, in the interval [x− c logx, x], for all x ≥ 1.

As we shall discuss, Theorem 3 below suggests that we should be able to get a good
estimate for the number of exceptional p:

Conjecture A. There exists a constant κ > 0 such that there are ∼ κu/ log4 u primes
p ≤ u for which there is no subset of the integers in I = [(u− 1)2, u2] whose product is
p times a square.

We can use Theorem 2 to improve our knowledge about a function defined by Erdős
in a problem (#6655) in the American Mathematical Monthly [1]: For each positive
integer n, define g(n) to be the minimum integer ak ≥ 0 such that there exists a sequence
of integers n < n + a1 < n + a2 < . . . < n + ak for which n(n + a1) . . . (n + ak) is a
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square. For example, g(2) = 4, g(3) = 5, g(5) = 5 (taking 2×3×6, 3×6×8, 5×8×10
respectively). Our task is to obtain good estimates for g(n). Define p(n) to be the
largest prime which divides n to an odd power. Evidently our sequence of numbers
must contain an integer, other than n, which is divisible by p(n); since that integer
is ≥ n + p(n), we must have g(n) ≥ p(n). In particular, if p is prime then g(p) ≥ p.
Now if p > 3 then the interval (p, 2p) contains an integer that is twice a square, so that
g(p) = p. For various other integers n we will show that g(n) = p(n). Here we view g(n)
as the smallest integer such that there is some set of integers in the interval (n, n+g(n)]
whose product equals n times a square.

Corollary 1. For any integer n, define p(n) to be the largest prime divisor of n. If
p(n) >

√
2n+ 1 then g(n) = p(n). Otherwise p(n) ≤ g(n) ≤ 3

√
n/2 + 1.

Proof: If p = p(n) >
√

2n + 1 then write n = ap, so that p > 2a + 1 since p(p − 1) >
2n = 2ap. Then the product of the integers

n = ap < a(p+ 1), (2a+ 1)(p− 1)/2, (2a+ 1)(p+ 1)/2, (a+ 1)(p− 1) < (a+ 1)p

is a square, implying that g(n) ≤ p. The result follows since we always have g(n) ≥
p(n). On the other hand if p(n) ≤

√
2n + 1 then every prime p dividing n satisfies

p ≤ p(n) ≤ 3
√
n/2 + 1 so, by Theorem 2 with z = n + ε, there is some set of integers

in the interval (n, n+ 3
√
n/2 + 1] whose product equals n times a square.

Corollary 1 is close to ‘best possible’. For, if p and 2p+1 are both prime, with p > 3,
then g(n) ≥ 3p(n) for n = p(2p−1) (note that p(n) = p since 2p−1 is divisible by 3). By
Corollary 1 we have g(n) < 3p(n)+1 so g(n) = 3p(n) (≥ 3

√
n/2+3/4). One can modify

Erdős’ problem to ask for gk(n), the minimum integer ak ≥ 0, such that there exists a
sequence of integers n < n+a1 < n+a2 < . . . < n+ak for which n(n+a1) . . . (n+ak) is
a square. It is easy to determine g1(n) since if n = rs2 with r squarefree then evidently
n + g1(n) = r(s + 1)2. Conjecture 3 of [2] states that if n is not a square and n 6= 8
or 392 then g2(n) < g1(n). In other words, there exist integers a, b ∈ (rs2, r(s + 1)2)
for which rab is a square. (Note that if n = s2 is a square and uv2 > n with u ≥ 1
then u(v + 1)2 > n + 2uv + u > s2 + 2s

√
u + 1 > (s + 1)2, so g2(s2) > g1(s2).) The

conjecture is proved in [2, Theorems 4,5,6] except when r = 2; and in this case except
for intervals (2s2, 2(s+ 1)2) where s = u2m±1v2m with um +

√
2vm = (1 +

√
2)m. The

first two examples here, u1v2 = 2 and u3v2 = 14 yield n = 8 and n = 392 respectively.

Acknowledgment: We would like to thank Aaron Meyerowitz and the anonymous referee
for their careful reading of this paper.

2. The Key Proposition

For integers a and b we write a ≡ b (mod Q2) if a/b is a rational square; it is easy
to show that this is an equivalence relation. Any equivalence class is most naturally
represented by the (unique) squarefree integer in that equivalence class. Given an
interval I, we will denote by SI the set of equivalence classes of products of integers in
I. Note that SI is closed under multiplication, a fact that we will use repeatedly.
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Proposition 1. Fix the real numbers 1 ≤ x ≤ y. Let I = [x, y + 1] and J = [xy, xy +
x+ y + 1), unless xy is an integer, in which case we take J = [xy, xy+ x+ y).
i) For any pair of integers m < n in the interval I, there exists some set of integers in
the interval J whose product is mn times a square (of an integer).
ii) Suppose that the interval I contains a square. If the product of some subset of the
integers in I equals N times a square, then there is some set of integers in the interval
J whose product equals N times a square.

Proof: i) Suppose that a is an integer in the range x ≤ a ≤ y, and define b to be the
smallest integer ≥ xy/a so that xy/a ≤ b < xy/a+ 1, and xy ≤ ab < xy+ a. Therefore
(a+ 1)b = ab+ b < (xy+a) + (xy/a+ 1) ≤ xy+x+y+ 1 in this range for a. If xy is an
integer then ab ≤ xy+ a− 1, so that (a+ 1)b < xy+ a+ xy/a ≤ xy+ x+ y. Thus both
ab and (a+ 1)b are in J and therefore in SJ . But then a(a+ 1) ∈ SJ since SJ is closed
under multiplication and a(a+ 1) ≡ ab× (a+ 1)b (mod Q2). Since x ≤ m ≤ n−1 ≤ y
we deduce from the paragraph above that m(m+ 1), (m+ 1)(m+ 2), . . . , (n−1)n ∈ SJ ,
and so mn ∈ SJ since mn ≡ m(m + 1)× (m+ 1)(m+ 2)× . . .× (n− 1)n (mod Q2)
and SJ is closed under multiplication.

ii) Let m0 be a square in I, and let m1,m2, . . . ,mk be that subset of the integers
in I whose product equals N times the square of a rational number. We may assume
that k = 2` is even, without loss of generality, for if not, we could remove mi from the
list if it equaled m0, or add m0 to the list if it does not already appear. We may also
assume that the mj are distinct (or else we cull any pair of occurences of one number
from the list) and so m1 < m2 < . . . < mk. But then, by i), we have m2i−1m2i ∈ SJ for
i = 1, 2, . . . , `. Now N ≡ (m1m2)(m3m4) . . . (m2`−1m2`) (mod Q2), and thus N ∈ SJ ,
since SJ is closed under multiplication.
Proof of Theorem 1: Let x = u−

√
2u− 1 > 1 and y = u+

√
2u− 1 in Proposition 1,

so that xy = (u − 1)2 is an integer. Let a and b be the smallest positive integers for
which a2, 2b2 ≥ x, so that (a−1)2, 2(b−1)2 < x, implying that a−1,

√
2(b−1) <

√
x <√

u− 1/
√

2. Therefore a2, 2b2 ∈ I since

a2 = (a− 1)2 + 2(a− 1) + 1 < x+ 2
√
u ≤ y,

2b2 = 2(b− 1)2 + 2
√

2(
√

2(b− 1)) + 2 < x+ 2
√

2u < y + 1.

The result follows from Proposition 1(i), by taking {m,n} to be {a2, 2b2}.

3. Iterating the key Proposition: The proof of Theorem 2

Corollary 2. Fix the real number z ≥ (
√

2− 1)2. Suppose that the product of some
subset of the integers in I = [

√
2z −√z,

√
2z +

√
z + 1], equals N times the square of a

rational number. Then there is some set of integers in the interval J = [z, z+2
√

2z+1)
whose product is N times the square of a rational number.

Proof: This follows from Proposition 1(ii) by taking x =
√

2z−√z and y =
√

2z+
√
z,

provided we can show that there is a square in the interval I: If (
√

2−1)2 ≤ z ≤ (
√

2+1)2
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then 12 ∈ I. If z > (
√

2 + 1)2 then select r to be the smallest positive integer for which
r2 ≥

√
2z −√z > 1. Since r ≥ 2, thus r ≤ 2(r − 1) and so r2 ∈ I as

r2 ≤ 4(r − 1)2 < 4(
√

2− 1)
√
z < (

√
2 + 1)

√
z =
√

2z +
√
z.

Lemma 1. Fix the real number z ≥ (
√

2− 1)2. If p is a prime ≤
√

2z +
√
z + 1 then

there is an integer k such that pk2 ∈ I = [
√

2z −√z,
√

2z +
√
z + 1].

Proof: If p ∈ I take k = 1. Otherwise p <
√

2z − √z in which case we select k to be
the smallest integer for which pk2 ≥

√
2z−√z; evidently k ≥ 2. But then k ≤ 2(k− 1)

so that pk2 ≤ 4p(k − 1)2 < 4(
√

2z −√z) <
√

2z +
√
z, and the result follows.

Corollary 3. Fix the real number z ≥ 1. Suppose that p is a prime which divides some
integer in the interval J = [z, z + 2

√
2z + 1). Then there is some set of integers in the

interval J whose product equals p times a square.

Proof: If p ≤
√

2z +
√
z + 1 then, by Lemma 1, there is an integer k such that pk2 ∈

I = [
√

2z − √z,
√

2z +
√
z + 1]. The result follows from an immediate application of

Corollary 2 with N = p. If p >
√

2z +
√
z + 1 then write mp for the smallest integer in

J which is divisible by p. Evidently

m ≤ z + 2
√

2z + 1
p

<
z + 2

√
2z + 1√

2z +
√
z + 1

≤
√

2z +
√
z + 1,

so that all of the prime factors of m are certainly ≤ m ≤
√

2z +
√
z + 1. But then, all

of the prime factors of m belong to SJ (as we saw in the first paragraph of this proof),
and so m belongs to SJ , since SJ is closed under multiplication. Moreover mp ∈ J so
that mp ∈ SJ , and so p ∈ SJ since p ≡ m ×mp (mod Q2) and SJ is closed under
multiplication.

Proof of Theorem 2: For 10.22 ≤ z < 128, we proved the result by a computation. For
z ≥ 128, let I = [x, 2x + 1] where x =

√
z/2. Let p be any prime ≤ 2x + 1. Note

that p divides some integer, call it mp, in I, for if not then evidently p < x, so select
integer a ≥ 1 to be the largest integer for which ap < x; then (a + 1)p > 2x so that
2 ≥ (a+1)/a = (a+1)p/ap > 2x/x = 2 giving a contradiction. Now x+2

√
2x+1 ≤ 2x+1

since x ≥ 8. Therefore the interval I contains an interval of the form [y, y + 2
√

2y + 1)
containing mp; and so, by Corollary 3, there is a set of integers in [y, y+ 2

√
2y+ 1) ⊂ I

whose product equals p times a square. We now apply Proposition 1(ii), noting that
I contains a square, to deduce that there is some set of integers in the interval J =
[2x2, 2x2 + 3x+ 1) whose product is p times a square. Therefore every prime ≤ 2x+ 1
belongs to SJ . Now suppose p is some prime > 2x + 1 dividing an integer in J . Let’s
call that integer mp, and observe that m < (2x2 + 3x+ 1)/(2x+ 1) = x+ 1 ≤ 2x+ 1.
Thus every prime factor of m is ≤ 2x + 1, and so m ∈ SJ (since SJ is closed under
multiplication). By definition, mp ∈ J and thus mp ∈ SJ ; but then p ∈ SJ since
p ≡ m×mp (mod Q2) and SJ is closed under multiplication.

the electronic journal of combinatorics 8 (2001), #R5 6



4. Classifying the exceptional primes

Theorem 3. Fix the real number z ≥ 78, and let K = [z, z + ∆], where 5
√
z/6 + 1 ≤

∆ < 3
√
z/2 + 1, Suppose that prime ` divides some integer in the interval K. There is

no set of integers in the interval K whose product equals ` times a square if and only if
one of the following cases holds:
i) There exist primes p, q, 2p+ 1, 2q + 1, one of which is `, such that p ≥ q and

(2q + 1)(p− 1) < z ≤ 2pq < p(2q + 1) < z + ∆ ≤ q(2p+ 2).

ii) There exist primes p, q, 2p− 1, 2q − 1, one of which is `, such that p ≥ q and

(2q − 1)(p+ 1) ≥ z + ∆ > 2pq > p(2q − 1) ≥ z > q(2p− 2).

We deduce the following:

Corollary 4. Suppose that for the real number z ≥ 78, the prime p divides an integer
in the interval J = [z, z+ 3

√
z/2), but no subset of the integers in J has product equal

to p times a square. Then
Either there exist primes q, 2q + 1, one of which is p, such that

2q2 − q < z ≤ 2q2 < 2q2 + q < z + 3
√
z/2 ≤ 2q2 + 2q;

Or there exist primes q, 2q − 1, one of which is p, such that
2q2 − 2q < z ≤ 2q2 − q < 2q2 < z + 3

√
z/2 ≤ 2q2 + q − 1.

Proof of Theorem 3: For 78 ≤ z < 357. we proved the result by a computation. So
assume z ≥ 357. Let x =

√
2z/3 and y =

√
3z/2, so that x > 46/3. Note that

J := [xy, (x+1)(y+1)) ⊆ K ⊂ [xy, (x+2)(y+1)). Any prime ` ≤ x/2+1 = (y+1)−x
evidently divides some integer in I = [x, y + 1] since the interval is longer than `.
Moreover if x/2 ≤ ` ≤ (y + 1)/2 then 2` ∈ I, and if x ≤ ` ≤ y + 1 then ` ∈ I. This
accounts for all primes ` that divide some integer in I. Suppose that ` divides some
integer in the interval I; since y ≥ x+ 3

√
x/2 > 18 for x ≥ 18, we see that this integer

is contained in some interval [v, v + 3
√
v/2 + 1) ⊂ I and so ` ∈ SI by Theorem 2. If

18 > x ≥ 46/3 then 18, 24, 20 ∈ I so that 2, 3, 5 ∈ SI ; moreover if ` ≥ 7 and m` ∈ I
then m` ≤ 28 so that m ≤ 4: thus m ∈ SI and so ` ∈ SI . Since I contains a square, we
deduce from Proposition 1(ii) that there is some set of integers in the interval J ⊆ K
whose product equals ` times a square. This contradicts the hypothesis, and thus either
` ∈ ((y+ 1)/2, x) or ` > y+ 1. Suppose that ` > y+ 1 and it divides `λ ∈ K. Evidently
λ 6∈ SK , for if it were then ` ∈ K (contradicting the hypothesis) since SK is closed under
multiplication. Moreover `λ ≤ (x + 2)(y + 1) so that λ ≤ (x + 2)(y + 1)/` < (x + 2).
Therefore λ is prime, otherwise all of its prime factors are < (x+ 2)/2 < (y+ 1)/2 and
so belong to SK , so that λ ∈ SK (since SK is closed under multiplication), giving a
contradiction. We also note that ` then divides only one integer in K; otherwise the
second such integer would be `(λ ± 1) but λ ± 1 cannot be a prime since λ is, and
2, 3 ∈ SK .

If ` > y + 1 we take p = λ (defined as in the paragraph above); otherwise we
take p = `. Therefore p ∈ ((y + 1)/2, x + 2) and p 6∈ SK . Note that if pm ∈ K then
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m = r or 2r for some prime r. For, if not then m = ab for some integers a, b ≥ 3,
and abp ≤ (x + 2)(y + 1), so that a, b ≤ (x + 2)(y + 1)/3p < 2(x + 2)/3 < (y + 1)/2.
Therefore all of the prime factors of m = ab are < (y + 1)/2 and thus in SK , so that
m ∈ SK (as SK is closed under multiplication). But then p ∈ SK since pm ∈ SK , and
p ≡ m× pm (mod Q2), which contradicts the hypothesis. We also note that r 6∈ SK ,
for if it were then we would have m ∈ SK , and thus p ∈ SK (since SK is closed under
multiplication). Since 2p is less than ∆, the length of the interval K, we see that p
divides at least two integers in that interval. In fact p divides exactly two integers in
K, for if it divided three, call them pm, p(m+ 1), p(m+ 2), then one of them must be
divisible by 3, contradicting what we proved in the previous paragraph. Suppose that
the two integers in K that p divides are pm, p(m+1). Evidently 2 divides one of m and
m+ 1, and we have already seen that these two numbers must each be either prime or
twice a prime, so they can be written as 2q and 2q±1, where q and 2q±1 are both prime
but not in SK . Since q 6∈ SK and q ≤ (x+2)(y+1)/2p < x+2 < y+1 we can draw the
same conclusions for q as we did for p above: that is, q divides exactly two integers in
SK , namely 2pq, and q(2p+1) or q(2p−1), where 2p+1 or 2p−1 (respectively) is prime
and not in SK (note that we already knew that q divides 2pq ∈ K). We claim that if
we have 2pq, p(2q+ δ), q(2p+ ε) ∈ K above (where δ, ε = ±1), then we must have δ = ε:
For, if q < p then q(2p+ δ) lies between 2pq and p(2q+ δ) so must be in K; similarly if
p < q then p(2q + ε) lies between 2pq and q(2p+ ε) so must be in K. Note that either
` = p or ` = 2q + δ. We deduce then that p, q, 2p + δ, 2q + δ must all be prime, and
that the only multiples of these primes that belong to K are 2pq, p(2q + δ), q(2p + δ).
To guarantee that these are the only such multiples belonging to K we need to verify
that certain inequalities are satisfied. If ε = 1 these are:

z ≤ 2pq, p(2q + 1), q(2p+ 1) < z + ∆
p(2q − 1), q(2p− 1), (2p+ 1)(q − 1), (2q + 1)(p− 1) < z

p(2q + 2), q(2p+ 2), (2p+ 1)(q + 1), (2q + 1)(p+ 1) ≥ z + ∆.

Now, by swapping the roles of p and q in the argument above if necessary, we may
assume that p ≥ q. Then we need only check that

(2q + 1)(p− 1) < z ≤ 2pq, p(2q + 1) < z + ∆ ≤ q(2p+ 2).

A similar argument works when ε = −1. It is easy to check that none of the primes
p, q, 2p+ δ, 2q+ δ belong to SK if 2pq, p(2q+ δ), q(2p+ δ) are their only multiples in K,
since no subset of pq, p(2q+ δ), q(2p+ δ) multiplies together to give p, q, 2p+ δ or 2q+ δ
times a square.

Remark: For z = 77.05 we have I = [z, z + 5
√
z/6 + 1) ⊂ (77, 96). It turns out that

all primes that divide some number in I, belong to SI , except 3, 7, 13, 29, 31.
Proof of Corollary 4: Take K = J, z ≥ 78 and ∆ = 3

√
z/2 in Theorem 3, so that either

(i) or (ii) there holds. We note that q = p, otherwise q = p−2a, for some positive integer
a. In case (i) this implies that 3p+1−8a = 4q+1−p = q(2p+2)− (2q+1)(p−1) > ∆,
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and in case (ii) this implies that 3p−1−8a = 4q−p−1 = (2q−1)(p+1)−q(2p−2) > ∆.
Therefore p >

√
z/2 + (8a− 1)/3 >

√
z/2 + 2 and q >

√
z/2 + (2a− 1)/3 >

√
z/2. We

thus have z + 3
√
z/2 = z + ∆ > 2pq > z + 4

√
z/2, giving a contradiction.

5. The interval Iu = [(u− 1)2, u2] revisited

It is intriguing to determine exactly what primes belong to the set SI . When u is
small we can easily show that if prime p divides an integer in I, then p ∈ SI : For u = 2
we have 2 = 2 × 12, 3 = 3 × 12. For u = 3 we have 8 = 2 × 22, 6 × 8 = 3 × 42, 5 =
5× 12, 7 = 7× 12. For u = 4 we have 10× 12× 15 = 2× 302, 12 = 3× 22, 12× 15 =
5× 62, 10× 12× 14× 15 = 7× 602, 11 = 11× 12, 13 = 13× 12.

If we assume widely believed conjectures about the distribution of prime pairs, then
from Corollary 4, it seems likely that there are infinitely many integers u, such that there
is some prime p dividing an integer in Iu, yet p 6∈ SI . Computations in Maple yielded the
following prime pairs p, 2p+1 with p(2p−1) < (u−1)2 < 2p2 < p(2p+1) < u2 < 2p(p+1)
and u < 104: (u, p) = (1289, 911), (3597, 2543), (3894, 2753), (4191, 2963), (4751, 3359),
(5345, 3779), (6779, 4793), (7076, 5003), (7636, 5399), (9961, 7043). In each case here nei-
ther p nor 2p+ 1 belong to SI , by Corollary 4. The construction in Theorem 3(i) can
be used here, if there are primes q < p < 2q + 1 < 2p+ 1 for which

(2q + 1)(p− 1) < (u− 1)2 ≤ 2pq < p(2q + 1) < u2 ≤ q(2p+ 2).

We consider primes p in the interval [30u/41, 5u/7] for which 2p + 1 is also prime.
Then select q to be the largest integer such that 2q + 1 < u2/p. So if λ = u/p, and
δ = u2/p − (2q + 1) then we need, essentially, λ2 − 1 > δ > 2λ − λ2, which should
hold for a positive proportion of such primes p. Standard heuristics suggest that the
“probability” that q and 2q + 1 are both prime is � 1/ log2 u. Thus we expect that
there should be � u/ log4 u such prime quadruplets, and so we propose Conjecture A.
On the other hand, we can prove that many primes do belong to SI . As an immediate
consequence of the following result we see that every prime p ≤ u3/4/30 belongs to SI .

Proposition 2. Let u ≥ 4 be an integer. If prime p divides some integer in the interval
[u−u3/4/30, u) then there is some set of integers in the interval I = [(u−1)2, u2] whose
product equals p times the square of an integer.

We shall prove this result below after a discussion of what we expect to be true.
As we shall see, in the proof of Proposition 2 we show that there exists an integer in
any interval [x − 3x1/4 + 1, x], all of whose prime factors are ≤ 2

√
x. If this could

be strengthened as suggested in Conjecture B then we deduce that every prime p ≤
Cu/ logu belongs to SI , for some constant C > 0: For if u3/4/30 < p ≤ Cu/ logu then
let x = [u2/p] and select integer m ∈ [x − c logx, x], as in Conjecture B, so that all
prime factors of m are ≤ √x ≤ u/

√
p ≤ u3/4/30, and so belong to SI . Thus m ∈ SI ,

and mp ∈ [u2 − p(1 + c log(u2/p)), u2] ⊂ I; therefore p ∈ SI . We now proceed to the
proof of Proposition 2:
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Corollary 5. Fix an integer u ≥ 4, and suppose that p is a prime which divides some
integer in the interval J = [u −

√
2u− 1, u +

√
2u− 1 − 1). (In particular any prime

p < 2
√

2u− 1−1 divides some integer in the interval.) Then there is some set of integers
in the interval [(u− 1)2, u2] whose product equals p times the square of an integer.

Proof: Let z = u −
√

2u− 1, so that z > 1 and z + 2
√

2z + 1 = u +
√

2u− 1 − 1.
By Corollary 3 we know that there is some set of integers in J whose product equals
p times the square of a rational number. The result then follows from Proposition 1(i)
by taking x = z > 1 and y = z + 2

√
2z + 2 = u +

√
2u− 1 (so that xy = (u − 1)2 is

an integer), and noting that in the above proof of Theorem 1 we proved that there is a
square in the interval [x, y + 1].

Lemma 2. There is always an integer n, all of whose prime factors are ≤ 2
√
x, in the

interval [x− 3x1/4 + 1, x] when x ≥ 1.

Proof: For x ≤ 2000 we proved the result by direct computation. When x > 2000 we
select a to be the smallest integer ≥ √x, and then b to be the smallest positive integer
≥
√
a2 − x. We find that a < 1 +

√
x, so that a2 − x < 1 + 2

√
x ≤ 1

4(3x1/4 − 1)2,
and thus b − 1 <

√
a2 − x < (3x1/4 − 1)/2. Let n = a2 − b2 = (a − b)(a + b), so that

the prime factors of n are ≤ a + b < 1 +
√
x + 1 + (3x1/4 − 1)/2 < 2

√
x. Moreover

x− n = b2 − (a2 − x) so that, by definition of b, 0 ≤ x− n ≤ 2(b− 1) ≤ 3x1/4 − 1.

Proof of Proposition 2: The result follows directly from Corollary 5 in the range 4 ≤
u ≤ 3× 106 since then u3/4/30 <

√
2u− 1. We may thus assume that u > 3× 106.

Suppose that p divides u−a where a is a positive integer ≤ u3/4/30. If p ≤ √u then
we know that p ∈ SI by Corollary 5. If p >

√
u then (u−a)/p ≤ √u and so belongs to SI .

Thus, since SI is closed under multiplication, we see that p ∈ SI if and only if u−a ∈ SI .
Note that the result follows from Corollary 5 if a ≤

√
2u− 1; so we assume henceforth

that a >
√

2u− 1. Let n be the largest integer ≤ 3u1/4 − 1. By Lemma 2 there are
integers, in both of the intervals [u−a−n, u−a] or [u−a, u−a+n], which have all of their
prime factors ≤ 2

√
u (we will call such an integer u−b below). By Corollary 5 u−b ∈ SI .

We shall show that for one of these choices of u− b, we have (u− b)(u− a) ∈ SI . Thus
(u− a) ∈ SI (and so p ∈ SI), since SI is closed under multiplication. Select k to be the
greatest integer ≤ a2/(u−a) so that u2−(u−a) < (u−a)(u+a+k) ≤ u2. We note that
n+1 ≤ 3u1/4 and k ≤ u1/2/(900−30u−1/4) ≤ u1/2/870. If (u−a)(u+a+k) ≥ u2− u−a

2
then for A = a, a+ 1, . . . , a+ n we have

u2 ≥ (u− a)(u+ a+ k) ≥ (u−A)(u+A+ k) > (u−A− 1)(u+A+ k)

≥ (u− a− (n+ 1))(u+ a+ k + n) ≥ u2 − 3(u− a)
2

− (n+ 1)(2a+ k + n).

Now

(n+ 1)(2a+ k + n) < 3u1/4

(
u3/4

15
+
u1/2

870
+ 3u1/4

)
≤ u

5
+
u3/4

290
+ 9u1/2 <

u

2
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for u ≥ 904 and so the lower bound above is ≥ (u−1)2. Therefore (u−A)(u+A+k) and
(u−A− 1)(u+A+ k) both belong to I and so to SI . Multiplying these together gives
(u−A−1)(u−A) ∈ SI ; and then multiplying together this result for A = a, a+1, . . . , b−1
to get that (u−b)(u−a) ∈ SI and the result follows. If (u−a)(u+a+k) ≤ u2− u−a

2 then
note that (u−a)(u+a+k−1) = (u−a)(u+a+k)− (u−a) > u2−2(u−a) > (u−1)2.
Thus for A = a, a− 1, . . . , a− n we have

(u− 1)2 ≤ (u− a)(u+ a+ k − 1) ≤ (u−A)(u+A+ k − 1)
< (u−A+ 1)(u+A+ k − 1) ≤ (u− a+ (n+ 1))(u+ a+ k − (n+ 1))

≤ u2 − u− a
2

+ (n+ 1)(2a+ k − (n+ 1)).

Now, proceeding as above, we have

(n+ 1)(2a+ k) + a/2 <
u

5
+

7u3/4

348
<
u

2

for u ≥ 923 and so the upper bound here is ≤ u2. Therefore (u−A)(u+A+ k− 1) and
(u−A+1)(u+A+k−1) both belong to I and so to SI . Multiplying these together gives
(u−A)(u−A+ 1) ∈ SI ; and then multiplying together this result for A = b+ 1, . . . , a
to get that (u− a)(u− b) ∈ SI and the result follows.

6. Minimal sets whose product is twice a square

We consider the smallest set of integers S ⊂ Iu whose product is twice a square:
Suppose that |S| = 1: That is, there exists an integer m such that (u − 1)2 <

2m2 < u2. This is equivalent to the fractional part of u/
√

2 being < 1/
√

2, which
occurs for ∼ U/

√
2 of the integers u ≤ U .

Suppose that |S| = 2: That is, there exist integers g,m, n, with g odd and
squarefree, such that (u − 1)2 ≤ 2gm2, gn2 ≤ u2. (The |S| = 1 case is just the
case g = 1 here.) We checked this, for given u, by taking each odd and square-
free g ≤ 2u and then determining whether there are integers m and n with (u −
1)2 ≤ 2gm2, gn2 ≤ u2. There are 123 exceptional values of u up to 104, namely
4, 14, 21, 79, 86, 93, 100, . . . , 7368, 7423, 7846, 8044, 8758. Now, for a fixed g, there exists
an integer n for which (u − 1)2 < gn2 < u2, if and only if {u/√g} < 1/

√
g, where {t}

denotes the fractional part of t. If we randomly choose a value of u ≤ U , then the prob-
ability that this happens for one given odd, squarefree value of g is ∼ 1/

√
g. By ergodic

theory we know that such probabilities are independent so that the ‘probability’ that
a randomly chosen value of u satisfies {u/√g} < 1/

√
g and {u/

√
2g} < 1/

√
2g simul-

taneously is 1/g
√

2. Indeed, for any fixed G, we can prove that the number of integers
u ≤ U for which there is no triple g,m, n satisfying (u− 1)2 ≤ 2gm2, gn2 ≤ u2, where
g ≤ G is odd and squarefree, is ∼ U

∏
g(1 − 1/g

√
2) where the product is over odd,

squarefree integers g ≤ G. Now, it is easily shown that
∏
g(1−1/g

√
2) = G−2

√
2/π2+o(1)
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as G → ∞. Thus there are o(U) exceptional u ≤ U . If we were to suppose that our
formula held with appropriate uniformity (i.e. taking G = 2U above) then we’d expect
that the number of integers u ≤ U , such that there are no two integers in [(u− 1)2, u2]
whose product is twice a square, is U1−2

√
2/π2+o(1), and we note that this exponent is

.71342041 . . .. We’d thus expect about 138 such integers u ≤ 104, whereas we found
above that the correct number is 123, so our heuristic is more-or-less borne out in
practice.

Scott Contini then wrote a program checking that for each u in the above list, there
do exist three numbers in ((u− 1)2, u2) whose product is twice a square; for examples,
32 < 2× 5 < 3× 22 < 3× 5 < 42, then 132 < 19× 32 < 5× 62 < 2× 5× 19 < 142, and
87572 < 2 × 11 × 18672 < 7 × 11 × 9982 < 7 × 33102 < 87582. Thus we can conclude
that there is a nonempty set of integers, with no more than three elements, in any Iu
for u < 104, whose product is twice a square. Presumably this is true for all u ≥ 2.
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