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Abstract

Let G be a simple graph with 3∆(G) > |V |. The Overfull Graph Conjecture
states that the chromatic index of G is equal to ∆(G), if G does not contain an
induced overfull subgraph H with ∆(H) = ∆(G), and otherwise it is equal to
∆(G) + 1. We present an algorithm that determines these subgraphs in O(n5/3m)
time, in general, and in O(n3) time, if G is regular. Moreover, it is shown that G
can have at most three of these subgraphs. If 2∆(G) ≥ |V |, then G contains at most
one of these subgraphs, and our former algorithm for this situation is improved to
run in linear time.

1 Introduction

Let V (G), E(G), ∆(G) and χ′(G) denote the vertex set, edge set, maximum degree and
chromatic index of a simple graph G, respectively. In unambiguous cases, we prefer to
write V , E, ∆ and χ′.

G is called Class 1, if χ′ = ∆ holds, and otherwise, G is called Class 2. By Vizing’s
Theorem [10], χ′ = ∆ + 1 holds for every Class 2 graph G.

G is called overfull, if |E| > b|V |/2c∆. Every overfull graph is Class 2, as well as
every graph G having an overfull subgraph H with ∆(H) = ∆(G). We call such a
subgraph ∆-overfull. It is easy to see that a subgraph H of G is ∆-overfull if and only if
|E(H)| > b|V (H)|/2c∆(G).

Holyer [6] proved that the problem of deciding whether a graph is Class 1 is NP-
complete. However, for graphs with large maximum degree this problem seems to be
easier. Chetwynd and Hilton [2] conjectured that a graph G with 2∆ ≥ |V | is Class 2 if
and only if it has a ∆-overfull subgraph. This conjecture was known to be true for many
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special cases when we presented an algorithm finding all induced ∆-overfull subgraphs
of a graph G with 2∆ ≥ |V | [8]. Recently, Perkovic and Reed [9] proved that regular
graphs of even order satisfying (2 − ε)∆ > |V | are Class 1, if their order is sufficiently
large depending on ε > 0. In the same paper, they announce similar partial results for
the following conjecture.

Overfull Graph Conjecture [3, 4]. A graph G with 3∆ > |V | is Class 2 if and only if
it has a ∆-overfull subgraph.

In the present literature, this conjecture replaces the former one. It is best possible in
some sense, since the graph P ∗, which is obtained from the Petersen graph by removing
an arbitrary vertex, is Class 2, has no overfull subgraph, and satisfies 3∆(P ∗) = |V (P ∗)|.
In view of both conjectures, the attention can be restricted to induced subgraphs, since
the vertex set of any ∆-overfull subgraph induces a ∆-overfull subgraph.

The aim of this paper is to extend our former results to the more general situation
of the Overfull Graph Conjecture. Therefore, we modify our algorithm from [8] such
that it determines every induced ∆-overfull subgraph H of an arbitrary graph G with
|V (H)| > |V (G)|−∆(G) in O(n logn+m) time (Algorithm 1). A variant of this algorithm
finds all induced ∆-overfull subgraphs of every graph G with 2∆ ≥ |V | in O(n+m) time.
These results are presented in Section 3. Thereafter, we develop in Section 4 an algorithm
(Algorithm 2) for the determination of all induced ∆-overfull subgraphs of a graph G with
3∆(G) > |V (G)|. Algorithm 2 applies Algorithm 1 to three subgraphs of G, but its worst-
case complexity is dominated by the amount needed to find a certain edge cut. We use
two procedures for this problem, one for the general case and another one for regular
graphs needing O(n5/3m) time and O(n3) time, respectively.

In [8] we showed that a graph G with 2∆ ≥ |V | cannot contain more than one induced
∆-overfull subgraph. This result has been used in [5], for example. In Section 3, we
provide a generalization: every graph has at most one induced ∆-overfull subgraph H
with |V (H)| > |V (G)| − ∆(G). Thus, every graph G with 3∆ > |V | contains at most
three induced ∆-overfull subgraphs.

2 Terminology and preliminary results

Let G be a graph and let v ∈ V . By NG(v) we denote the neighborhood of v and
dG(v) = |NG(v)| is the degree of v in G. We call vertices of maximum degree major
vertices and let d∗G(v) be the number of major vertices in the neighborhood of v.

For disjoint sets X, Y ⊆ V , we use eG(X, Y ) to denote the number of edges joining a
vertex in X to a vertex in Y . For convenience, we write eG(X) instead of eG(X, V (G)\X)
and dG(X) instead of

∑
x∈X dG(x).

We start with three simple results. Proofs can be found in [8].

Lemma 2.1 A graph H is overfull if and only if |V | is odd and∑
v∈V

(∆− dH(v)) ≤ ∆− 2 holds.
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Note that, if |V | is odd, then both sides of the above inequality have the same parity. So, if
they are not equal, their difference is at least two. Thereby, some estimates and conditions
below could be improved by 1 or −1, but no real improvement would be achieved.

Lemma 2.2 For every vertex v of an overfull graph H

dH(v) ≥ 2 +
∑

u∈NH(v)

(∆− dH(u)) and d∗H(v) ≥ 2 hold.

Lemma 2.3 Let G be a graph with a ∆-overfull subgraph H. Then

eG(V (H)) ≤ ∆(G)− 2−
∑

v∈V (H)

(
∆(G)− dG(v)

)
≤ ∆(G)− 2.

We call a vertex u of the graph G a proper major vertex of G, if

dG(NG(u)) ≥ ∆2 −∆ + 2.

Every proper major vertex is a major vertex. The following result is proved in [8].

Lemma 2.4 Let G be a graph with ∆-overfull subgraph H. Then every major vertex of
H is a proper major vertex of G.

Let d∗∗G (u) denote the number of proper major vertices in NG(u). If G has a ∆-overfull
subgraph H, then d∗∗G (v) ≥ d∗H(v) ≥ 2 for every vertex v of H, by Lemma 2.4 and Lemma
2.2. This implies the following result.

Lemma 2.5 Let G be a graph and let u be a vertex of G with d∗∗G (u) ≤ 1. Then u belongs
to no ∆-overfull subgraph of G.

A repeated application of this lemma is now used to define the kernel of a graph G. Let
G0 = G, S1 = {u ∈ V (G0) : d∗∗G0

(u) ≤ 1} and G1 = G0 − S1. If ∆(G1) < ∆(G) or
S1 = ∅, then the procedure stops. Otherwise, let S2 = {u ∈ V (G1) : d∗∗G1

(u) ≤ 1} and
G2 = G1 − S2. Again the procedure stops, if ∆(G2) < ∆(G) or S2 = ∅. Otherwise,
continue with S3 and G3 and so on. Since at least one vertex is removed at each stage,
the procedure stops with some Gj, 1 ≤ j ≤ |V |. The kernel ker(G) of G is defined to be
Gj, if ∆(Gj) = ∆(G), or the null graph, otherwise. Obviously, every vertex u of ker(G)
satisfies d∗∗ker(G)(u) ≥ 2.

Let i ∈ {1, 2, . . . , j}. Given Gi−1, it is straightforward to see that Si and Gi can be
computed in O(|V (Gi−1)| + |E(Gi−1)|) time. Since j ≤ |V (G)|, the kernel can therefore
be computed in O(|V (G)| · |E(G)|) time. By Lemma 2.5, every ∆-overfull subgraph of
Gi−1 is contained in Gi. Thus, every ∆-overfull subgraph of G is contained in ker(G).
For later reference, these statements are summarized in a lemma.

Lemma 2.6 Let G be a graph with n vertices and m edges. The kernel ker(G) of G
can be computed in O(nm) time. Every ∆-overfull subgraph of G is contained in ker(G).
Every vertex u of ker(G) satisfies d∗∗ker(G)(u) ≥ 2.
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The common subject of the three final results are edge cuts of size less than ∆, which will
play an important role (see also Lemma 2.3).

Lemma 2.7 Let H be an overfull graph and let U ⊂ V with eH(U) < ∆. Then |U | ≤ 1
or |U | ≥ ∆.

Proof. The proof is by contraposition. Suppose therefore 2 ≤ |U | ≤ ∆ − 1. Then we
have

∆(|V | − 1) + 2 ≤ 2|E| = dH(U) + dH(V \ U)

≤ (|U |(|U | − 1) + eH(U)) + (|V | − |U |)∆,

and thus

eH(U) ≥ ∆(|U | − 1) + 2− |U |(|U | − 1) = ∆ + (∆− 1− |U |)(|U | − 2) ≥ ∆,

as required.

Corollary 2.8 Let H be an overfull graph with |V | < 2∆ and let F be an edge cut of H
with |F | < ∆. Then F cuts off one vertex of H, i.e., H −F has two components and one
of them consists of exactly one vertex.

Proof. Let C be a component of H−F such that |V (C)| is maximum. Since eH(V (C)) ≤
|F | < ∆ holds, we have, by Lemma 2.7, |V (C)| ≥ ∆, since |V (C)| = 1 cannot occur, of
course. So, |V (H − C)| ≤ |V | − ∆ ≤ ∆ − 1, and therefore |V (H − C)| = 1, again by
Lemma 2.7.

Lemma 2.9 Let G be a graph and let U ⊂ V with |U | < ∆ and eG(U) < ∆. Then at
most one proper major vertex of G belongs to U .

Proof. Assume there are two proper major vertices w1, w2 ∈ U . Let pi = eG(wi, V \U),
for i = 1, 2, and let q = eG(U \ {w1, w2}, V \U). We suppose that p1 ≤ p2. Then we have
2p1 + q ≤ p1 + p2 + q = eG(U) ≤ ∆− 1. Let ε = 1, if w1 and w2 are adjacent, and ε = 0,
otherwise. Now we obtain

∆2 −∆ + 2 ≤ dG(NG(w1))

= εdG(w2) + dG(NG(w1) \ U) + dG(NG(w1) ∩ (U \ {w2}))
≤ ε∆ + p1∆ + (∆− p1 − ε)(|U | − 1) + q

≤ ε∆ + p1∆ + (∆− p1 − ε)(∆− 2) + q

= ∆2 − 2∆ + 2ε+ 2p1 + q

≤ ∆2 − 2∆ + 2 + ∆− 1 = ∆2 −∆ + 1,

a contradiction.

the electronic journal of combinatorics 8 (2001), #R7 4



3 Algorithm 1

The cornerstone of Algorithm 1 is provided by the following lemma.

Lemma 3.1 Let G be a graph and let S = {u ∈ V (G) : d∗∗G (u) ≤ 1}. If G has an ∆-
overfull subgraph H with |V (H)| > |V (G)|−∆(G) such that V (G−S)\V (H) is nonempty,
then

min{dG−S(v) : v ∈ V (H)} ≥ max{dG−S(w) + 2 : w ∈ V (G− S) \ V (H)}.

Proof. By Lemma 2.5, H is a subgraph of G− S, and so the minimum is well defined.
In particular, H is a ∆-overfull subgraph of G− S, and thus ∆(G− S) = ∆(H) = ∆(G).

Assume that there are vertices v ∈ V (H) and w ∈ V (G− S) \ V (H) with dG−S(v) ≤
dG−S(w) + 1. With Lemma 2.3 we obtain

eG−S(V (H)) ≤ ∆(G− S)− 2−
∑

x∈V (H)

(∆(G− S)− dG−S(x))

≤ ∆(G)− 2− (∆(G)− dG−S(v)) = dG−S(v)− 2,

and so dG−S(w) ≥ dG−S(v)− 1 ≥ eG−S(V (H)) + 1.
Next we will see that this is impossible. Let U = V (G) \ V (H). Then |U | = |V (G)| −

|V (H)| < ∆(G) and eG(U) = eG(V (H)) ≤ ∆(G) − 2, by Lemma 2.3. Hence, by Lemma
2.9, at most one proper major vertex of G belongs to U . We consider the vertices in
NG−S(w) ∩ (V (G− S) \ V (H)). For every vertex u in this set we have d∗∗G (u) ≥ 2, since
otherwise it would belong to S. So, eG−S(u, V (H)) ≥ d∗∗G (u)− 1 ≥ 1. Therefore,

eG−S(V (H)) ≥ eG−S(w, V (H)) +

eG−S(NG−S(w) ∩ (V (G− S) \ V (H)), V (H))

≥ eG−S(w, V (H)) + |NG−S(w) ∩ (V (G− S) \ V (H))|
= dG−S(w).

This contradiction completes the proof.

Theorem 3.2 Algorithm 1 finds all induced ∆-overfull subgraphs H of a graph G satis-
fying |V (H)| > |V (G)| −∆(G) in O(n logn+ m) time, where n and m denote the order
and the size of G, respectively.

Proof. Consider Algorithm 1 in Figure 1. S can be computed in O(n + m) time, and
also G∗ can be determined with this amount. By Lemma 2.5, G and G∗ have the same ∆-
overfull subgraphs. If ∆(G∗) < ∆(G), then G has no ∆-overfull subgraph. Otherwise, the
degrees of the vertices of G∗ are determined in O(n+m) time, and the sorting is done in
O(n logn) time. Lemma 3.1 shows that only the vertex sets considered in the final phase
of the algorithm can induce ∆-overfull subgraphs in G with more than |V (G)| − ∆(G)
vertices. These vertex sets can be checked in O(n+ m) time by a successive removal of
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Algorithm 1: Input: a graph G.

determine S = {u ∈ V (G) : d∗∗G (u) ≤ 1};
set G∗ = G− S;
if ∆(G∗) < ∆(G) then stop;

sort the vertices of G∗ such that dG∗(v1) ≥ dG∗(v2) ≥ . . . ≥ dG∗(vr),
where r = |V (G∗)|;

test for every odd j satisfying |V (G)| −∆(G) < j ≤ |V (G∗)|
such that dG∗(vj) ≥ dG∗(vj+1) + 2 or j = r whether {v1, . . . , vj}
induces a ∆-overfull subgraph of G∗.

Figure 1.

pairs of vertices with largest indices. So, every induced ∆-overfull subgraph H of G with
|V (H)| > |V (G)| −∆(G) is found in O(n logn+m) time.

The algorithm presented in [8] computes ker(G) instead of G − S, and continues
similarly thereafter. So, its running time is O(nm) (see Lemma 2.6).

By the condition |V (G)|−∆(G) < j in the final phase, Algorithm 1 does not find any
induced ∆-overfull subgraph H with |V (H)| ≤ |V (G)| − ∆(G). Without this condition
it possibly finds such subgraphs, but it can fail to determine all of them. Let p ≥ 2
be an integer. We obtain the graph G1

p from two disjoint complete graphs K2p+1 and
K2p by removing an edge xy ∈ E(K2p+1) and joining x to u and y to v, where u and
v are distinct vertices of K2p. G1

p is overfull and this is detected by Algorithm 1. The
subgraph Hp induced by E(K2p+1) is another ∆-overfull subgraph of G1

p. However, only
if the vertices u and v receive the largest indices among all vertices of maximum degree
during the sorting, Algorithm 1 detects Hp. Note that |V (Hp)| = |V (G1

p)| −∆(G1
p) holds.

In [8] we proved that a graph G with 2∆ ≥ |V | has at most one induced ∆-overfull
subgraph. The following theorem is more general.

Theorem 3.3 Every graph G has at most one induced ∆-overfull subgraph H with
|V (H)| > |V (G)| −∆(G).

Proof. Assume that G contains two distinct induced ∆-overfull subgraphs Hi with
|V (Hi)| > |V (G)| −∆(G) for i = 1, 2. Algorithm 1 shows that one of them is contained
in the other one, say V (H1) ⊂ V (H2). Since both have odd order, |V (H2) \ V (H1)| ≥ 2
follows. Moreover, |V (H2) \ V (H1)| ≤ |V (G)| − |V (H1)| < ∆(G). Therefore Lemma 2.7
implies eH2(V (H2) \ V (H1)) ≥ ∆(G), and thus eH2(V (H1)) ≥ ∆(G). This contradicts
Lemma 2.3.

The next theorem summarizes our results for graphs with 2∆≥ |V |.

Theorem 3.4 Let G be a graph with 2∆ ≥ |V |. Then G has at most one induced ∆-
overfull subgraph, which can be found in O(n+m) time, where n and m denote the order
and the size of G, respectively.
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Proof. IfG has a ∆-overfull subgraph H, then |V (H)| > ∆(H) = ∆(G) ≥ |V (G)|−∆(G)
and m ≥ |E(H)| > b|V (H)|/2c∆(G) ≥ ∆(G)2/2 ≥ n2/8 hold.

The first estimate guarantees that Algorithm 1 determines all induced ∆-overfull sub-
graphs of G (see Theorem 3.2) and that G contains at most one of them (see Theorem
3.3).

The second estimate implies that G cannot contain a ∆-overfull subgraph, if m ≤ n2/8
holds. So, we can check this first in O(n+m) time, and only if m > n2/8 holds, we need
to apply Algorithm 1 to G, which then terminates in O(m) steps.

4 Algorithm 2

Let G be a graph and let U ⊆ V . We say that an edge cut F of G separates U , if U is
not contained in one component of G− F .

We can distinguish, roughly, three phases of Algorithm 2. At the beginning the kernel
of the graph is determined and Algorithm 1 is applied to it. Thereby, we find all induced
∆-overfull subgraphs of G with more than |V (ker(G))|−∆(G) vertices. The second phase
consists of finding a certain edge cut F of ker(G) with |F | ≤ ∆(G) − 2. Let H be an
induced ∆-overfull subgraph of G that has not been found so far. Below we will see
that F possibly separates V (H), but one component C of ker(G) − F contains at least
|V (H)| − 1 vertices of H. The following lemma is needed below to find a missing vertex
of H in V (ker(G)) \ V (C).

Lemma 4.1 Let G be a graph and let H be a ∆-overfull subgraph of G with |V (H)| <
2∆(G). Let F be an edge cut of G with |F | < ∆(G) that separates V (H). Then there
is a component C of G − F with |V (C) ∩ V (H)| = |V (H)| − 1. Let x denote the vertex
in V (H) \ V (C). If eG(H − x) ≥ |F |, then x is the unique vertex in V (G) \ V (C) with
eG(x, V (C)) = max{eG(u, V (C)) : u ∈ V (G) \ V (C)}.

Proof. Let FH = F ∩E(H). Since |FH | ≤ |F | < ∆(G) = ∆(H), FH cuts off one vertex
x of H, by Corollary 2.8. So, there is a component C of G − F with |V (C) ∩ V (H)| =
|V (H)| − 1. If eG(H − x) < |F |, then we are done. So, we assume that eG(H − x) ≥ |F |.
Let u ∈ V (G) \ V (C) with u 6= x. First, we observe that

2|E(H − x)| =
∑

w∈H−x
dH−x(w)

≤ |V (H − x)|∆(H)− eG(V (H − x))

≤ (|V (H)| − 1)∆(G)− eG(V (C) \ V (H − x), V (H − x))

−eG(x, V (H − x))− eG(u, V (H − x)).

Next, we have

2|E(H − x)| = 2|E(H)| − 2eG(x, V (H − x))

≥ (|V (H)| − 1)∆(G) + 2− 2eG(x, V (H − x)).
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Combining both estimates we obtain

eG(V (C) \ V (H − x), V (H − x)) + eG(u, V (H − x)) ≤ eG(x, V (H − x))− 2. (1)

We also have eG(V (G) \ V (C)) ≤ |F | ≤ eG(V (H − x)). Subtracting eG(V (G) \ V (C),
V (H−x)) on both sides yields eG(V (G)\V (C), V (C)\V (H−x)) ≤ eG(V (C)\V (H−x),
V (H − x)). Using this and (1) we obtain

eG(u, V (C)) = eG(u, V (C) \ V (H − x)) + eG(u, V (H − x))

≤ eG(V (G) \ V (C), V (C) \ V (H − x)) + eG(u, V (H − x))

≤ eG(V (C) \ V (H − x), V (H − x)) + eG(u, V (H − x))

≤ eG(x, V (H − x))− 2 ≤ eG(x, V (C))− 2,

and so x is the unique vertex in V (G) \V (C) with eG(x, V (C)) = max{eG(u, V (C)) : u ∈
V (G) \ V (C)}.

In the third phase of Algorithm 2, we possibly apply Algorithm 1 to two subgraphs of
ker(G)− F . The following lemma is needed to show that their order is at most 2∆.

Lemma 4.2 Let G be a kernel (i.e., ker(G) = G) and let F be a minimum edge cut
separating the set of proper major vertices of G. If |F | < ∆, then every component of G
contains at least ∆ vertices.

Proof. Suppose that C is a component of G− F with |V (C)| < ∆. Since eG(V (C)) ≤
|F | < ∆, V (C) contains at most one proper major vertex of G, by Lemma 2.9. Therefore,
eG(V (C)) > 0, since G is a kernel. So, V (C) contains a proper major vertex u of G,
since otherwise F would not be a minimum edge cut separating the set of proper major
vertices of G. Let p = eG(u, V (G) \ V (C)). Then ∆ − 1 ≥ |F | ≥ eG(V (C)) ≥ p + (∆ −
p) + 2(|V (C)| − 1 − (∆ − p)) = 2|V (C)| − 2 − ∆ + 2p, and so |V (C)| ≤ ∆ − p. Now
∆ = dG(u) ≤ p+ (|V (C)| − 1) ≤ p+ ∆− p− 1 = ∆− 1 yields a contradiction.

Now we are in a position to prove the main results.

Theorem 4.3 Algorithm 2 finds all induced ∆-overfull subgraphs of a graph G with
3∆(G) > |V (G)|.

Proof. First, we have to show that Algorithm 2 is correctly formulated, i.e., if line 7 is
executed, then G∗− F has exactly two components. Note therefore that in this situation
G∗ is a kernel with ∆(G∗) = ∆(G), and that F is a minimum edge cut separating the set
of proper major vertices of G∗. Lemma 4.2 shows that every component of G∗−F has at
least ∆(G) vertices, and so |V (G∗)| ≤ |V (G)| < 3∆(G) implies that G∗ − F has in fact
only two components.

Let H be an induced ∆-overfull subgraph of the graph G. By Lemma 2.6, H is an
induced subgraph of G∗. Therefore, ∆(G∗) = ∆(H) = ∆(G), and thus Algorithm 2 does
not stop at line 2.
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Algorithm 2: Input: a graph G with 3∆(G) > |V (G)|.
1: set G∗ = ker(G);
2: if ∆(G∗) < ∆(G) then stop;

3: apply Algorithm 1 to G∗;
4: find a minimum edge cut F of G∗ separating

5: the set of proper major vertices of G∗;
6: if |F | > ∆(G)− 2 then stop;

7: let C1, C2 be the components of G∗ − F;
8: let x1 ∈ V (C1) such that eG∗(x1, V (C2)) is

9: maximum among all vertices of C1;

10: let x2 ∈ V (C2) such that eG∗(x2, V (C1)) is

11: maximum among all vertices of C2;

12: if ∆(G− (V (C1) \ {x1})) = ∆(G) then
13: apply Algorithm 1 to G− (V (C1) \ {x1});
14: if ∆(G− (V (C2) \ {x2})) = ∆(G) then
15: apply Algorithm 1 to G− (V (C2) \ {x2});
16: end.

Figure 2.

If |V (H)| > |V (G∗)| −∆(G), H is detected, when Algorithm 1 is applied to G∗ (see
Theorem 3.2). So, suppose now |V (H)| ≤ |V (G∗)| −∆(G).

First, we show that V (H) and V (G∗) \ V (H) both contain at least two proper major
vertices. By Lemma 2.2, H has at least three major vertices, and every major vertex of H
is a proper major vertex if G∗, by Lemma 2.4. Suppose now that V (G∗) \ V (H) contains
at most one proper major vertex. Then, every u ∈ V (G∗)\V (H) has a neighbor in V (H),
since G∗ is a kernel. Therefore eG∗(V (H)) ≥ |V (G∗)| − |V (H)| ≥ ∆(G), contradicting
Lemma 2.3.

F is chosen to be a minimum edge cut separating the set of proper major vertices of
G∗. Hence |F | ≤ eG∗(V (H)) ≤ ∆(G)− 2, by Lemma 2.3, and therefore Algorithm 2 does
not stop at line 6.

Next we verify the remaining hypotheses of Lemma 4.1. We have |V (H)| ≤ |V (G∗)|−
∆(G) ≤ |V (G)| − ∆(G) < 3∆(G) − ∆(G) = 2∆(G). Hence, by the first part of that
lemma, one component, say C1, of G∗ − F contains at least |V (H)| − 1 vertices of H. If
there is a vertex x ∈ V (H) \ V (C1), then the set of edges leaving V (H − x) separates
the set of proper major vertices of G∗, since V (H) and V (G∗) \ V (H) both contain at
least two proper major vertices. Thus, eG∗(V (H−x)) ≥ |F |. Now it follows from Lemma
4.1, that x = x2 and so H is a subgraph of G′ = G∗ − (V (C2) \ {x2}). Therefore, in
particular, ∆(G′) = ∆(G), and so Algorithm 1 is applied to G′. Hence, by Theorem 3.2,
H is found or |V (H)| ≤ |V (G′)|−∆(G′). However, the latter case cannot occur, since, by
Lemma 4.2, |V (G′)| −∆(G′) = (|V (G∗)| − |V (C2)|+ 1)−∆(G) ≤ |V (G)| − 2∆(G) + 1 ≤
(3∆(G) − 1) − 2∆(G) + 1 = ∆(G), and so |V (H)| ≤ |V (G′)| − ∆(G′) would imply
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∆(H) < ∆(G).

Let us consider the worst-case complexity of Algorithm 2. The kernel of G can be
found in O(nm) time (see Lemma 2.6). C1, C2, x1, and x2 can all be determined in
O(n+m) time. Algorithm 1 is applied at most three times, which needs O(n logn+ m)
time (see Theorem 3.2). So, Algorithm 2 needs O(nm+ T (n,m)) time, where T (n,m) is
the time needed to find the edge cut F .

In general, a minimum edge cut FU separating an arbitrary set U of vertices can
be found as follows. Choose a vertex u0 ∈ U and determine a minimum edge cut Fu
separating u0 and u for every u ∈ U , u 6= u0. Then let FU be a minimum edge cut among
all these edge cuts. Every Fu can be found by means of a maximum flow algorithm in
O(n2/3m) time (see [1], p. 254), and so the whole procedure can be performed in O(n5/3m)
time.

Theorem 4.4 All induced ∆-overfull subgraphs of a graph G with 3∆(G) > |V (G)| can
be found in O(n5/3m) time, where n and m denote the order and size of G, respectively.

Let G be a regular graph with ∆ ≥ 2. Then every vertex of G is a proper major vertex,
and thus ker(G) = G. So, every edge cut of G separates the set of proper major vertices.
Since a minimum edge cut can be found in O(nm) time [7], which is O(n3) time for regular
graphs with 3∆ > |V |, we obtain the following theorem.

Theorem 4.5 All induced ∆-overfull subgraphs of a regular graph G with 3∆(G) >
|V (G)| can be found in O(n3) time, where n denotes the order of G.

By Theorem 3.3, every application of Algorithm 1 within Algorithm 2 yields at most one
induced ∆-overfull subgraph.

Corollary 4.6 Let G be a graph with 3∆ > |V |. Then G has at most three induced
∆-overfull subgraphs.

This corollary is best possible as the next family of graphs shows. Let K2p be a complete
graph of order 2p, where p ≥ 3 is an integer. Remove an edge uv from this graph, and
add two edges xu, xv, where x is a new vertex (in other words, we insert a the vertex
x into the edge uv). Let K∗2p denote this graph. Take two vertex-disjoint copies of K∗2p
and identify the two vertices of degree two. The resulting graph G2

p has three induced
∆-overfull subgraphs corresponding to the vertex sets of the two copies of K∗2p and to
V (G∗p). Moreover, the vertex sets of the copies of K∗2p are not disjoint in G∗p. So, we see
the necessity of adding vertices to C1 and C2 in the final phase of Algorithm 2.

We end with a family of graphs showing that the condition 3∆ > |V | is almost
best possible for Algorithm 2. For an odd integer p ≥ 3, let G3

p be the graph resulting
from three vertex disjoint complete graphs Kp, Kp+1 and K ′p+1 of order p and p + 1,
respectively, by removing one perfect matching from both graphs of order p + 1. Note
that ∆(G3

p) = |V (G3
p)| − 5. The following four sets induce ∆-overfull subgraphs of G3

p:
V (Kp), V (Kp) ∪ V (Kp+1), V (Kp) ∪ V (K ′p+1), and V (G3

p). Since Algorithm 2 can find at
most three induced ∆-overfull subgraphs, it fails to find all these subgraphs of G3

p.
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