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The Same Way that George Boole Revolutionized LOGIC
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leMori veRabi Aviezri Fraenkel, who taught me that Games are Math and
Math is a Game

Abstract: The Berger-Felzenbaum-Fraenkel approach to Covering Systems is exposited.
In particular their gorgeous proof of the famous an = an−1 theorem for exact covering
systems (found independently by Jamie Simpson), is reviewed, and the analogy of their
approach to Boolean tautologies in Disjunctive Normal Form is pointed out.

Preface

There is more than one way to contribute to the preservation of the human species. The
explicit way is to marry and have children, and if your children turn out to be good, you
can and should feel proud. But, a more efficient way is to be a matchmaker, and make
good matches, and if the couples that you have introduced to each other turn out to
have brilliant children, then you may brag about them as though they were your own.

This also applies to math. If you have introduced (directly or indirectly) Dr. Reuven
to Professor Simeon, and cast the deciding vote in the committee that admitted Mr.
Levi to the Ph.D. program, then you are justified in feeling enormous satisfaction when
the Reuven-Simeon-Levi collaboration leads to a major breakthrough in a whole area of
mathematics. If this collaboration also lead to a MOST BEAUTIFUL proof, from the
BOOK of BOOKS, sought out for many years by the BOOK’s proposer, and begged by
him in hundreds of lectures, then you can REALLY gloat.

This happened to me with
Reuven=Marc Berger, Simeon=Aviezri Fraenkel, Levi=Alex Felzenbaum .

The area that they revolutionized is covering systems, and the beautiful proof that they
found is the long-sought-for elementary proof of the Davenport-Rado-Mirsky-Newman
an = an−1 theorem.

I will tell this story, and the math, later in this article. But let’s start at the beginning.
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1650 Years Ago

In Sun Tsu Suan Ching (Master Sun’s Arithmetic Manual) there is the following prob-
lem:

There is an unknown number of objects. When counted in “threes”, the remainder is
2; when counted in “fives”, the remainder is 3; and when counted in “sevens”, the
remainder is 2. How many objects are there?”

This means that we have to solve the congruences x ≡ 2(mod 3), x ≡ 3(mod 5), x ≡
2(mod 7), and the answer is x ≡ 23(mod 105).

A much larger example appeared 900 years later.

750 Years Ago

The Ta Yen Algorithm by Chin Chiu Shao:

Three thieves A,B,C, each steal three (identical) full rice vessels.

Thief A used a ‘horse ladle’ (19 Ko), and got 1 Ko left-over.

Thief B used his ‘wooden shoe’ (17 Ko), and got 14 Ko left-over.

Thief C used a ‘bowl’ (12 Ko), and got 1 Ko left-over.

How many Kos in a rice vessel?

Here we have to solve x ≡ 1( mod 19 ), x ≡ 14( mod 17), x ≡ 1( mod 12 ), and the smallest
answer turns out to be x = 3193.

The Chinese Remainder Theorem tells us that we can always solve any system of con-
gruences

x ≡ bi( mod ai) , i = 1 . . . k ,

whenever a1, . . . , ak are pairwise relatively prime, and the answer is unique modulo
lcm(a1, . . . , ak).

In particular if N = p1 . . . pk is square-free, then the map

x → (x mod p1, x mod p2, . . . , x mod pk)

is one-to-one between [0, N − 1] and [0, p1 − 1] × [0, p2 − 1] × . . .× [0, pk − 1].
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Almost 150 Years Ago

George Boole published The Laws of Thought where he did to Propositional Logic
what Descartes did to Geometry: he turned it into Algebra, which today is justifiably
called Boolean Algebra. This, in turn, via the notion of truth table, ultimately became
Geometry, albeit of the discrete kind.

Here are some “sound bites” from his magnificent opus [B].

“ That Language is an instrument of Human reason, and not merely a medium for the
expression of thought, is a truth generally admitted.”

“ How is it possible to make an assertive proposition out of a series of denials or nega-
tions? ... For example: ‘There are no men who are not fallible= All Men are fallible’.
”

“ ... In Logic ... Truth is made manifest in all its generality, by reflecting upon a single
instance of its application.”

In fact, one has to reflect on all 2n possible true-false assignments, and if a proposition
f(x1, . . . , xn), that only uses ‘or’, ‘and’ and ‘not’ is always true upon all 2n possible
assignments of true-false values into the atomic statements x1, . . . , xn, then it is a tau-
tology. Otherwise you can identify the Boolean function with its set of truth-vectors,
S = {(a1, . . . , an)}, and write f in complete Disjunctive Normal Form

f(x1, . . . , xn) =
∨

(a1,...,an)∈S

xa1
1 . . . xan

n ,

1 stands for ‘true’, 0 for ‘false’, x1 = x, and x0 = x.

There are lots of Boolean functions, in fact 22n

of them. Shannon used their abundance
to show that most Boolean functions are ‘complicated’, i.e., need super-polynomially
many gates to be realized, since the number of functions computed by polynomially-
bounded many gates is just exponential, not doubly so.

In particular, there is only one way to write the Boolean function 1 (THE tautology),
in complete Disjunctive Normal Form:

1 =
∨

a1∈{0,1}
. . .

∨

an∈{0,1}
xa1

1 . . . xan
n .

But, if you do not insist on completeness, only on it being in disjunctive normal form,
then there are many ways to write 1, including 1 itself. For example, if n = 3 then the
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following are tautologies in Disjunctive Normal Form (DNF).

x1 ∨ x2 ∨ x3 ∨ x1x2x3 , (aleph)

x1x2 ∨ x2x3 ∨ x3x1 ∨ x1x2x3 ∨ x1x2x3 , (bet)

x1x2 ∨ x1x2 ∨ x1 ∨ x1x3 . (gimel)

So, thanks to Boole, a DNF-tautology is a way of writing the discrete n-dimensional
unit cube as a union of lower-dimensional sub-cubes. The term xa1

i1
. . . xar

ir
represents the

(n−r)-dimensional unit cube consisting of those points for which xi1 = a1, . . . , xir
= ar.

Let’s call the support of an elementary conjunction xa1
i1

. . . xar
ir

(equivalently an (n− r)-
dimensional subcube: xi1 = a1, . . . , xir

= ar), the set {i1, . . . , ir} ⊂ {1, . . . , n}.

A DNF-tautology is exact if all the terms are disjoint, i.e. the covering of the unit cube
is in fact a partition. For example the DNF-tautology (bet) is exact. It is distinct if
all the supports are distinct, in other words none of the subcubes are ‘parallel’. For
example (aleph) is a distinct DNF-tautology. But (gimel) is neither exact nor distinct.

Utterly Trivial Observation: If an exact DNF-tautology contains at least one term
that is a point (0-dimensional subcube), then it must contain at least two.

Proof: The cardinality of an r-dimensional cube is 2r. If r > 0, then it is even. Since
the cardinality of the unit n-dimensional cube is 2n, and hence even, and since even
minus even is even, it follows that the number of singletons is even. Since it is at least
1, by assumption, it must be at least 2.

What if the exact DNF-tautology does not have any singletons? Then it contains terms
of maximal support, say a term

∏
i∈S xai

i , where there are no terms whose support T

strictly contains S. Then if follows immediately from the above utterly trivial obser-
vation that there must be at least another term whose support is S. This follows by
considering the induced DNF-tautology on the variables in S, obtained by intersecting
with xj = 0, j ∈ {1, . . . , n}\S (i.e. “projecting” on that |S|-dimensional subcube).
This turns the term

∏
i∈S xai

i into a point, and it follows from the above utterly trivial
observation that it has at least one friend. Now that friend must be the ‘shadow’ (i.e.
projection) of another term whose support is S, in the original DNF-tautology, or else
S would not be maximal.

It follows in particular that you can’t have the cake and eat it too, i.e. an exact DNF-
tautology can’t also be distinct.
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To summarize: George Boole reduced propositional logic to algebra, and hence (via
the notion of truth table introduced by Wittgenstein), to discrete geometry. A DNF-
tautology is nothing but a covering of the n-dimensional unit cube {0, 1}n by lower-
dimensional cubes.

About 50 Years Ago

Erdős Pál [E] introduced the notion of covering system, a finite set of infinite arithmetical
progressions

x ≡ bi (mod ai) , i = 1, . . . , n ,

whose union consists of all natural numbers.

For example: {x ≡ 0 ( mod 2), x ≡ 1 ( mod 2)}, {x ≡ 0 ( mod 2 ), x ≡ 1 ( mod 4), x ≡
3 ( mod 4)}, and

{0( mod 2), 0( mod 3), 1( mod 4), 5( mod 6), 7(mod 12)} .

A covering system is called exact (ECS) if none of the arithmetical progressions overlap,
i.e. for 1 ≤ i < j ≤ n, bi (mod ai) and bj (mod aj) are always disjoint. A covering
system is called distinct (DCS) if all the moduli ai are different. The first two examples
above are exact (but of course not distinct), while the third example is distinct (but not
exact).

In his 1952 article [E], Erdős described a beautiful proof found by Mirsky and (Donald)
Newman, and independently, by Davenport and Rado, that the two top-moduli of an
ECS must be identical, i.e. if b1(mod a1), . . . , bn(mod an) partition the integers, and
a1 ≤ a2 ≤ . . . ≤ an, then we must have an−1 = an. Their proof is a true gem. It goes
as follows. The ECS-condition translates to the identity

1
1 − z

=
n∑

i=1

zbi

1 − zai
. (MNDR)

Indeed every monomial appears exactly once both on the left and the right when we
Taylor-expand about z = 0. Let ω be an an-th primitive root of unity. Now let z → ω.
If an−1 < an, then the left side and the first n − 1 terms of the right side converge to a
finite number, while the last term on the right blows up. Contradiction. Now this proof
is definitely in the BOOK, but not in MY BOOK! As beautiful as it is, it is analytical,
and uses fictional notions like complex numbers and limits, while the statement is purely
elementary. Just like the Prime Number Theorem.
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Erdős realized this and in many talks raised the question of finding an elementary proof
of this theorem.

20 Years Ago: Marc Berger

In 1980, after four years as a postdoc in the States, I came back to the Weizmann
Institute, where I got my Ph.D. in 1976, with the intention to stay. One of my positions
was at Georgia Tech (1978-1979), where I met and befriended a remarkable and (then)
young faculty member, Marc Berger. Marc was indeed a prodigy, and the chair at
the time, the late Les Karlovitz, was often raving about him. Marc is not only a
mathematical genius, but also a very talented pianist and erudite talmid khacham.
He was also very versatile in his mathematical interests, and did both pure ‘Radical
Calculus’, that he invented in collaboration with Alan Sloan, and very applied math,
consulting for industry. He was also “Black-Scholes when Black-Scholes wasn’t yet cool”,
and gave a fascinating series of talks about using the Ito calculus to price options, way
back in 1978.

In 1980, Marc visited Israel, and looked me up. He told me that in his dissertation he
used and generalized early work of my advisor, Harry Dym. So I introduced them to
each other, and Harry was so impressed that he practically hired him on the spot, first
as a visitor, and later on tenure-track.

Once Marc moved to Rehovot, he went to shul (of course), and who did he meet there ,
and very soon became good friends with? Aviezri Fraenkel! Now both Marc and Aviezri
are very friendly and social people, who enjoy collaboration. So Aviezri told him about
covering systems and about the many open problems in the field, and before you could
say shma Israel, they started to collaborate. Soon they were joined by a ‘junior partner’.

18 Years Ago: Alexander Felzenbaum

A young ole khadash (emigré) from Russia, Alexander Felzenbaum applied for admission
to the graduate program at the Weizmann Institute. He seemed very bright and creative
but (in fact I should say hence) non-standard, with a somewhat mixed record. So it
was decided that he should have an oral entrance examination/interview in front of
an admission committee. The committee consisted of Aviezri Fraenkel, Amir Pnueli
(of temporal logic fame, 1996 Turing Award winner), and myself. The outcome of
the interview was also mixed. Aviezri had some doubts, Amir abstained, but I was
very favorable, and succeeded in convincing Aviezri and Amir about the potential of
Alexander.
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So, I believe that I deserve some credit in my implicit part in hiring Marc and my
explicit part in admitting Alexander. To my great satisfaction this led to a revolution
in covering systems, that was based on a very ancient idea, mentioned at the beginning,
that of the Chinese Remainder Theorem (CRT).

14 ± 2 Years Ago

Consider a covering system bi(mod ai), i = 1, . . . , n. Let N = lcm(a1, . . . , an), and
assume for now that N is square-free, and hence can be written as

N =
k∏

i=1

pi .

Recall that by the CRT, there is a one-one correspondence between the set of integer
mod N and the set of points of the k-dimensional discrete box [0, p1−1]×. . .×[0, pk−1],
given by

b → (b mod p1, b mod p2, . . . , b mod pk) . (CRT )

For example, if N = 30 then 10 goes to the point (0, 1, 0), 17 goes to the point (1, 2, 2),
and 29 goes to the point (1, 2, 4).

What does a congruence b (mod m), m|N correspond to? If m = pi1 . . . pir
, then by

(CRT ) applied to m, the set of integers mod N that obey x ≡ b(mod m), correspond
to the points in the discrete box [0, p1 − 1] × . . . × [0, pk − 1] for which

xi1 = b mod pi1 , xi2 = b mod pi2 , . . . , xir
= b mod pir

.

For example, if N = 30, then the congruence 1(mod 2) corresponds to {x1 = 1}, the
congruence 3(mod 5) corresponds to {x3 = 3}, while 7(mod 10) corresponds to {x1 =
1, x3 = 2}, and 5(mod 6) corresponds to {x1 = 1, x2 = 2}, etc.

So just like in Boolean algebra, a DNF-tautology is nothing but a covering of the n-
dimensional unit cube [0, 1]n by subcubes, Berger, Felzenbaum and Fraenkel realized
that a covering system (for square-free N , see later about the general case) is nothing
but a covering of the box [0, p1 − 1] × . . . × [0, pk − 1] by lower-dimensional sub-boxes!
If the covering system is exact then we have a partition, if it is distinct, then we can’t
have ‘parallel sub-boxes’.

Let bi(mod ai), i = 1 . . . n, with a1 ≤ . . . ≤ an, be an ECS, and let N = lcm(a1, . . . , an).
Assume that an = N , i.e. one of the sub-boxes participating in the covering is 0-
dimensional (a point). Can it be the only one? Of course not!, and for the same trivial
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reason as in the Boolean case. But first we have to go to Sodom and trim our box
[0, p1 − 1] × . . . × [0, pk − 1] into a cube ‘isomorphic’ to [0, p1 − 1]k, making sure that
it includes the above-mentioned point (there are many ways of doing it!). Now the
original partition of the box into sub-boxes induces, by intersection, a partition of the
cube [0, p1 − 1]k into sub-cubes. Since all r-dimensional sub-cubes (r > 0) contain pr

1

points, whose number is divisible by p1, and ditto for the number of points in [0, p1−1]k,
it follows that the number of 0-dimensional subcubes is also divisible by p1, and since
it is at least 1, by assumption, it must be at least p1. Since these are all points, they
must already exist in the original partition of [0, p1 − 1] × . . . × [0, pk − 1]. So Berger,
Felzenbaum, and Fraenkel gave us more than we bargained for! Not just one extra point
(congruence mod N), but p1 − 1 more.

Now this stronger result was already known, due independently to (Morris) Newman
and Znam, but their proof was analytical, and much more complicated than the Mirsky-
(Donald) Newman-Davenport-Rado proof.

What if N is not square-free?

The most extreme case is a pure prime power, N = pr. Here we need something even
simpler than the Chinese Remainder Theorem, namely base-p-representation. Every
integer b, between 0 and pr − 1 can be written in base p:

b =
r−1∑

j=0

bjp
j ,

with 0 ≤ bj < p. Hence b is mapped to the point (br−1, . . . , b0) of the r-dimensional
cube [0, p − 1]r. Now a congruence b0 mod p corresponds to those points whose last
coordinate (“digit”) is b0. A congruence b1p + b0 mod p2 corresponds to those points
for which xr−1 = b1 and xr = b0 etc. So in this case every congruence corresponds to
a sub-box, but not usually vice-versa. Only sub-boxes of the form xm = br−m, xm+1 =
br−m−1, . . . , xr = b0, i.e., whose support has the form {m, m+1, . . . , r}, are admissible.

In the general case, when

N =
k∏

i=1

pmi
i ,

BFF combine the two methods, mapping [0, N − 1] onto the box

[0, p1 − 1]m1 × . . .× [0, pk − 1]mk ,
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by first mapping x to (x mod pm1
1 , . . . , x mod pmk

k ), and then further splitting the ith

coordinate into mi coordinates, according to base pi, i = 1, . . . , k, as described above.
Once again an exact covering system corresponds to a partition of the above box into
sub-boxes but not all sub-boxes are allowed, but that does not change the beautiful
BFF argument above.

What if an < N?, i.e. all the sub-boxes in the induced partition have non-zero dimen-
sion. Then we can project on an appropriate sub-box, just as we did in the Boolean case,
and then use the above argument. So this concludes the gorgeous proof of [BFF1].

Jamie Simpson’s Independent Discovery of this Stunning Proof

At about the same time, Jamie Simpson also found essentially the same proof, but his
proof was a little awkward, since he did not use any geometrical notions; everything
was in terms of ‘numbers’. I asked him about it, and he replied that he always had
the geometrical picture in his mind, but felt that it was more ‘elementary’ not to use
the language of geometry, so he translated everything back to integers, making the
presentation less transparent.

This reminds me that some people speculate that the Ancient Greeks, at least by Pap-
pus’s time, knew analytical geometry, but did not consider it legitimate, so they trans-
lated back-and-forth into synthetic proofs, not telling anyone that they ‘cheated’.

The Berger-Felzenbaum-Fraenkel Revolution

Marc, Alex, and Aviezri did much more with their approach. They found lots of new
results and solved several open problems. See [BFF2] and its many references.

−50 Years Ago

I believe that the BFF paradigm shift is going to be even more significant in the future.
Pointing out analogies between different areas of math leads to revolutions. Let me just
cite Rota’s “observation” that the concept of Möbius inversion, originally introduced
in 1832 in number theory, when properly generalized, is a pillar in the Foundations of
Combinatorial Theory.

Any question in covering systems has its Boolean analog and vice-versa. This leads
to interesting new questions in both areas. In particular, Satisfiability, and finding
minimal DNFs for Boolean functions, have their covering systems analogs. My former
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student, Melkamu Zeleke, made a start in these investigations ([Z]), and in a brilliant
paper with Jamie Simpson ([SZ]) a previous record of BFF was broken. I am sure that
the future will bring many more applications and insights that stem from the marvelous
Berger-Felzenbaum-Fraenkel approach.

Acknowledgement: I wish to thank the two referees for numerous suggestions and
corrections.
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