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Abstract

We determine the subword complexity of the characteristic functions of a two-
parameter family {An}∞n=1 of infinite sequences which are associated with the win-
ning strategies for a family of 2-player games. A special case of the family has the
form An = bnαc for all n ∈ Z>0, where α is a fixed positive irrational number.
The characteristic functions of such sequences have been shown to have subword
complexity n+1. We show that every sequence in the extended family has subword
complexity O(n).

1 Introduction

Denote by Z≥0 and Z>0 the set of nonnegative integers and positive integers respectively.
Given two heaps of finitely many tokens, we define a 2-player heap game as follows. There
are two types of moves:
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1. Remove any positive number of tokens from a single heap.

2. Remove k > 0 tokens from one heap and l > 0 from the other. Here k and l are
constrained by the condition: 0 < k ≤ l < sk + t, where s and t are predetermined
positive integers.

The player who reaches a state where both heaps are empty wins. The special case
s = t = 1 is the classical Wythoff game [15], [16], [5].

Fraenkel showed [11] that every possible position in a game of this type can be classified
as either a P -position, in which the Previous player can win, or an N -position, in which
the Next player can win. Thus a winning strategy involves moving from an N -position to
a P -position. Let P denote the set of all possible P -positions in a game with given values
for s and t. Let mex S denote the least nonnegative integer in Z≥0 \ S.

Then P =
⋃∞

i=0{(Ai, Bi)}, where for every n ∈ Z≥0,

An = mex {{Ai : 0 ≤ i < n} ∪ {Bi : 0 ≤ i < n}}, Bn = sAn + tn.

Thus An and Bn are strictly increasing sequences, with A0 = B0 = 0 and A1 = 1
for all s, t ∈ Z>0. Denoting A =

⋃∞
i=1 Ai and B =

⋃∞
i=1 Bi, we have A ∪ B = Z>0, and

A ∩ B = ∅.

Fraenkel [9] generalized the classical Wythoff game (s = t = 1) to the case s = 1, t ≥
1, and showed that a polynomial-time-computable strategy exists for the game. The
strategy is based on the Ostrowski numeration system [12], with a base computed from
the simple continued fraction expansion of α, where α satisfies An = bnαc for all n ≥ 0.
Fraenkel showed [11] that such α exists if and only if s = 1, but that a polynomial-time-
computable strategy based on a numeration system defined by certain recursion formulas
[10] nevertheless exists for every s, t ∈ Z>0.

In this paper we investigate an additional property of the class of heap games for
general s, t ∈ Z>0: the subword complexity of the characteristic function of A. For fixed
s, t ∈ Z>0, define the characteristic function of A as χ = χ(A) : Z>0 −→ {0, 1}, where

χ(x) =

{
1, x ∈ A

0, x /∈ A.

A word w is a factor of y if there exist words u, v, possibly empty, such that y = uwv.
Define the subword complexity function cs,t : Z>0 −→ Z>0, where c = cs,t(n) = number
of distinct factors of length n of the infinite sequence χ. Our goal is to determine the
subword complexity function c of χ for general s, t ∈ Z>0.
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The problem of computing the subword complexity of a given sequence has been
addressed in a number of earlier works. For a survey of results in this area, we refer the
reader to [2] and [8]. In particular, [13] contains an analysis of the subword complexity of
infinite sequences S of the form S = fω(b), where f is a morphism such that b ∈ {0, 1} is
a prefix of f(b). For example, it is shown there that if the functions

f0(n) = |fn(0)|, f1(n) = |fn(1)|

have asymptotic growth rate Θ(kn) for some constant k, then S has linear subword com-
plexity.

In section 2 we show that for every s, t ∈ Z>0, χ is generated by such a morphism f .
In section 4 it is shown that both |fn(0)| and |fn(1)| have asymptotic growth rate Θ(kn).
Thus by [13], χ has linear subword complexity for all s, t ∈ Z>0. This is consistent with
our result that for all s, t ∈ Z>0, c(n + 1) − c(n) ∈ {1, 2} for every n ∈ Z>0.

For every given s, t ∈ Z>0, the set of positive integers consists of intervals over which
c(n+1)−c(n) = 2 for all n, alternating with intervals over which c(n+1)−c(n) = 1 for all
n. In other words, there exist intervals of “fast growth” of c(n) relative to n, alternating
with intervals of relatively “slow growth”. By computing c(n) at the first point of every
interval of fast growth, we found that the subword complexity at these points converges
asymptotically to

E
(
(1 − s − 1

(s + t − 1)α
) + (1 +

s − 1

(s + t − 1)α
)n

)
,

where E(x) denotes the closest integer to x, and α > 1 is a constant defined below in (2).
Similarly, the complexity at the first point of every interval of slow growth converges to

E
(
(1 +

(s − 1)α

(2s + t − 2)α − (s − 1)
)n + 1

)
.

These two limits are respectively the lower and upper bounds on the asymptotic subword
complexity of χ. When s = 1, the intervals of fast growth of c(n) are empty, so the lower
and upper bounds are equivalent and we have c(n) = n + 1 for all n ∈ Z>0.

In section 3 we introduce the concept of special words, and show how to determine
the number of distinct special factors of χ of any given length. In section 4 we use the
results of section 3 to determine the subword complexity of χ. The subword complexity
formula is presented both for finite n, and as an asymptotic value when n approaches ∞.

2 Preliminaries

In this section, we describe a morphism, f , which generates χ for fixed s and t.
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2.1 An Equivalent Sequence

A morphism h is called non-erasing if h(u) ≥ 1 for every word u. See e.g. [14].

Definition. For given values of s and t, let f : {0, 1}∗ −→ {0, 1}∗ be a morphism defined
by the following rules:

(i) f(0) = 1s (concatenation of 1 by itself s times),

(ii) f(1) = 1s+t−10.

Note that the morphism thus defined is non-erasing. Further, f(u · v) = f(u) · f(v),
where “·” (usually omitted), denotes concatenation. We use standard function iteration:
f 0(u) = u, and f i(u) = f(f i−1(u)) for i ∈ Z>0. So also hi(u · v) = hi(u) · hi(v) for all
i ∈ Z≥0.

Notation. Let ε denote the empty word. Then 10 = 00 = ε, and for all i ∈ Z≥0,
f i(ε) = ε.

Since f is a non-erasing morphism and f(1) = 1x (x = 1s+t−20), we can define F =
fω(1) = 1xf(x)f 2(x)f 3(x) · · ·, the unique infinite string of which f(1), f 2(1), f 3(1), . . . are
all prefixes [6].

Theorem 1. F = χ(A).

To prove our theorem, we apply the following result.

Lemma 1. Suppose that for some n ∈ Z>0, the n-th one in F is at position k. Then the
n-th zero is at position sk + tn.

Proof. If the n-th one is at position k, then the length k prefix contains n ones and
k−n zeros. Since F = fω(1), we can apply the morphism to this prefix to obtain another
(longer) prefix of F . This prefix will contain n copies of f(1) and k − n of f(0), and so
has n zeros, n(s+ t− 1)+ (k −n)s ones, and length n+n(s+ t− 1)+ (k −n)s = nt+ ks.
Since it ends with f(1) which ends in zero, the n-th zero is in position nt + ks. �

Proof of Theorem 1. We show by induction that for all n ∈ Z>0, the n-th one is at
position An, and the n-th zero is at position Bn in F .
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(i) n = 1: A1 = 1, and the first one is at position 1. Thus by Lemma 1, the first zero
is at position s + t = B1.

(ii) n > 1: Suppose that for all i < n, the i-th one and the i-th zero are at positions Ai

and Bi respectively. From the definition of the Ai sequence, An is the least integer
distinct from Ai and Bi for all i < n; thus either the n-th zero or the n-th one
occurs at bit position An, with the other bit occurring at some later position. But
Lemma 1 implies that the n-th one occurs earlier than the n-th zero, so it must be
in position An, and by the definition of Bn, the n-th zero is in position Bn.

Thus for every x ∈ Z>0, the bit at position x of F is a 1 if and only if χ(x) = 1, where
χ is the characteristic sequence of A. �

2.2 Properties of F

For the remainder of this paper, we determine the subword complexity of χ by analyzing
F . To do so, we first collect several properties of F which are implied by the rules of the
generating morphism f .

Lemma 2. F consists of isolated 0-bits separated by 1s+t−1 or by 12s+t−1.

Proof. The only way to generate a 0 is as the termination of f(1) = 1s+t−10. Thus
every 0 is preceded by 1s+t−1, and is followed by either f(1) or f(0), so 00 is not a factor
of F . Therefore every 0 is followed by either f(1) or f(0)f(1). If it is followed by f(1),
then it is separated from the next 0-bit by 1s+t−1. If it is followed by f(0)f(1), then it is
separated from the next 0-bit by 12s+t−1. �

Lemma 3. If f(x) = f(y) then x = y.

Proof. Let x = x1x2 · · ·xm and y = y1y2 · · ·yn and suppose f(x) = f(y). Then we have

f(x1)f(x2) · · · f(xm) = f(y1)f(y2) · · ·f(yn).

If f(xm) ends in a zero, then it must be f(1) and so xm = 1. Otherwise xm = 0. The
same applies to yn and so we must have xm = yn and

f(x1)f(x2) · · · f(xm−1) = f(y1)f(y2) · · ·f(yn−1).

Continuing inductively we get xm−1 = yn−1 and so on, giving x = y. �
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Remark. If x = f(w), then by Lemma 3 w is the unique inverse of x, which we denote
f−1(x).

Notation. Denote by |w| the length of the factor w, i.e., the number of its letters,
counting multiplicities.

Lemma 4. Let w be a factor of F beginning with f(0)f(1) or f(1), and terminating
with f(1). Then f−1(w) exists, and |f−1(w)| < |w|.

Proof. Suppose that the assertion holds for all w terminating with f(1), with |w| ≤ n.
Let w be any factor of length n + 1 (n ≥ |f(1)|), beginning with f(0)f(1) or f(1) and
terminating with f(1). We consider two cases.

(i) w begins with f(1). Then w = f(1)w′f(1). By Lemma 2, if w′ is nonempty, then
w′ begins with f(0)f(1) or f(1), and |w′f(1)| = n − s − t + 1 < n. Then by the
induction hypothesis, f−1(w) = 1f−1(w′f(1)), and |1f−1(w′f(1))| < |f(1)w′f(1)|.

(ii) w begins with f(0)f(1), so w = f(0)f(1)w′f(1). The argument is as in the case (i)
with an extra prefix f(0). �

3 Special Words

As stated in the introduction, our goal is to determine the subword complexity function c
of F . Recall that for every n ∈ Z>0, c(n) denotes the number of distinct words of length
n which are factors of F . Thus c(1) = 2, and for every n ∈ Z>0, c(n + 1) − c(n) is the
number of length n factors of F that can be followed by both a 0 and a 1 in F .

Definition. Following standard terminology, define a factor w of F to be special if both
w0 and w1 are factors of F . If w can be extended only by adjoining one of 0, 1, then w
is nonspecial .

Remark. x is special ⇐⇒ every suffix of x is special.

Definition. Let N : Z>0 −→ Z≥0 be the function defined as follows. For every n ∈ Z>0,
N(n) denotes the number of distinct special words of length n.
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Thus for all n ∈ Z>0, c(n + 1) − c(n) = N(n), so

c(n) = c(1) +

n−1∑
i=1

(c(i + 1) − c(i)) = 2 +

n−1∑
i=1

N(i). (1)

To determine the subword complexity of F , therefore, we first compute N(n) for every
n ∈ Z>0.

Notation. Let x0 denote 1s+t−1, and x1 denote 12s+t−2.

Note that s = 1 =⇒ x0 = x1 = 1t.

Remark. If k < 2s + t − 1 then 1k is special. In particular, x0 and x1 are special.

Definition. Given x, y ∈ F , x possibly nonempty. Then x is said to be a proper prefix
of y if y = xu for some nonempty u. Similarly, x is a proper suffix of y if y = ux for some
nonempty u.

Lemma 5. Given any word w = bu ∈ F , b ∈ {0, 1}. Suppose that u is special and w is
nonspecial. Then either u = 1k for some k < 2s + t − 1, or f(1) is a proper prefix of u.

Proof. Since u is extendible in two possible ways, whereas bu is extendible in only one
way, it follows that both 0u and 1u are factors of F . Suppose that u contains no 0. Then
Lemma 2 implies that |1u| < 2s+ t, so we have u = 1k, k < 2s+ t−1. On the other hand,
suppose that u contains at least one 0. Then u begins with 1m0 for some m ∈ Z≥0. Since
0u ∈ F , Lemma 2 implies that m ∈ {2s + t − 1, s + t − 1}. But since 1u ∈ F , Lemma 2
implies that m < 2s + t − 1. Thus m = s + t − 1 and u begins with 1s+t−10 = f(1). �

Definition. For given s and t, define g : {0, 1}∗ −→ {0, 1}∗, where for all x ∈ {0, 1}∗,
g(x) = f(x)1s+t−1.

Lemma 6. x special ⇐⇒ g(x) special.
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Proof.

(i) Suppose that x is special, so both x0 and x1 are factors of F . Then Lemma 2 implies
that both x01 and x1, and thus f(x)f(01) and f(x)f(1), are factors of F . But

f(x)f(01) = f(x)1s1s+t−10 = f(x)1s+t−11s0 = g(x)1s0,

and
f(x)f(1) = f(x)1s+t−10 = g(x)0.

Therefore both g(x)1 and g(x)0 are factors of F , so g(x) is special.

(ii) Suppose that g(x) = f(x)1s+t−1 is special. Then both g(x)0 and g(x)1 are factors
of F . But

g(x)0 = f(x)1s+t−10 = f(x)f(1),

so by Lemma 4, f−1(f(x)f(1)) = x1 is a factor of F .

Suppose that x = x′0, for some x′. Then g(x)1 = f(x′)f(0)1s+t = f(x′)12s+t,
contradicting Lemma 2. Thus x = x′1 for some x′, so

g(x)1 = f(x′)f(1)1s+t = f(x′)1s+t−101s+t.

Since s+ t−1 < s+ t, Lemma 2 implies that the 01s+t terminating g(x)1 is followed
by 1s−10, to form

f(x′)1s+t−1012s+t−10 = f(x01).

Thus f−1(f(x01)) = x01 is a factor of F , so x is special. �

Corollary 1. x is special ⇐⇒ for all i ∈ Z≥0, every suffix of gi(x) is special.

Proof. obtain:

x special ⇐⇒ g(x) special ⇐⇒ g2(x) special ⇐⇒ · · · ⇐⇒ gi(x) special,

for all i ∈ Z≥0. But a word is special if and only if all of its suffixes are special, so our
result follows. �

Theorem 2. w is special ⇐⇒ w is a suffix of gi(x1) for some i.

Proof. i ∈ Z≥0, every suffix of gi(x1) is special.

In the other direction, suppose that w is special. If w contains no zeros, then by
Lemma 2, w must have the form 1k for some k ≤ 2s+ t−2, so w is a suffix of x1 = g0(x1).
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We prove the other cases by induction on |w|, the start of the induction being the case
above. Suppose w contains a zero and both w0 and w1 occur in F . By Lemma 2, w must
end in 1s+t−1, so let

w = w[1]w[2] · · ·w[k]1s+t−1,

where w[j] denotes the j-th bit of w. Again by Lemma 2 we see that w[k] = 0 and
therefore w[k−s− t+1] · · ·w[k] = f(1). We then consider w[k−s− t]. If this is zero then
w[1] · · ·w[k − s − t] ends in f(1) or a suffix of f(1); otherwise it ends in f(0) or a suffix
of f(0). Going backwards in this way we can uniquely identify w as having the form

w = vf(u1)f(u2) · · · f(um)1s+t−1,

where v is a nonempty suffix of f(0) or f(1). Say it is a suffix of f(u0), and denote by
xvf(u1) · · ·f(um)1s+t−1 the longest special suffix of f(u0)f(u1) · · · f(um)1s+t−1. If |xv| <
|f(u0)|, then by Lemma 5, xvf(u1) · · ·f(um)1s+t−1 begins with f(1). But this contradicts
the fact that xv is a proper suffix of f(u0).

Thus f(u0)f(u1) · · · f(um)1s+t−1 = g(u0 · · ·um) is special, so by Lemma 6, u0 · · ·um is
special. Therefore by the induction hypothesis, u0 · · ·um is a suffix of gi(x1) for some i.
Since w is a suffix of f(u0)f(u1) · · ·f(um)1s+t−1 = g(u0 · · ·um), this implies that w is a
suffix of gi+1(x1). �

For every n ∈ Z>0, define the set

Sn = {w : |w| = n, and for some i ∈ Z≥0, w is a suffix of gi(x1)}.

Theorem 2 implies that N(n) = |Sn| for all n ∈ Z>0.

Theorem 3.

N(n) =

{
2 if for some i ∈ Z≥0, |gi(x0)| < n ≤ |gi(x1)|,
1 otherwise.

To prove the theorem, we apply several results.

Lemma 7. (a) For all i ∈ Z>0 and w, gi(w) = f i(w)gi−1(x0).

(b) For all i ∈ Z>0 and w, gi(w) = f i(w)f i−1(x0) · · · f 1(x0)f
0(x0).

(c) For all i ∈ Z≥0 and x, y, gi(xy) = f i(x)gi(y).

Proof. By induction on i. �

Corollary 2. (a) Let i, j ∈ Z≥0, with i ≤ j. Then gi(x0) is a suffix of gj(x0).
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(b) Let k, m ∈ Z>0, with k ≤ m. Then for all i ∈ Z≥0, gi(1k) is a suffix of gi(1m).

(c) For all i ∈ Z≥0, |gi(x0)| ≤ |gi(x1)| < |gi+1(x0)|, with |gi(x0)| = |gi(x1)| if and only
if s = 1.

Proof.

(a) By Lemma 7(b), gj(x0) = f j(x0) · · · f i+1(x0)g
i(x0).

(b) Let ` = m − k. Lemma 7(c) implies that

gi(1m) = gi(1l1k) = f i(1l)gi(1k).

(c) By Lemma 7(c), gi(x1) = gi(1s−1x0) = f i(1s−1)gi(x0). Thus |gi(x0)| ≤ |gi(x1)|, with
equality if and only if s = 1. Lemma 7(a) implies that gi+1(x0) = f i+1(x0)g

i(x0),
so to prove that |gi(x1)| < |gi+1(x0)|, it suffices to show that |f i(1s−1)| < |f i+1(x0)|.
But this is satisfied, since |f i(1s−1)| < |f i(x0)| < |f i+1(x0)|. �

Notation. By x ∈ F , we mean that x is a factor of F .

Proof of Theorem 3. Suppose that n ≤ s + t − 1 = |g0(x0)|. We show that |Sn| = 1.
Now, g0(x1) = x1 terminates with x0, and Lemma 7(b) implies that for all i ∈ Z>0, gi(x1)
terminates with x0, which terminates with 1|n|. Thus 1|n| is the unique member of Sn, so
|Sn| = 1.

Let i ∈ Z≥0. Consider the set of n satisfying

|gi(x0)| < n ≤ |gi+1(x0)|.
Then by Corollary 2(a), for all n in the set, n > |g0(x0)| = s + t − 1.

Given some n in the set, denote by w the suffix of length n of gi+1(x0). Corollary 2(a)
implies that w is a suffix of gj(x0) for all j ≥ i + 1. Thus by Corollary 2(b), w is a suffix
of gj(x1) for all j ≥ i + 1, so we have w ∈ Sn.

If there exists a second member of Sn distinct from w, then this member of Sn is a
suffix of gj(x1) for some j ≤ i. Now, Corollary 2(c) implies that for every positive integer
j < i,

|gj(x0)| ≤ |gj(x1)| < |gj+1(x0)| ≤ · · · ≤ |gi(x0)|.
Since n > |gi(x0)|, it follows that if there exists a member of Sn distinct from w, then this
member is a suffix of gi(x1). Thus |Sn| ∈ [1, 2].

Now, by Corollary 2(c), we have |gi(x0)| ≤ |gi(x1)| < |gi+1(x0)|. It follows that either
(i) |gi(x0)| < n ≤ |gi(x1)|, or (ii) |gi(x1)| < n ≤ |gi+1(x0)|. Since N(n) = |Sn| for all n, it
suffices to show that |Sn| = 2 in case (i), and |Sn| = 1 in case (ii).
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(i) Suppose that |gi(x0)| < n ≤ |gi(x1)|. We assume that s ≥ 2, because otherwise
the set of n satisfying this inequality is empty. Denote by w′ the length-n suffix of
gi(x1). To prove that |Sn| = 2, we show that w and w′ are distinct.

Let z = gi(x0). Then by Lemma 7(a) and (c), we have

gi(x1) = gi(1s−1x0) = f i(1s−1)z,

gi+1(x0) = f i+1(x0)z.

Thus w is a suffix of f i+1(x0)z, and w′ is a suffix of f i(1s−1)z. Moreover, n > |z|, so
to prove that w and w′ are distinct, it is sufficient to show that the rightmost bits
of f i(1s−1) and f i+1(x0) differ.

For every x ∈ F , if x terminates with 1, then f(x) terminates with f(1) = 1s+t−10,
which ends in 0. Similarly, if x terminates with 0, then f(x) terminates with f(0) =
1s, which ends in 1. Thus for all i ∈ Z≥0, the rightmost bits of f i(1) and f(f i(1)) =
f i+1(1) differ. But since f is a morphism, f i+1(x0) terminates with f i+1(1), and
f i(1s−1) terminates with f i(1). Thus the rightmost bit of f i(1s−1) differs from that
of f i+1(x0). It follows that w and w′ are distinct, so for all n satisfying |gi(x0)| <
n ≤ |gi(x1)|, |Sn| = 2.

(ii) Suppose that |gi(x1)| < n ≤ |gi+1(x0)|. Since n > |gi(x1)|, there does not exist a
suffix of length n of gi(x1). Thus w is the only member of Sn, so |Sn| = 1. �

Example. Let s = 2, t = 1. Then f(1) = 110, f(0) = 11, x0 = 11 and x1 = 111. Thus

(i) g(x0) = 11011011, so |g(x0)| = 8,

(ii) g(x1) = 11011011011, so |g(x1)| = 11,

(iii) g2(x0) = 110110111101101111011011, so |g2(x0)| = 24.

Note that both g(x1) and g2(x0) terminate with g(x0) — consistent with parts (a)
and (b) of Corollary 2.

Now, for example, |g(x0)| < 10 ≤ |g(x1)|, so we show that |S10| = 2. The suffix of
length 10 of g2(x0) is 1111011011, which we denote w. In fact, Corollary 2 implies that
g2(x0), and thus w, is a suffix of gj(x1) for all j ≥ 2. Thus the suffix w′ = 1011011011
of g(x1) is the only member of S10 which is distinct from w. Both w and w′ terminate
with g(x0) = 11011011, but they differ in the bit immediately preceding g(x0), so they
are distinct. Thus |S10| = 2.

On the other hand, |g(x1)| < 15 ≤ |g2(x0)|, so we show that |S15| = 1. The suffix of
length 15 of g2(x0) is 101101111011011, which by Corollary 2 is a suffix of gj(x1) for all
j ≥ 2. Since 15 > |g(x1)|, there does not exist an additional member of S15 as there did
in S10. Thus |S15| = 1.
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4 Subword Complexity of F

In this section we determine the subword complexity c(n) of F . In section 2, we defined
F = fω(1), where f is a morphism such that f(1) begins with 1. Thus the results of [13]
indicate that the order of c(n) can be determined directly from the order of the functions

u(n) = |fn(1)| and v(n) = |fn(0)|.

More precisely, if both u(n) = Θ(kn) and v(n) = Θ(kn), then F has linear subword
complexity. For convenience, denote un = u(n), and vn = v(n) for all n ∈ Z≥0.

Now u0 = 1, and u1 = |1s+t−10| = s + t. For n ≥ 2,

fn(1) = fn−1(f(1)) = fn−1(1s+t−10) = fn−1(1s+t−1)fn−2(1s),

so un = (s + t− 1)un−1 + sun−2 = run−1 + sun−2, where r = s + t− 1. The characteristic
polynomial of this recurrence is x2 − rx − s = 0, which has solutions

α =
r +

√
r2 + 4s

2
, β =

r −√
r2 + 4s

2
. (2)

Thus for general n ∈ Z≥0, un = c1α
n + c2β

n, where c1 and c2 are constants. Solving for
c1 and c2, therefore, we obtain the solutions :

c1 =
1

2
+

r + 2

2
√

r2 + 4s
, c2 =

1

2
− r + 2

2
√

r2 + 4s
.

Now, r = s + t − 1 ≥ 1 implies that α > 1, −1 < β < 0, and −1
2

< c2 < 0. Thus for even
n, −1

2
< c2β

n < 0, and for odd n, 0 < c2β
n < 1

2
. It follows that

un = c1α
n + c2β

n =

{bc1α
nc, n even

dc1αne, n odd.

Notation. Let E(x) denote the closest integer to x.

For every n ∈ Z>0,

un = E(c1α
n). (3)

Also, for all n ≥ 1, fn(0) = fn−1(f(0)) = fn−1(1s), so vn = sun−1. Thus both un = Θ(αn)
and vn = Θ(αn), so F has linear subword complexity [13].

We now determine a more precise formula for c(n), using equation (1):

c(n) = 2 +

n−1∑
i=1

N(i) = n + 1 +

n−1∑
i=1

(N(i) − 1).
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Theorem 3 implies that this is equivalent to

c(n) = n + 1 + k, (4)

where k is the number of integers m < n such that |gi(x0)| < m ≤ |gi(x1)| for some
i ∈ Z≥0.

Definition. For every i ∈ Z≥0, let Ii denote the interval of integers m satisfying |gi(x0)| <
m ≤ |gi(x1)|, and let |Ii| denote its length.

Lemma 8. Let n ∈ Z>0. If n − 1 ≤ |x0|, or |gi(x1)| ≤ n − 1 ≤ |gi+1(x0)| for some
i ∈ Z≥0, then

c(n) = n + 1 + (s − 1)
i∑

j=0

uj ,

where i is the minimal integer such that |gi+1(x0)| ≥ n − 1.

Proof. let k be the number of integers m < n such that for some j ∈ Z≥0, m ∈ Ij. Then
k =

∑i
j=0 |Ij|. Now, for every j ∈ Z≥0,

|Ij| = |gj(x1)| − |gj(x0)|.

Thus |I0| = |x1| − |x0| = (s − 1)u0. Similarly, for j ≥ 1, Lemma 7(c) implies that

|Ij| = |gj(x1)| − |gj(x0)| = |f j(1s−1)| = (s − 1)uj.

Thus k =
∑i

j=0 |Ij| = (s − 1)
∑i

j=0 uj, so our result follows from (4). �

Remark. If s = 1, then x0 = x1, so for every m ∈ Z>0, either m ≤ |x0| or |gi(x1)| =
|gi(x0)| ≤ m ≤ |gi+1(x0)| for some i ∈ Z≥0. Thus Lemma 8 implies that in the case s = 1,
c(n) = n + 1 for all n ∈ Z>0.

Applying Lemma 8, we analyze c(n) for two different classes of n:
(a) n = |gi(x0)|+1 for some i ∈ Z≥0, (b) n = |gi(x1)|+1 for some i ∈ Z≥0. To do so, we
define functions Li(n) and Ui(n), which are dependent on i, and show that c(n) = Li(n)
and c(n) = Ui(n) in cases (a) and (b) respectively.

Lemma 9. For every i ∈ Z≥0, |gi(x0)| = (s + t − 1)
∑i

j=0 uj.
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Proof. Lemma 7(b) implies that

|gi(x0)| =

i∑
j=0

|f j(x0)| = (s + t − 1)

i∑
j=0

|f j(1)| = (s + t − 1)

i∑
j=0

uj. �

Let n = |gi(x0)| + 1 for some i ∈ Z≥0. Then by Lemmas 8 and 9, we have

c(n) =
(
1 − (s − 1)

∑i−1
j=0 uj

(s + t − 1)
∑i

j=0 uj

)
+

(
1 +

(s − 1)
∑i−1

j=0 uj

(s + t − 1)
∑i

j=0 uj

)
n .

But (3) implies that for all m ∈ Z≥0,

m∑
j=0

uj =
m∑

j=0

E(c1α
j) ≈ c1

αm+1 − 1

α − 1
,

so it follows that

c(n) ≈
(
1 − (s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)

)
+

(
1 +

(s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)

)
n .

Definition. For every i ∈ Z≥0,

Li(n) = E
(
(1 − (s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
) + (1 +

(s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
)n

)
.

Theorem 4. If n = |gi(x0)| + 1 for some i ∈ Z≥0, then c(n) = Li(n).

The proof of Theorem 4 depends on the following two lemmas, which we leave to the
reader to verify. Recall that for all i ∈ Z≥0, ui = c1α

i + c2β
i, where −1 < β < 0, and

−1
2

< c2 < 0.

Lemma 10. For every i ∈ Z≥0, 0 <
∑i

j=0 βj ≤ 1, with equality to 1 if and only if i = 0.

Lemma 11. s|c2| < 1/2.

Proof of Theorem 4. If s = 1, then for all n, Li(n) = n + 1. But Lemma 8 implies
that c(n) = n + 1 for all n, so we are done. To prove the theorem for s ≥ 2, we first note
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that if z is an integer, then given any real number x, proving that E(x) = z is equivalent
to proving that |z − E(x)| < 1

2
.

Let s ≥ 2, and suppose that n = |gi(x0)| + 1 for some i ∈ Z≥0. Then letting n′ =
n − 1 = |gi(x0)|, we have N(n′) = 1 by Theorem 3, so c(n′) = c(n) − 1. Thus it suffices
to show that

c(n′) = E
(
− (s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
+ (1 +

(s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
)n

)

= n′ + 1 + E
( (s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
n′

)
.

Lemma 8 implies that this is equivalent to proving that

(s − 1)

i−1∑
j=0

uj = E
( (s − 1)(αi − 1)

(s + t − 1)(αi+1 − 1)
n′

)
,

or equivalently,

(s − 1)
∣∣∣

i−1∑
j=0

uj − (αi − 1)

(s + t − 1)(αi+1 − 1)
n′

∣∣∣ <
1

2
. (5)

Now uj = c1α
j + c2β

j, and by Lemma 9, n′ = |gi(x0)| = (s+ t−1)
∑i

j=0 uj. Therefore

(s − 1)
∣∣∣

i−1∑
j=0

uj − (αi − 1)

(s + t − 1)(αi+1 − 1)
n′

∣∣∣ = (s − 1)
∣∣∣c2(

i−1∑
j=0

βj − αi − 1

αi+1 − 1

i∑
j=0

βj)
∣∣∣.

Thus by Lemmas 10 and 11, equation (5) is satisfied. �

Let n = |gi(x1)| + 1 = |gi(x0)| + |Ii| + 1 for some i ∈ Z≥0. Lemma 9 implies that
|gi(x0)| = (s + t − 1)

∑i
j=0 uj. Similarly, in the proof of Lemma 8, we saw that |Ii| =

(s − 1)ui. Therefore,

n = (s + t − 1)

i∑
j=0

uj + (s − 1)ui + 1. (6)

Now, Lemma 8 implies that

c(n) = n + 1 +
(s − 1)

∑i
j=0 uj

(s + t − 1)
∑i

j=0 uj + (s − 1)ui + 1
n .

Thus by (3), we have

c(n) ≈ n + 1 + E
( c1(s − 1)

∑i
j=0 αj

c1(s + t − 1)
∑i

j=0 αj + c1(s − 1)αi + 1
n
)
. (7)
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Definition. For every i ∈ Z≥0,

Ui(n) = n + 1 + E
( (s − 1)(αi+1 − 1)

(s + t − 1)(αi+1 − 1) + (s − 1)(αi+1 − αi) + (α − 1)/c1
n
)
. (8)

Theorem 5. If n = |gi(x1)| + 1 for some i ∈ Z≥0, then c(n) = Ui(n).

Proof. If s = 1, then for all n, Ui(n) = n+1. But Lemma 8 implies that c(n) = n+1 for
all n, so we are done. To prove the theorem for s ≥ 2, we first note that the two formulas
presented in equations (7) and (8) are equivalent.

Now, from Lemma 8 we have c(n) = n + 1 + (s − 1)
∑i

j=0 uj, so it suffices to prove
that

(s − 1)

i∑
j=0

uj = E
( c1(s − 1)

∑i
j=0 αj

c1(s + t − 1)
∑i

j=0 αj + c1(s − 1)αi + 1
n
)
,

or equivalently, that

(s − 1)
∣∣∣

i∑
j=0

uj −
c1

∑i
j=0 αj

c1(s + t − 1)
∑i

j=0 αj + c1(s − 1)αi + 1
n
∣∣∣ <

1

2
. (9)

Since n = |gi(x1)| + 1, equation (6) implies that (9) is equivalent to

(s − 1)
∣∣∣

i∑
j=0

uj −
c1

∑i
j=0 αj((s + t − 1)

∑i
j=0 uj + (s − 1)ui + 1)

c1(s + t − 1)
∑i

j=0 αj + c1(s − 1)αi + 1

∣∣∣ <
1

2
.

This inequality can be verified by substituting c1α
j + c2β

j for uj and applying Lem-
mas 10 and 11. �

Theorems 4 and 5 imply that for every i ∈ Z≥0, c(n) = Li(n) and c(n) = Ui(n) at,
respectively, the beginning and end points of interval Ii. But Theorem 3 implies that c(n)
increases in steps of 2 throughout the entire interval, so it follows that for all i ∈ Z≥0,

|gi(x0)| < n ≤ |gi+1(x0)| =⇒ Li(n) ≤ c(n) ≤ Ui(n).

Thus denoting
L(n) = lim

i→∞
Li(n), and U(n) = lim

i→∞
Ui(n),

L(n) and U(n) are, respectively, the lower and upper bounds of the asymptotic subword
complexity of F as n approaches ∞. The precise formulas for these bounds are stated in
Theorem 6, which we leave to the reader to verify.
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Theorem 6. For every n ∈ Z>0,

L(n) = E
(
(1 − s − 1

(s + t − 1)α
) + (1 +

s − 1

(s + t − 1)α
)n

)
,

U(n) = E
(
(1 +

(s − 1)α

(2s + t − 2)α − (s − 1)
)n + 1

)
.

5 Conclusion

For every s, t ∈ Z>0, the subword complexity c of F is linear in n. We presented tight upper
and lower bounds for c(n), both for finite n, and as an asymptotic value as n approaches
infinity. If s = 1, the lower and upper bounds are equivalent and we have c(n) = n + 1
for all n ∈ Z>0. This property follows from the fact that c(n + 1) − c(n) = N(n) = 1 for
all n ∈ Z>0.

If s ≥ 2, however, the set of positive integers consists of intervals of integers n satisfying
N(n) = 1, alternating with intervals of n over which N(n) = 2. Thus as n increases, c(n)
grows alternately slower and faster, depending on the type of interval in which n is located.
In this case, therefore, the lower and upper bounds of c(n) are distinct.

This difference between the cases s = 1 and s ≥ 2 is related to a property of the infinite
sequences A characterized by F . The sequence A is defined to be a Beatty sequence if
there exist real α, β such that An = bnα + βc for all n ∈ Z>0. It turns out that A is
a Beatty sequence if and only if s = 1, in which case we have α = (2 − t +

√
t2 + 4)/2,

β = 0 [11]. Since
√

t2 + 4 is irrational for all t ∈ Z>0, it follows that α is irrational. In [1]
it was shown that every Beatty sequence with irrational α has a characteristic sequence
with subword complexity c(n) = n + 1 for all n ∈ Z>0. Our result is consistent with this.

The case s = 1 differs from s ≥ 2 also in that A is spectral, that is, |(Ak+i − Ak) −
(Aj+i−Aj)| ≤ 1 for every i, j, k ∈ Z>0, if and only if s = 1 [11]. This is because the set of
spectral sequences is precisely the set of Beatty sequences [4]. This motivates the question
of whether A has a similar property when s ≥ 2. Perhaps associated with some of the A
sequences for s ≥ 2 is an integer m ≥ 2 such that for all i, j, k, |(Ak+i−Ak)−(Aj+i−Aj)| ≤
m.

Another related observation is to estimate, for fixed m ∈ Z>0 and for every n ∈ Z>0,
the number of increasing sequences of length n such that for all i, j, k with 1 ≤ j, k, j +
i, k + i ≤ n, |(Ak+i − Ak) − (Aj+i − Aj)| ≤ m. For m = 1, the number of such words
of length n is Euler’s totient function, which is polynomial in n [3],[7]. For m = 2,
however, R. Tijdeman observed (private communication), that the number of such words
is exponential in n, since the entire set of length-n words with a characteristic sequence
beginning with {01, 10}bn/2c exhibits this property.
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