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Abstract

We determine the subword complexity of the characteristic functions of a two-
parameter family {4, }7° ; of infinite sequences which are associated with the win-
ning strategies for a family of 2-player games. A special case of the family has the
form A, = |na] for all n € Z-o, where « is a fixed positive irrational number.
The characteristic functions of such sequences have been shown to have subword
complexity n+ 1. We show that every sequence in the extended family has subword
complexity O(n).

1 Introduction

Denote by Zs, and Z- the set of nonnegative integers and positive integers respectively.
Given two heaps of finitely many tokens, we define a 2-player heap game as follows. There
are two types of moves:
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1. Remove any positive number of tokens from a single heap.

2. Remove k > 0 tokens from one heap and [ > 0 from the other. Here k and [ are
constrained by the condition: 0 < k <[ < sk +t, where s and t are predetermined
positive integers.

The player who reaches a state where both heaps are empty wins. The special case
s =t = 11is the classical Wythoff game [15], [16], [5].

Fraenkel showed [11] that every possible position in a game of this type can be classified
as either a P-position, in which the Previous player can win, or an N-position, in which
the Next player can win. Thus a winning strategy involves moving from an N-position to
a P-position. Let P denote the set of all possible P-positions in a game with given values
for s and ¢. Let mex S denote the least nonnegative integer in Zsg \ S.

Then P = [J;2,{ (4, B;)}, where for every n € Zx,

A, = mex{{A;:0<i<n}U{B;:0<i<n}}, B,=sA,+tn.

Thus A, and B, are strictly increasing sequences, with Ay = By = 0 and A; = 1
for all s,¢t € Z~o. Denoting A = |J;2, A; and B = J;2, B;, we have AU B = Z,, and
ANB=1.

Fraenkel [9] generalized the classical Wythoff game (s =¢ = 1) to the case s =1, t >
1, and showed that a polynomial-time-computable strategy exists for the game. The
strategy is based on the Ostrowski numeration system [12], with a base computed from
the simple continued fraction expansion of «, where « satisfies A,, = |na| for all n > 0.
Fraenkel showed [11] that such « exists if and only if s = 1, but that a polynomial-time-
computable strategy based on a numeration system defined by certain recursion formulas
[10] nevertheless exists for every s,t € Zx,.

In this paper we investigate an additional property of the class of heap games for
general s;t € Z~: the subword complexity of the characteristic function of A. For fixed
s,t € Z~o, define the characteristic function of A as x = x(A) : Zso — {0, 1}, where

1, r€ A
X(x):{(), x ¢ A

A word w is a factor of y if there exist words wu, v, possibly empty, such that y = uwwv.
Define the subword complexity function cs; : Zsg — Z~q, where ¢ = ¢;4(n) = number
of distinct factors of length n of the infinite sequence x. Our goal is to determine the
subword complexity function ¢ of x for general s,t € Z~.
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The problem of computing the subword complexity of a given sequence has been
addressed in a number of earlier works. For a survey of results in this area, we refer the
reader to [2] and [8]. In particular, [13] contains an analysis of the subword complexity of
infinite sequences S of the form S = f“(b), where f is a morphism such that b € {0, 1} is
a prefix of f(b). For example, it is shown there that if the functions

fo(n) = 1£"O)],  fuln) = |f"(1)]

have asymptotic growth rate ©(k™) for some constant k, then S has linear subword com-
plexity.

In section 2 we show that for every s,t € Z~, x is generated by such a morphism f.
In section 4 it is shown that both |f™(0)| and |f™(1)| have asymptotic growth rate O (k™).
Thus by [13], x has linear subword complexity for all s,¢ € Z~. This is consistent with
our result that for all s,¢ € Z~g, ¢c(n+ 1) — c¢(n) € {1,2} for every n € Z-y.

For every given s,t € Z-q, the set of positive integers consists of intervals over which
c(n+1)—c¢(n) = 2 for all n, alternating with intervals over which ¢(n+1)—c¢(n) = 1 for all
n. In other words, there exist intervals of “fast growth” of ¢(n) relative to n, alternating
with intervals of relatively “slow growth”. By computing ¢(n) at the first point of every
interval of fast growth, we found that the subword complexity at these points converges
asymptotically to

s—1 s—1
E<(1_ (s+t—1)a>+(1+ (S+t—1)a)n)’

where E(z) denotes the closest integer to z, and o > 1 is a constant defined below in (2).
Similarly, the complexity at the first point of every interval of slow growth converges to
(s — 1«
(2s+t—2)a—(s—1)

B((1+ 1),

These two limits are respectively the lower and upper bounds on the asymptotic subword
complexity of y. When s = 1, the intervals of fast growth of ¢(n) are empty, so the lower
and upper bounds are equivalent and we have ¢(n) =n + 1 for all n € Z-,.

In section 3 we introduce the concept of special words, and show how to determine
the number of distinct special factors of y of any given length. In section 4 we use the
results of section 3 to determine the subword complexity of xy. The subword complexity
formula is presented both for finite n, and as an asymptotic value when n approaches oco.

2 Preliminaries

In this section, we describe a morphism, f, which generates x for fixed s and ¢.
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2.1 An Equivalent Sequence

A morphism h is called non-erasing if h(u) > 1 for every word u. See e.g. [14].

Definition. For given values of s and t, let f: {0,1}* — {0, 1}* be a morphism defined
by the following rules:

(i) f(0) =1° (concatenation of 1 by itself s times),

(i) f(1) = 15+-10.

Note that the morphism thus defined is non-erasing. Further, f(u-v) = f(u) - f(v),
where “” (usually omitted), denotes concatenation. We use standard function iteration:
fP(u) = u, and f'(u) = f(f*"*(u)) for i € Z~g. So also h'(u-v) = h'(u) - h*(v) for all
1€ ZZO‘

Notation. Let e denote the empty word. Then 1° = 0° = ¢, and for all i € Zs,,
file) =e.

Since f is a non-erasing morphism and f(1) = 1z (z = 1°7'720), we can define F =
() = 1zf(x) f*(x) f3(z) - - -, the unique infinite string of which f(1), f2(1), f3(1),... are
all prefixes [6].

Theorem 1. F' = x(A).

To prove our theorem, we apply the following result.

Lemma 1. Suppose that for some n € Z~g, the n-th one in F is at position k. Then the
n-th zero is at position sk + tn.

Proof. If the n-th one is at position k, then the length k prefix contains n ones and
k —n zeros. Since F' = f“(1), we can apply the morphism to this prefix to obtain another
(longer) prefix of F. This prefix will contain n copies of f(1) and k —n of f(0), and so
has n zeros, n(s+t—1)+ (k —n)s ones, and length n+n(s+t—1)+ (k —n)s = nt + ks.
Since it ends with f(1) which ends in zero, the n-th zero is in position nt + ks. R

Proof of Theorem 1. We show by induction that for all n € Z~(, the n-th one is at
position A,,, and the n-th zero is at position B,, in F.
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(i) n =1: A; = 1, and the first one is at position 1. Thus by Lemma 1, the first zero
is at position s +t = B;.

(ii) n > 1: Suppose that for all i < n, the i-th one and the i-th zero are at positions A;
and B; respectively. From the definition of the A; sequence, A, is the least integer
distinct from A; and B; for all ¢ < n; thus either the n-th zero or the n-th one
occurs at bit position A,, with the other bit occurring at some later position. But
Lemma 1 implies that the n-th one occurs earlier than the n-th zero, so it must be
in position A,,, and by the definition of B,,, the n-th zero is in position B,.

Thus for every = € Z+, the bit at position x of F'is a 1 if and only if y(z) = 1, where
x is the characteristic sequence of A. =

2.2 Properties of F

For the remainder of this paper, we determine the subword complexity of x by analyzing
F'. To do so, we first collect several properties of F' which are implied by the rules of the
generating morphism f.

Lemma 2. F consists of isolated 0-bits separated by 1571 or by 12511,

Proof. The only way to generate a 0 is as the termination of f(1) = 157=10. Thus
every 0 is preceded by 15771 and is followed by either f(1) or f(0), so 00 is not a factor
of F. Therefore every 0 is followed by either f(1) or f(0)f(1). If it is followed by f(1),
then it is separated from the next 0-bit by 1T~ If it is followed by f(0)f(1), then it is
separated from the next 0-bit by 125*~1. m

Lemma 3. If f(x) = f(y) then z = y.

Proof. Let z = xyz9- -2, and y = 4195 - - -y, and suppose f(z) = f(y). Then we have

f@)f(we) - fem) = F(y) f(y2) -~ fyn)-

If f(x,,) ends in a zero, then it must be f(1) and so z,,, = 1. Otherwise z,,, = 0. The
same applies to y,, and so we must have z,, =y, and

f(xl)f(@) e f(xmfl) = f(yl)f(y2) o 'f(ynfl)-

Continuing inductively we get z,,_1 = y,_1 and so on, giving r =y. H
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Remark. If z = f(w), then by Lemma 3 w is the unique inverse of x, which we denote

(@),

Notation. Denote by |w| the length of the factor w, i.e., the number of its letters,
counting multiplicities.

Lemma 4. Let w be a factor of F beginning with f(0)f(1) or f(1), and terminating
with f(1). Then f~Y(w) exists, and |f~*(w)| < |w].

Proof. Suppose that the assertion holds for all w terminating with f(1), with |w| < n.
Let w be any factor of length n + 1 (n > [f(1)|), beginning with f(0)f(1) or f(1) and
terminating with f(1). We consider two cases.

(i) w begins with f(1). Then w = f(1)w'f(1). By Lemma 2, if w’ is nonempty, then
w’ begins with f(0)f(1) or f(1), and |’ f(1)] =n —s—t+ 1 < n. Then by the
induction hypothesis, f~!(w) = 1f~ (w'f(1)), and [1f~ (w'f(1))] < |f(1)w'f(1)].

(ii) w begins with f(0)f(1), so w = f(0)f(1)w’f(1). The argument is as in the case (i)
with an extra prefix f(0). ™

3 Special Words

As stated in the introduction, our goal is to determine the subword complexity function ¢
of F. Recall that for every n € Z-, c(n) denotes the number of distinct words of length
n which are factors of F. Thus ¢(1) = 2, and for every n € Zo, ¢(n + 1) — ¢(n) is the
number of length n factors of F' that can be followed by both a 0 and a 1 in F'.

Definition. Following standard terminology, define a factor w of F' to be special if both
w0 and w1 are factors of F'. If w can be extended only by adjoining one of 0, 1, then w
is nonspecial.

Remark. z is special <= every suffix of x is special.

Definition. Let N : Z-.y — Z>( be the function defined as follows. For every n € Z-,
N(n) denotes the number of distinct special words of length 7.
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Thus for all n € Z~g, ¢(n + 1) — ¢(n) = N(n), so

c(n) :c(l)+Z(c(i+1) — (1)) :2+ZN(2'). (1)

To determine the subword complexity of F', therefore, we first compute N(n) for every

Notation. Let xo denote 157! and z; denote 1257¢2,

Note that s = 1 = 2y = 2; = 1%
Remark. If k <254t — 1 then 1¥ is special. In particular, o and x; are special.

Definition. Given z, y € F, x possibly nonempty. Then x is said to be a proper prefix
of y if y = zu for some nonempty w. Similarly, z is a proper suffix of y if y = ux for some
nonempty u.

Lemma 5. Given any word w = bu € F, b € {0,1}. Suppose that u is special and w is
nonspecial. Then either u = 1% for some k < 2s+t — 1, or f(1) is a proper prefir of u.

Proof. Since u is extendible in two possible ways, whereas bu is extendible in only one
way, it follows that both Ou and 1u are factors of F'. Suppose that u contains no 0. Then
Lemma 2 implies that |1u| < 2s+t, so we have u = 1¥, k < 2s+t—1. On the other hand,
suppose that u contains at least one 0. Then u begins with 10 for some m € Z(. Since
Ou € F, Lemma 2 implies that m € {2s+¢ — 1, s+ ¢ — 1}. But since lu € F, Lemma 2
implies that m < 25+t — 1. Thus m = s +¢ — 1 and u begins with 1**710 = f(1). =

Definition. For given s and ¢, define g : {0,1}* — {0,1}*, where for all z € {0, 1},
g(z) = fz)1+1

Lemma 6. x special <= g(x) special.
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Proof.

(1)

Suppose that x is special, so both 20 and x1 are factors of F'. Then Lemma 2 implies
that both 201 and 21, and thus f(z)f(01) and f(x)f(1), are factors of F'. But

F@)F(01) = F@) 1110 = f(2)1771170 = g(a)1°0,
and

f(a)f(1) = f(2)1"""710 = g(x)0.
Therefore both g(z)1 and g(x)0 are factors of F', so g(x) is special.

Suppose that g(z) = f(x)1°T"~! is special. Then both g(z)0 and g(z)1 are factors
of F'. But

9(x)0 = f(2)1""710 = f(x) (1),
so by Lemma 4, f~(f(x)f(1)) = x1 is a factor of F.
Suppose that z = 2/0, for some 2’. Then g(x)1 = f(2/)f(0)15T = f(a')1%*,
contradicting Lemma 2. Thus z = 2’1 for some 2/, so

g(0)1 = J(@) )L = f(a)17 017+,

Since s+t —1 < s+t, Lemma 2 implies that the 01°** terminating g(z)1 is followed
by 1710, to form
f(2)15H71012% 710 = f(201).

Thus f~1(f(z01)) = 201 is a factor of F, so x is special. &

Corollary 1. z is special <= for all i € Z>q, every suffix of g'(z) is special.

Proof. obtain:

x special <= g(z) special <= ¢*(x) special <= .- <= g¢'(v) special,

for all 7 € Z>y. But a word is special if and only if all of its suffixes are special, so our
result follows. W

Theorem 2. w is special <= w is a suffiz of g'(x1) for some i.

Proof. i € Z>, every suffix of ¢g°(z;) is special.

In the other direction, suppose that w is special. If w contains no zeros, then by
Lemma 2, w must have the form 1* for some k < 25+t —2, so w is a suffix of z; = ¢%(z).
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We prove the other cases by induction on |w/|, the start of the induction being the case
above. Suppose w contains a zero and both w0 and w1 occur in F. By Lemma 2, w must
end in 15771 50 let

w = w[lw[2] - - w[k]1°+1,

where w[j] denotes the j-th bit of w. Again by Lemma 2 we see that w[k] = 0 and
therefore wlk—s—t+1]---w[k] = f(1). We then consider w[k — s —t|. If this is zero then
w[l] -+ wlk —s —t] ends in f(1) or a suffix of f(1); otherwise it ends in f(0) or a suffix
of f(0). Going backwards in this way we can uniquely identify w as having the form

w = vf(ur) f(ug) - fum) 15

where v is a nonempty suffix of f(0) or f(1). Say it is a suffix of f(ug), and denote by
v f(uy) - f(um)1°T1 the longest special suffix of f(ug)f(u1) -+ f(ty,) 15771 If |zo| <
|f(uo)|, then by Lemma 5, zv f(uq) - - - f(up,)1°T ! begins with f(1). But this contradicts
the fact that xv is a proper suffix of f(uo).

Thus f(uo)f(ur) -+ f(um) 15 = g(ug - - - uy) is special, so by Lemma 6, ug - - -y, is
special. Therefore by the induction hypothesis, ug - - - u,, is a suffix of ¢g*(x1) for some i.
Since w is a suffix of f(ug)f(uy) - f(um)1*T1 = g(ug- - - u,,), this implies that w is a
suffix of g™ (z;). m

For every n € Z-, define the set
S, ={w: |w| =n, and for some i € Zxq, w is a suffix of g*(z;)}.
Theorem 2 implies that N(n) = |S,| for all n € Z,.

Theorem 3.

[ 2 if for some i € Zxo, |g'(z0)| <n < |g'(x1)],
N(n) = { 1 otherwise.

To prove the theorem, we apply several results.

Lemma 7. (a) For alli € Zwg and w, g'(w) = f{(w)g" (o).
(b) For alli € Zg and w, g'(w) = f(w) f*~*(z0) - - f(20) f*(20)-

(c) For alli € Zsy and z,y, g'(zy) = f{(x)g'(y).

Proof. By induction on . W

Corollary 2. (a) Leti, j € Zsg, with i < j. Then g'(zo) is a suffizx of ¢’(xo).
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(b) Let k, m € Zwg, with k < m. Then for all i € Zx, g'(1%) is a suffiz of g'(1™).

(c) For alli € Zo, |g'(z0)| < |g'(z1)| < |9 (w0)], with |g"(xo)| = |g"(21)] if and only
if s = 1.

Proof.
(a) By Lemma 7(b), ¢’(z0) = f’(z0) - -+ f+'(20)g"(x0)-
(b) Let £ =m — k. Lemma 7(c) implies that

g'(1™) = g'(1"1%) = f'(1hg'(1%).

(c) By Lemma 7(c), g'(z1) = ¢'(1°"ao) = f'(1°~")g'(w0). Thus |g*(w)| < |g'(x1)], with
equality if and only if s = 1. Lemma 7(a) implies that ¢"*(zo) = f"'(z0)g" (o),
so to prove that |g'(x1)| < |g"™ ()], it suffices to show that | f*(1571)| < | f (o).
But this is satisfied, since |f (157 < | fi(zo)| < [fT(zo)]. ™

Notation. By x € F, we mean that z is a factor of F'.

Proof of Theorem 3. Suppose that n < s+t — 1= |¢g(zy)|. We show that |S,| = 1.
Now, ¢°(z1) = z; terminates with x, and Lemma 7(b) implies that for all i € Z~, ¢*(z1)
terminates with xo, which terminates with 1. Thus 1" is the unique member of S,,, so
|Sy| = 1.

Let i € Z>(. Consider the set of n satistying

9" (o) <m0 < 1" (o).

Then by Corollary 2(a), for all n in the set, n > [¢°(zo)| = s+t — 1.

Given some n in the set, denote by w the suffix of length n of g"*'(xq). Corollary 2(a)
implies that w is a suffix of ¢7(zg) for all j > ¢+ 1. Thus by Corollary 2(b), w is a suffix
of ¢g/(xy) for all j > i+ 1, so we have w € S,,.

If there exists a second member of S, distinct from w, then this member of S,, is a
suffix of g’(z1) for some j < i. Now, Corollary 2(c) implies that for every positive integer
J <t

|97 (@o)] < |g” (z1)] < 1g"* (zo)| < -+ < |g'(x0)]-
Since n > |g*(xg)|, it follows that if there exists a member of S, distinct from w, then this
member is a suffix of g*(x1). Thus |S,| € [1, 2].

Now, by Corollary 2(c), we have |g'(zo)| < |g°(z1)] < |g"™ (20)]. It follows that either
(i) 19" (z0)| < n < |g'(z1)], or (ii) |g"(x1)| < n < |g"T(zg)|. Since N(n) = |S,]| for all n, it
suffices to show that |S,| = 2 in case (i), and |S,| = 1 in case (ii).

THE ELECTRONIC JOURNAL OF COMBINATORICS 8 (NO. 2) (2001), #R10 10



(i) Suppose that |¢g'(zo)] < n < |g'(z1)]. We assume that s > 2, because otherwise
the set of n satisfying this inequality is empty. Denote by w’ the length-n suffix of
g'(z1). To prove that |S,| = 2, we show that w and w’ are distinct.

Let z = g'(x). Then by Lemma 7(a) and (c), we have
g'(x1) = ¢'(1* " o) = f1(1°71)z,
gi+1($0) — fi+1(x0)2.

Thus w is a suffix of f(zg)z, and w’ is a suffix of f*(157!)z. Moreover, n > |z|, so
to prove that w and w’ are distinct, it is sufficient to show that the rightmost bits
of fi(1*71) and fi () differ.

For every = € F, if x terminates with 1, then f(z) terminates with f(1) = 17710,
which ends in 0. Similarly, if  terminates with 0, then f(z) terminates with f(0) =
1%, which ends in 1. Thus for all i € Zx, the rightmost bits of fi(1) and f(f*(1)) =
f1(1) differ. But since f is a morphism, f™!(xq) terminates with (1), and
fH(1571) terminates with f?(1). Thus the rightmost bit of f/(15~!) differs from that

of f1(zg). Tt follows that w and w’ are distinct, so for all n satisfying |g"(xo)| <
n < |g'(1)], [Snl = 2.

(i) Suppose that |¢g'(z1)] < n < |g"t(z0)|. Since n > |g*(x1)], there does not exist a
suffix of length n of g*(x1). Thus w is the only member of S, so |S,|=1. ™

1

Example. Let s =2 ¢t=1. Then f(1) =110, f(0) = 11, o = 11 and x; = 111. Thus
(i) g(xo) = 11011011, so |g(zo)| = 8,
(ii) g(z1) = 11011011011, so |g(z1)| = 11,

(iii) g%(xo) = 110110111101101111011011, so |¢2(z)| = 24.

Note that both g(z1) and ¢g?(x() terminate with g(zy) — consistent with parts (a)
and (b) of Corollary 2.

Now, for example, |g(xo)| < 10 < |g(z1)|, so we show that |Sio| = 2. The suffix of
length 10 of g*(zg) is 1111011011, which we denote w. In fact, Corollary 2 implies that
g*(z0), and thus w, is a suffix of ¢7(z;) for all 7 > 2. Thus the suffix w’ = 1011011011
of g(x) is the only member of S}y which is distinct from w. Both w and w’ terminate
with g(zg) = 11011011, but they differ in the bit immediately preceding g(xg), so they
are distinct. Thus [S1o| = 2.

On the other hand, |g(z1)] < 15 < |g*(x0)|, so we show that |Si5| = 1. The suffix of
length 15 of g?(xg) is 101101111011011, which by Corollary 2 is a suffix of g’(x) for all
J > 2. Since 15 > |g(z1)]|, there does not exist an additional member of Sy as there did
in Sl(). Thus |Sl5| = 1.
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4 Subword Complexity of F

In this section we determine the subword complexity ¢(n) of F'. In section 2, we defined
F = f“(1), where f is a morphism such that f(1) begins with 1. Thus the results of [13]
indicate that the order of ¢(n) can be determined directly from the order of the functions

u(n) = [f*(D)] and  wv(n) = |f"(0)]-

More precisely, if both u(n) = ©(k™) and v(n) = O(k"), then F has linear subword
complexity. For convenience, denote u,, = u(n), and v, = v(n) for all n € Zx,.
Now up = 1, and uy = [157710| = s + ¢. For n > 2,

fr) = ) = o A) = oA ),

SO Uy = (s + 1t — D)up_1+ SUp_o = TUp_1 + SUy_o, where r = s+t — 1. The characteristic
polynomial of this recurrence is 22 — rz — s = 0, which has solutions

r+r2+4s r— 712 +4s
o0=— S
2 )

5= 2)

Thus for general n € Zxg, u, = c;a" + c3", where ¢; and ¢y are constants. Solving for
c1 and ¢y, therefore, we obtain the solutions :

1 N r+2 1 r+2

2 2V/r244s’ 2 2VrZ+44s

Now, r =s+1t—12> 1 implies that a > 1, —1 < < 0, and —% < ¢ < 0. Thus for even
n, —% < ™ < 0, and for odd n, 0 < 0" < % It follows that

C1 = Cy =

lcra™], n even

un = " + 6" = { [cra™], m odd.

Notation. Let F(z) denote the closest integer to x.
For every n € Z-~,
Up = E(Cl&n)' (3)

Also, for alln > 1, f*(0) = f*1(f(0)) = f~1(1°), so v, = su,_1. Thus both u, = O(a™)
and v, = O(a"), so F has linear subword complexity [13].

We now determine a more precise formula for ¢(n), using equation (1):

n—1 n—1

cn)=2+) N@)=n+1+Y (N@{)—1).

i=1 i=1
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Theorem 3 implies that this is equivalent to
c(n) =n+1+Fk, (4)

where k is the number of integers m < n such that |¢"(xg)] < m < |g"(x1)| for some
1€ Zzo.

Definition. For every i € Z, let I; denote the interval of integers m satisfying |g*(zo)| <
m < |g'(z1)|, and let | ;] denote its length.

Lemma 8. Let n € Zwg. If n—1 < ||, or |g'(z1)] < n—1 < |¢" (xg)| for some
1€ Z207 then

c(n):n+1+(s—1)2uj,

J=0

where i is the minimal integer such that |g"™ (zo)] > n — 1.

Proof. let k be the number of integers m < n such that for some j € Z>o, m € I;. Then
k= Z;:O |I;]. Now, for every j € Zx,,

1] = lg’(z1)| = ¢’ (o).
Thus |Iy| = |x1] — |zo] = (s — 1)up. Similarly, for j > 1, Lemma 7(c) implies that
111 = g’ (@1) = |g” (o) = [/ (1 )] = (s = Du;.

Thus k = Zézo |I;] =(s—1) Z;:o u;, so our result follows from (4). =

Remark. If s = 1, then 2y = x1, so for every m € Zwyg, either m < |zg| or |g'(z1)| =
lg"(x0)| < m < |g" 1 (z0)] for some i € Z>p. Thus Lemma 8 implies that in the case s = 1,
c(n) =n+1 for all n € Z-,.

Applying Lemma 8, we analyze ¢(n) for two different classes of n:
(a) n = |g"(xo)| + 1 for some i € Zsg, (b) n=|g"(z1)|+1 for some i € Zq. To do so, we
define functions L;(n) and U;(n), which are dependent on i, and show that ¢(n) = L;(n)
and ¢(n) = U;(n) in cases (a) and (b) respectively.

)

Lemma 9. For every i € Zxo, |g'(wo)| = (s +1 —1) 37\ uy.
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Proof. Lemma 7(b) implies that

g @) = > 1P )] = (st =D I[P =(s+t=1> u.

J=0

Let n = |g'(zo)| + 1 for some i € Zx(. Then by Lemmas 8 and 9, we have

c(n) =

(s = 1) X o u (s—1)>"guy
O ) T s, )"

But (3) implies that for all m € Z,,

il B ; amtt —1
]Z:;uj:;E(cla)%cl T
so it follows that
(s —1)(a' = 1) (s —1)(a' = 1)

0= (1 e ) (U G e )"

Definition. For every i € Z>y,

(s — Do’ — 1)

(s —1)(a’ — 1)
Li(n) = E<( T (sHt— (et — 1))

(s+t— 1)t — 1))">'

+(1+

Theorem 4. If n = |g'(xo)| + 1 for some i € Z>q, then c(n) = L;(n).

The proof of Theorem 4 depends on the following two lemmas, which we leave to the
reader to verify. Recall that for all i € Zsg, u; = cia’ + 3%, where —1 < 3 < 0, and
—3 < <0.

Lemma 10. For every i € Z>p, 0 < Zj':o B39 < 1, with equality to 1 if and only if i = 0.

Lemma 11. s|cy| < 1/2.

Proof of Theorem 4. If s = 1, then for all n, L;(n) = n + 1. But Lemma 8 implies
that ¢(n) = n + 1 for all n, so we are done. To prove the theorem for s > 2, we first note
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that if z is an integer, then given any real number x, proving that E(z) = z is equivalent
to proving that |z — E(z)| < 3.

Let s > 2, and suppose that n = |g"(xg)| + 1 for some i € Zsg. Then letting n' =
n—1=|g'(zo)|, we have N(n') = 1 by Theorem 3, so c¢(n’) = ¢(n) — 1. Thus it suffices
to show that

c(n’)zE(—( (s —1)(a = 1) 1+ (s —1)(a’ = 1) >)n>

s+t—1)(ait!t —1) (s+t—1)(a'tt =1

o (3_1)(ai_1) /
_”+1+E<@+t—anL—n”)

Lemma 8 implies that this is equivalent to proving that

(s=1) Z u =k < (s +St—_11))(<04;;112 1)”,>’

or equivalently,

<5 (5)

— (ai_l) /
oS e

J=

Now u; = ¢;a? 4+ 37, and by Lemma 9, n’ = |¢*(zo)| = (s+t—1) Zj o u;. Therefore

=(s—1)

(a®—1)
—1’ A /
8 Z S—f-t—l)(oﬂ""l—l)n

Thus by Lemmas 10 and 11, equation (5) is satisfied. ™

Let n = |¢g'(z1)| + 1 = |¢g'(x0)| + |I;] + 1 for some i € Z>o. Lemma 9 implies that
lg"(xo)| = (s +t —1) Z] o Uj. Similarly, in the proof of Lemma 8, we saw that |[;| =
(s — 1)u;. Therefore,

n = 5+t—12u] (s — Du; + 1. (6)

Now, Lemma 8 implies that

(5_1)23 o Uj

(s+t- 1% qu+(s— D+ 1

cn)=n+1+

Thus by (3), we have

ci(s—1) Z;:O ol )

c(n %n+1+E< < : ‘ n
() cs+t—=1)>" gai +e(s—1)ai+1
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Definition. For every i € Z>y,

) (s - 1)(ai*! 1)
U(n) =n+1 +E<(s+t— Dot — 1) + (s — 1) (ot — af) + (a — 1)/0171). (8)

Theorem 5. If n = |g'(x1)| + 1 for some i € Z>q, then c¢(n) = Us(n).

Proof. If s =1, then for all n, U;(n) = n+ 1. But Lemma 8 implies that ¢(n) = n+1 for
all n, so we are done. To prove the theorem for s > 2, we first note that the two formulas
presented in equations (7) and (8) are equivalent. .

Now, from Lemma 8 we have ¢(n) = n + 1+ (s — 1) >_;_;uy, so it suffices to prove
that

a(s—1D3" o
(s—1) ZUJ—E< 1l ; )20 >7
c(s+t—1)> " gai +e(s—1a +1

or equivalently, that

c i._ ol 1
(s—1 ’Z 1.2]_0 n’<

c(s+t—1)> " ool +ea(s—1ai+1 2’

Since n = |g*(z1)| + 1, equation (6) implies that (9) is equivalent to

: c ad((s+t—1 . u; +(s—Du; + 1 1
s—l’Zu] 12]0 (( )Z]O ) ( ) ))<_
s—i—t—l)z o F(s—1ai+1 2
This inequality can be verified by substituting c;a? + ¢o37 for u; and applying Lem-
mas 10 and 11. =

Theorems 4 and 5 imply that for every i € Zs, ¢(n) = L;(n) and ¢(n) = U;(n) at,
respectively, the beginning and end points of interval I;. But Theorem 3 implies that c¢(n)
increases in steps of 2 throughout the entire interval, so it follows that for all ¢ € Z,

|9 (0)] < n < 19" (z0)| = Li(n) < c(n) < Ui(n).

Thus denoting
L(n) = lim L;(n), and U(n)= lim Ui(n),

1—00 i—oo

L(n) and U(n) are, respectively, the lower and upper bounds of the asymptotic subword
complexity of F' as n approaches oo. The precise formulas for these bounds are stated in
Theorem 6, which we leave to the reader to verify.
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Theorem 6. For every n € Z-y,

L(n) = E((l - ﬁ) +(1+ (Sjt%l)a)n)
(s — 1
Uln) :E<(1+ (2s+t—2)a— (s — 1>)n—l— 1>'

5 Conclusion

For every s,t € Z~, the subword complexity c of F'is linear in n. We presented tight upper
and lower bounds for ¢(n), both for finite n, and as an asymptotic value as n approaches
infinity. If s = 1, the lower and upper bounds are equivalent and we have ¢(n) = n + 1
for all n € Z~. This property follows from the fact that ¢(n + 1) — ¢(n) = N(n) =1 for
all n € Z+,.

If s > 2, however, the set of positive integers consists of intervals of integers n satisfying
N(n) = 1, alternating with intervals of n over which N(n) = 2. Thus as n increases, c¢(n)
grows alternately slower and faster, depending on the type of interval in which n is located.
In this case, therefore, the lower and upper bounds of ¢(n) are distinct.

This difference between the cases s = 1 and s > 2 is related to a property of the infinite
sequences A characterized by F. The sequence A is defined to be a Beatty sequence if
there exist real «, f such that A, = |[na + 3| for all n € Z-y. It turns out that A is
a Beatty sequence if and only if s = 1, in which case we have a = (2 — t + V2 +4)/2,
B =0 [11]. Since V2 + 4 is irrational for all t € Z~y, it follows that « is irrational. In [1]
it was shown that every Beatty sequence with irrational o has a characteristic sequence
with subword complexity ¢(n) = n + 1 for all n € Z,. Our result is consistent with this.

The case s = 1 differs from s > 2 also in that A is spectral, that is, |(Ax+; — Ax) —
(Aj+i—Aj)| < 1foreveryi,j, k € Zsg, if and only if s = 1 [11]. This is because the set of
spectral sequences is precisely the set of Beatty sequences [4]. This motivates the question
of whether A has a similar property when s > 2. Perhaps associated with some of the A
sequences for s > 2 is an integer m > 2 such that for all 4, j, k, |(Ak+i—Ar) — (A4 —A4;)] <
m.

Another related observation is to estimate, for fixed m € Z-y and for every n € Z+,
the number of increasing sequences of length n such that for all 7, 5,k with 1 < 5.k, j +
ik+i<n, [(Agri — Ar) — (Aj4i — Aj)] < m. For m = 1, the number of such words
of length n is Euler’s totient function, which is polynomial in n [3],[7]. For m = 2,
however, R. Tijdeman observed (private communication), that the number of such words
is exponential in n, since the entire set of length-n words with a characteristic sequence
beginning with {01, 10}"/2] exhibits this property.
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