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Abstract

Nešeťril and Sopena introduced a concept of oriented game chromatic number
and developed a general technique for bounding this parameter. In this paper, we
combine their technique with concepts introduced by several authors in a series of
papers on game chromatic number to show that for every positive integer k, there
exists an integer t so that if C is a topologically closed class of graphs and C does
not contain a complete graph on k vertices, then whenever G is an orientation
of a graph from C, the oriented game chromatic number of G is at most t. In
particular, oriented planar graphs have bounded oriented game chromatic number.
This answers a question raised by Nešeťril and Sopena. We also answer a second
question raised by Nešeťril and Sopena by constructing a family of oriented graphs
for which oriented game chromatic number is bounded but extended Go number is
not.

Keywords: Chromatic number, competitive algorithm, oriented graph.
MR Subject Code: 05C15, 05C20.

1 Introduction

In this paper, we will be discussing graphs without loops or multiple edges and orientations
of such graphs. When G is a graph, we will say, for example, xy is an edge in G. In this
case, yx is also an edge in G. On the other hand, when G is an oriented graph, we will
say, for example, (x, y) is an edge in G when there is an edge in G directed from x to y.
In this case, (y, x) will not be an edge of G.
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Throughout this paper, we consider variations of the the following game played by
two players Alice and Bob with Alice always playing first. Given a finite graph G and a
set C of colors, the players take turns coloring the vertices of G with colors from C so
that no two adjacent vertices have the same color. Bob wins if at some time, one of the
players has no legal move; otherwise Alice wins and the players eventually create a proper
coloring of G. We call this game the (G, C)-coloring game. The game chromatic number
of G, denoted χg(G), is the least positive integer t such that Alice has a winning strategy
for the (G, C)-coloring game when |C| = t. The concept of game chromatic number was
first introduced by Bodlaender [1]. We refer the reader to [7] for recent results on this
parameter and for additional references.

In [10], Nešetřil and Sopena introduced a variation of game chromatic number for
oriented graphs. Given a finite oriented graph G and a tournament T , Alice and Bob
take turns assigning the vertices of G to vertices in the tournament T . This results in a
mapping φ : G −→ T . When (x, y) is an edge in G, we require that (φ(x), φ(y)) is an
edge in T , i.e., φ is a homomorphism. We call this game the (G, T )-coloring game and
refer to the vertices of the tournament T as colors.

A moment’s reflection reveals that there is one additional restriction which must be
placed on the players’ moves. Consider two vertices x and y. Suppose that y is colored
(mapped to a vertex in T ) and that one of the two players is about to color x. Let
M(x, y) denote the set of all vertices from G which are midpoints of a directed path
of three vertices beginning at one of x and y and ending at the other. If at least one
vertex of M(x, y) has already been colored, then x cannot be assigned the same color as
y. However, if M(x, y) 6= ∅ but all vertices in M(x, y) are uncolored at the moment, then
assigning x the same color as y is a legal but deadly move—as it is clear that there will
be no legal way to color the vertices in M(x, y).

Alice would of course never make such a move, but Bob would certainly do so if it
were allowed. Accordingly, to play the (G, T )-coloring game, we add the restriction that
Bob is not allowed to assign to vertex x the same color already given to a vertex y when
M(x, y) 6= ∅ and all vertices in M(x, y) are uncolored.

The oriented game chromatic number of an oriented graph G, denoted ogcn(G), is
the least positive integer t such that there is a tournament T on t vertices so that Alice
has a winning strategy for the (G, T )-coloring game. It is not immediately clear that this
parameter is well-defined, i.e., it is not clear that there is any tournament T for which
Alice has a winning strategy for the (G, T ) game. However, Nešetřil and Sopena [10]
developed a general technique for showing that for every oriented graph G, there is a
tournament T for which Alice has a winning strategy for the (G, T ) coloring game. They
then used this technique to prove the following results.

Theorem 1.1 Let P be an oriented path. Then ogcn(P ) ≤ 7. Furthermore, this result is
best possible. �

Theorem 1.2 Let T be an oriented tree. Then ogcn(P ) ≤ 19. �

Theorem 1.3 There exists an absolute constant c so that if G is an oriented outerplanar
graph, then ogcn(G) ≤ c. �
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Nešetřil and Sopena [10] raised the question as to whether the preceding theorem holds
for oriented planar graphs, and the primary goal of this paper is to settle this question
in the affirmative. In fact, we prove a more general result. Recall that a graph H is
said to be a homeomorph of a graph G when H is obtained from G by inserting vertices
on the edges of G. Equivalently, H is obtained by replacing the edges of G by paths.
Homeomorphs are also called subdivisions. A class C of graphs is said to be topologically
closed when the following two conditions are satisfied:

1. If G ∈ C and H is a subgraph of G, then H ∈ C.

2. If H is homeomorph of G and H ∈ C, then G ∈ C.

For example, for every integer t, the class Ct of all graphs of genus at most t is topologically
closed. In fact, this class satisfies the following stronger property:

(2’) If H is homeomorph of G, then H ∈ Ct if and only if G ∈ Ct.

As a special case, setting t = 0, the class of planar graphs is topologically closed.
A class C of graphs is minor closed if H ∈ C whenever G ∈ C and H is a minor of

G. As is well known, whenever a class C is minor closed, it is also topologically closed,
although the converse is not true. It is customary to say that a graph H is a topological
minor of a graph G when G contains a subgraph which is a homeomorph of H .

Also recall that the density of a graph G, denoted here by den(G), is defined by:

den(G) = max
H⊆G

2|E(H)|
|V (H)| .

The next theorem is our main result.

Theorem 1.4 For every positive integer k, there exists an integer t and a tournament T
on t vertices so that if C is a topologically closed class of graphs and C does not contain a
complete graph on k vertices, then whenever G is an orientation of a graph from C, Alice
wins the (G, T )-coloring game.

The reader should note that excluding a clique of a particular size from a topologically
closed class is the same as bounding the density. Accordingly, our principal theorem may
be restated in the following form, and this is the version that we will actually prove.

Theorem 1.5 For every positive integer d, there exists an integer t and a tournament T
on t vertices so that if C is a topologically closed class of graphs and each graph in C has
density at most d, then whenever G is an orientation of a graph from C, Alice wins the
(G, T )-coloring game.

For emphasis, we note the immediate corollary.

Corollary 1.6 There exists a tournament T for which Alice wins the (G, T )-coloring
game whenever G is an oriented planar graph.
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The remainder of the paper is organized as follows. In the next section, we discuss
coloring numbers and their relation to game coloring problems. In Section 3, we discuss
reachability and some related graph parameters. In Section 4, we derive a key lemma and
the proof of our main theorem follows in Section 5. In Section 6, we present two examples,
the second of which answers another question posed by by Nešetřil and Sopena in [10].

2 Game Coloring Numbers

In the first paper on the subject of game chromatic number, Bodlaender [1] proposed
the following “marking” game. Given a graph G and a positive integer t, start with all
vertices of G designated as unmarked. A move consists of selecting an unmarked vertex
and changing its status to marked. Once a vertex is marked, it stays marked forever. Alice
and Bob alternate turns with Alice having the first move. At each step in the game, the
score of an unmarked vertex is the number of marked neighbors. Bob wins if there is ever
an unmarked vertex whose score is more than t. Alice wins if all vertices are marked and
at no point was there an unmarked vertex whose score was more than t. By analogy with
the rules of the classic board game “go”, Nešetřil and Sopena [10] called this parameter
the Go number of the graph and denoted it by Go(G). The game coloring number of a
graph G, denoted colg(G), is one more than the Go number of G. It is easy to see that
the game chromatic number of a graph is at most the game coloring number.

In [9], Kierstead and Trotter showed that the game chromatic number of a planar
graph is at most 33. This bound was improved to 19 by Zhu [11], [12] using the concept
of game coloring number. Most recently, Kierstead used a similar approach to lower the
bound to 18.

In [10], Nešetřil and Sopena introduced a variation of the marking game for oriented
graphs and then applied this variation to game chromatic problems for oriented graphs.
Given an oriented graph G and a positive integer t, start with all vertices of G unmarked.
As before, a move consists of selecting an unmarked vertex and changing its status to
marked. Once a vertex is marked, it remains marked forever. Alice and Bob alternate
turns with Alice having the first move. For each unmarked vertex x, let B(x) denote the
set of all marked neighbors of x and let B2(x) denote the set of all vertices y so that (1)
y is marked; (2) G contains a directed path of length 2 with x at one end and y at the
other; and (3) for each directed path of length 2 with x at one end and y at the other,
the middle point is unmarked.

In this game, the score of an unmarked vertex x is |B(x) ∪ B2(x)|. Bob wins if there
is ever an unmarked vertex x for which the score of x is more than t, while Alice wins if
all vertices are marked and at no point was there an unmarked vertex x whose score was
more than t. The extended Go number of G, denoted eGo(G), is the least positive integer
t for which Alice has a winning strategy.

Trivially, the extended Go number of an oriented graph on n vertices is at most n. In

fact, it is at most
(
∆(G)

)2
. With these remarks as background, we can now state the

principal result of [10].
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Theorem 2.1 For every integer k, there exists an integer c(k) so that if G is an oriented
graph with eGo(G) ≤ k, then ogcn(G) ≤ c(k). �

We pause to comment that the argument used by Nešetřil and Sopena to prove Theo-
rem 2.1 is probabilistic. They show that if c(k) is sufficiently large in terms of k, and if T
is a random tournament on c(k) vertices, then the probability that Alice wins the (G, T )
coloring game is positive. In fact, it suffices to set c(k) = 100k22k.

It makes sense to consider variations of marking games on undirected graphs. For
example, given an undirected graph G and a positive integer t, consider the following
game. For each unmarked vertex x, let A(x) denote the set of all marked neighbors of x
and let A2(x) denote the set of all vertices y for which (1) y is marked and (2) there is
an unmarked vertex z adjacent to both x and y. In this game, the score of an unmarked
vertex x is |A(x) ∪A2(x)|. As before, Bob wins if there is ever an unmarked vertex x for
which the score of x exceeds t, while Alice wins if all vertices are marked and at no point
was there an unmarked vertex x for which the score of x was more than t.

Then define Go2(G) as the least number of G for which Alice has a winning strategy.
It is easy to see that if G is an orientation of an undirected graph G′, then eGo(G) ≤

Go2(G
′). In fact, the basic idea behind the proof of our principal theorem is to show that

for every integer d, there exists a constant cd so that if C is a topologically closed class of
graphs each of which has density at most d, then Go2(G) ≤ cd for every graph G ∈ C.

3 Reachability and Related Graph Parameters

Let Π(V ) denote the set of all linear orders on the vertex set V of a graph G. Then let
L ∈ Π(G). For each vertex x of G, let N+

GL
(x) = {y ∈ V : y < x in L, xy ∈ E(G)}, and

let d+
GL

(x) = |N+
GL

(x)|. This quantity is called the the back degree of x in L and N+
GL

(x)
is the set of back neighbors of x in L. Then let ∆+(GL) denote the largest value of d+

GL
(x)

taken over all x ∈ V , and let

∆+(G) = min
L∈Π(V )

∆+(GL).

The quantity ∆+(G) is called the back degree of G, and the quantity col(G) = 1+∆+(G)
is called the coloring number of G.

Clearly, the chromatic number χ(G) satisfies the inequality χ(G) ≤ col(G), since First
Fit will use at most col(G) colors when the vertices of G are processed according to a
linear order L with 1 + ∆+(GL) = col(G).

On the other hand, as the following trivial proposition makes clear, back degree is just
a reformulation of density.

Proposition 3.1 For every positive integer d and every graph G, ∆+(G) = bden(G)c. �
For example, the density of a planar graph is less than 6 by Euler’s formula. Also, a
planar graph has back degree at most 5.
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y1 y2 y3 y4 y5 y6 x y7

Figure 1: Reachability.

Next, we discuss a variant of back degree which will prove useful in analyzing com-
petitive coloring problems for oriented graphs. Let L be a linear order on the vertex set
V of a graph G. Then let y < x in L. We say y is reachable from x in L when either (1)
xy is an edge of G or (2) there is a vertex z with y < z so that z is adjacent to both x
and y. Note that we allow the common neighbor z to come before or after x, but it is
not allowed to precede y. We denote the set of all vertices which are reachable from x as
RGL

(x). When G and L are fixed, we will just write R(x). In Figure 1, y1, y2, y4, y5 and
y6 are reachable from x, but y3 and y7 are not.

The concept of reachability is closely related to three other graph parameters which
have been studied in game chromatic research: arrangeability, admissibility and rank. Ar-
rangeability was introduced by Chen and Schelp [3] in a ramsey-theoretic setting, while
admissibility was introduced by the authors in [9] and used to show that the game chro-
matic number of planar graphs is bounded. The notion of rank was introduced by Kier-
stead in [7] and used to provide the best bound to date (18) on the game chromatic
number of planar graphs.

4 A Technical Lemma

In this section, we develop a technical lemma central to the proof of our principal theorem.
Let L be a linear order on the vertex set V of a graph G, and let E denote the edge

set of G. Recall that for each vertex x ∈ V , RGL
(x) denotes the set of vertices which are

reachable from x. Then RGL
(x) = N+

GL
(x) ∪ R′

GL
(x) ∪ R′′

GL
(x) where (1) R′

GL
(x) denotes

those vertices y ∈ RGL
(x) for which there is vertex z ∈ V with y < z < x in L, xz ∈ E

and yz ∈ E, i.e., y ∈ N+
GL

(z) and z ∈ N+
GL

(x), and (2) R′′
GL

(x) denotes those vertices
y ∈ RGL

(x) for which there is vertex z ∈ V with y < x < z in L, xz ∈ E and yz ∈ E, i.e.,
y < x in L and {x, y} ⊆ N+

GL
(z).

Then set R2
GL

(x) = RGL
(x) ∪ {y ∈ V : y < x in L and there exists a vertex z ∈ V so

that {x, y} ⊆ RGL
(z)}.

Lemma 4.1 Let d ≥ 100 and let C be a topologically closed class of graphs with each
graph in C having density at most d. Then for every graph G ∈ C, there exists a linear
order L on the vertex set V of G so that

1. |∆+(GL)| ≤ d.

2. |RGL
(x)| < d5 for every x ∈ V .
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3. |R2
GL

(x)| < d18 for every x ∈ V .

Proof. Let E denote the edge set of G, and let |V | = n. Without loss of generality,
V = {1, 2, . . . , n}. We construct the desired linear order L = [x1, x2, . . . , xn] on V in
reverse order, beginning with the selection of xn as a vertex of minimum degree in G. Of
course, regardless of how the remainder of the linear order is determined, we know that
d+

GL
(xn) ≤ d.
Now suppose that for some integer i with 1 ≤ i < n, we have already selected the

vertices in Ci = {xi+1, xi+2, . . . , xn}. Suppose further that these selections have been
made so that d+

GL
(xj) ≤ d for all j = i + 1, i + 2, . . . , n.

Let Ui = V −Ci denote the remaining vertices. We now describe the process by which
xi ∈ Ui is chosen. We first define a probability space Ωi, where each event in Ωi is a graph
Hi from class C having Ui as its vertex set. Furthermore, if u, v ∈ Ui and uv ∈ E, then
uv will always be an edge in Hi. Consequently, in what follows, we will concentrate on
defining the “bonus” edges in the event Hi. These are edges of the form uv where u and
v are distinct vertices of Ui and uv 6∈ E.

For each j = i+1, i+2, . . . , n, we use the short form N+(xj) = N+
GL

(xj) to denote the
back neighbors of xj . Note that elements of N+(xj) can belong to Ui or Ci. Also, we let
R′′(xj) denote the set of all vertices y in Ui ∪ Ci so that (1) if y = xm ∈ Ci, then m < j,
and (2) there exists an integer k > j so that {xj , y} ⊆ N+(xk).

Next, we define a “random” labelling of the elements of Ci and then use this labelling
to determine the random graph Hi. We begin by selecting for each xj ∈ Ci a random
digit from {1, 2, 3} with all three digits being equally likely. Choices for distinct elements
of Ci are independent.

Suppose that the digit for xj is 1. If N+(xj) = ∅, label xj with the pair (1, ∅). If
N+(xj) 6= ∅, choose an element y ∈ N+(xj) at random, with all elements equally likely,
and label xj with the pair (1, y).

Now suppose that the digit for xj is 2. If |N+(xj)| ≤ 1, label xj with the pair (2, ∅). If
|N+(xj)| ≥ 2, choose a 2-element subset {y, z} of N+(xj) at random, with all 2-element
subsets equally likely and label xj with the pair (2, {y, z}).

Now suppose the digit for xj is 3. If |R′′(xj)| < 2, assign xj the label (3, ∅). If
|R′′(xj)| ≥ 2, choose a distinct pair y, z ∈ R′′(xj) at random, with all pairs equally likely,
and label xj with the pair (3, {y, z}).

Next, we describe how the labels assigned to the vertices in Ci are used to determine
the random graph Hi. Start with the graph G. Then let xj ∈ Ci. When xj is labelled
(1, ∅), delete all edges of the form xjy where y ∈ N+(xj) (if there are any). If xj is labelled
(1, u), delete all edges of the form xjy where y ∈ N+(xj) except the edge xju. If u ∈ Ci

and the digit of u is 2 or 3, delete the edge xju.
When xj is labelled (2, ∅), delete all edges xjy where y ∈ N+(xj). If xj is labelled

(2, {y, z}), delete all edges of the form xju where u ∈ N+(xj) except xjy and xjz. If the
digit for y is 2, delete xjy. If the digit for z is 2, delete the edge xjz. If the digit of y is 3
and z is not a member of the second coordinate of the label of y, delete the edge xjy. If
the digit of z is 3 and y is not a member of the second coordinate of the label of z, delete
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the edge xjz.
If the first coordinate of the label for xj is 3, delete all edges of the form xju where

u ∈ N+(xj).
For each pair y, z ∈ V , if there are two or more vertices labelled (2, {y, z}), delete all

but the L-least one. If there are two or more vertices labelled (3, {y, z}), delete all but the
L-least one. For each vertex xj labelled (1, u) with u ∈ V , contract the edge xju. After
all such contractions have been made, let G′ denote the resulting graph. It is easy to see
that the vertices in Ui induce the same subgraph of G as they do in G′. Furthermore, all
vertices in Ci whose digit is 1 have either been collapsed to a vertex in Ui or to an isolated
component of G′.

Now let G′′ denote the graph obtained from G′ by deleting the vertices in Ui. Then
each component of G′′ is a path of at most 3 vertices. If a component has 2 vertices, one
vertex has digit 2 and the other has digit 3. If a component has 3 vertices, then the two
endpoints have digit 2 while the middle point has digit 3. Any edge linking a component
path P with a vertex in Ui is incident with a point of P having digit 2. A component
consisting of just one vertex whose digit is 2 can be linked to at most 2 vertices of Ui.
A component path consisting of two vertices can be linked to at most one vertex in Ui.
A component path of three vertices can be linked to at most two vertices in Ui and this
occurs only if one endpoint is linked to one vertex in Ui and the other is linked to a second
vertex in Ui.

Finally, we obtain the graph Hi from G′ by:

1. Deleting all component paths of G′′ which are not linked to two distinct vertices of
Ui.

2. Deleting all component paths of G′′ linked to distinct vertices u and v of Ui when
uv ∈ E.

3. Contracting the edges on a component path P of G′′ to form a “bonus” edge uv
when P is linked to u and v in Ui and uv 6∈ E.

Evidently, Hi is a topological minor of G, so that Hi ∈ C. Thus den(Hi) ≤ d. For
each x ∈ Ui, let Xx be the random variable defined by setting Xx to be the degree of
the vertex x in the random graph Hi. For each ordered pair (x, y) of distinct vertices in
Ui, let Xxy be the random variable defined by setting Xxy = 1 when xy is an edge of Hi;
otherwise, Xxy = 0. Then Xx =

∑
y 6=x Xxy.

Now let E(Xx) be the expected value of Xx. Then E(Xx) =
∑

y 6=x E(Xxy). Also,
since Hi ∈ C, we know that

∑
x∈Ui

Xx ≤ di. Therefore
∑

x∈Ui
E(Xx) ≤ di. It follows that

there exists a vertex x ∈ Ui for which E(Xx) ≤ d. Alice chooses such a vertex x from Ui

and designates x to be xi. Note that all edges in E0 of the form ux where u ∈ U also
belong to Hi, so we know that d+

GL
(xi) ≤ d.

This completes the description of the linear order L. The next step in the argument
is to provide additional information on the special properties of L.

Let x ∈ V . Fixing the linear order L and the graph G, we will continue to use
the short form N+(x) = N+

GL
(x) for the set of back neighbors of x in L, but now we
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will also use the short form R(x) = RGL
(x) for the set of vertices reachable from x

in L. We also set R′(x) = R′
GL

(x), R′′(x) = R′′
GL

(x), and R2(x) = R2
GL

(x), so that
R(x) = N+(x) ∪ R′(x) ∪ R′′(x).

Claim 1. For every x ∈ V , |R′(x)| ≤ d2.

Proof. The claim follows immediately from the fact that |N+(x)| ≤ d for every x ∈ V .
4
Claim 2. For every x ∈ V , |R(x)| < d5

Proof. In view of Claim 1 and the fact that |N+(x)| ≤ d, it suffices to show that |R′′(x)| <
d4. We argue by contradiction. Suppose there exists a vertex x ∈ V with |R′′(x)| ≥ d4.
Choose d4 distinct elements y1, y2, . . . , yd4 from R′′(x). Then for each j = 1, 2, . . . , d4,
choose an element zj so that {x, yj} ⊆ B(zj). Now suppose that x = xi and consider the
step at which x = xi was selected in the construction of L. At this point, {x} ∪ R′′(x) ⊆
Ui. It follows that xyj is an edge in the random graph Hi whenever zj is assigned the
label (2, {x, yj}). However, the probability that this label is assigned to zj is at least

2
3d(d−1)

> d−3. Thus

E(Xx) =
∑

y 6=x

E(Xxy) ≥
d4∑

j=1

E(Xxyj
) > d4 1

d3
= d.

The contradiction shows that |R′′(x)| < d4 so that |R(x)| < d5 as claimed. 4
For any y ∈ R2(x) −R(x), there is some z for which both x and y are reachable from

z. Accordingly, R2(x) − R(x) is covered by the union of the following nine subsets;

1. S1 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ N+(z) and y ∈ N+(z)}.
2. S2 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ N+(z) and y ∈ R′(z)}.
3. S3 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ N+(z) and y ∈ R′′(z)}.
4. S4 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′(z) and y ∈ N+(z)}.
5. S5 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′(z) and y ∈ R′(z)}.
6. S6 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′(z) and y ∈ R′′(z)}.
7. S7 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′′(z) and y ∈ N+(z)}.
8. S8 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′′(z) and y ∈ R′(z)}.
9. S9 = {y ∈ V : y < x in L and there exists z ∈ V with x ∈ R′′(z) and y ∈ R′′(z)}.
These nine sets are illustrated in Figure 2, where we have displaced points vertically

if there is some ambiguity as to their order in L. It is easy to see that S1 ⊂ R(x) and
S3 = S4.

From Claim 2, we know that |R(x)| < d5. To complete the proof of our lemma and
show that |R2(x)| ≤ d18, we need only verify the following subclaims.
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S1

x z y x z

S2 S3

y x z

S4

y x z
S5

y x z
S6

y x z

S7

y x z
S8

y x z
S9

y x z

Figure 2: A Covering of R2(x) − R(x).

Subclaim a. |S2| < d7.

Subclaim b. |S3| < d5.

Subclaim c. |S5| < d8.

Subclaim d. |S6| < d6.

Subclaim e. |S7| < d5.

Subclaim f. |S8| < d8.

Subclaim g. |S9| < d17.
The arguments for these subclaims are quite similar and each continues in the same

spirit as the proof of Claim 2. So we provide the details for Subclaims a, c and g, leaving
the remaining four subclaims for the reader. The reader should note that the proof for
Subclaim c requires the result for Subclaim b. Also, the proof of Subclaim f requires the
result for Subclaim e.

Proof of Subclaim a. Suppose to the contrary that |S2| ≥ d7. Choose d7 distinct elements
y1, y2, . . . , yd7 from S2. For each j = 1, 2, . . . , d7, choose an element zj so that x ∈ N+(zj)
and yj ∈ R′(zj). Then choose an element wj ∈ N+(zj) so that yj ∈ N+(wj).

Since ∆+(GL) ≤ d, we may assume that after relabelling w1, w2, . . . , wd6 are distinct.
Any wj preceding x in L belongs to R(x) and we know by Claim 2 that |R(x)| < d5. So
after another relabelling, we may assume that w1, w2, . . . , wd5 all come after x in L.

Then consider the step in the construction of L at which Alice selects x = xi. At that
moment, wj and zj are elements of Ci for each j = 1, 2, . . . , d5. Furthermore, xyj is an
edge in the random graph Hi whenever zj is labelled (2, {x, wj}) and wj is labelled (1, yj).
For any value of j, the probability that both these labels are assigned is greater than d−4.
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It follows that follows that E(Xx) > d5 1
d4 = d. The contradiction shows that |S2| < d7,

as claimed.

Proof of Subclaim c. Suppose to the contrary that |S5| ≥ d8. Choose d8 distinct elements
y1, y2, . . . , yd8 from S5. For each j = 1, 2, . . . , d8, choose an element zj so that {x, yj} ⊆
R′(zj). Then choose elements vj and wj so that {vj , wj} ⊆ N+(zj), x ∈ N+(vj) and
yj ∈ N+(wj).

Since ∆+(GL) ≤ d, we may assume that after relabelling, w1, w2, . . . , wd7 are distinct.
Now any wj which precedes x in L belongs to S3 and assuming Subclaim b has been
verified, we know that there are less than d5 such vertices. After another relabelling, we
may then assume that w1, w2, . . . , wd6 are distinct and come after x in L.

Then consider the step at which Alice selects x = xi. At that moment, for each j ≤ d6,
xyj is an edge in the random graph Hi whenever wj is labelled (1, yj), vj is labelled (1, x)
and zj is labelled (2, {vj, wj}). The probability that all three of these labels are assigned
is greater than d−5. However, this implies that E(Xx) > d6 1

d5 = d. The contradiction
shows that |S5| < d8 as claimed.

Proof of Subclaim g. Suppose the subclaim is false and that |S9| ≥ d17. Choose d17

distinct elements y1, y2, . . . , yd17 from S9. For each j = 1, 2, . . . , d17, choose zj so that
{x, yj} ⊆ R′′(zj). Then choose vertices vj and wj so that {x, zj} ⊆ N+(vj) and {zj, yj} ⊆
N+(wj). If wj = vj, then yj ∈ S1 = R(x), and since |R(x)| < d5, we may assume that
after relabelling vj 6= wj for j = 1, 2, . . . , d16.

Then consider the step at which Alice selects x = xi. At that moment, xyj is an
edge in the random graph Hi whenever zj is labelled (3, {x, yj}), vj is labelled (2, {x, zj})
and wj is labelled (2, {yj, zj}). Since |R(zj)| < d5, the probability that all three are
labelled in this manner is greater than d−15. But this now implies that E(Xx) > d. The
contradiction shows that |S9| < d17 as claimed. Also, assuming that the reader has verified
the remaining four Subclaims, the proof of our lemma is complete. �

5 Proof of the Main Theorem

In this section, we present the proof of the main theorem. Let C be a topologically closed
class of graphs with den(G) ≤ d for every graph G ∈ C. In view of Nešetřil and Sopena’s
Theorem 2.1 and the fact that eGo(G) ≤ Go2(G), it suffices to show that Go2(G) ≤ d22

for every G ∈ C. To accomplish this, we consider the marking game discussed in Section 2
and describe a winning strategy for Alice when t ≥ d22.

Using the technical lemma of the preceding section, Alice chooses a linear order L on
the vertex set V of G so that

1. ∆+(GL) ≤ d.

2. |RGL
(x)| < d5 for every x ∈ V .

3. |R2
GL

(x)| < d18 for every x ∈ V .
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To aid in her decisions, Alice maintains a list of the vertices which have been marked
and uses L to maintain a dynamic partition of the vertex set into two disjoint sets called
active and inactive. She updates this partition immediately after each move she makes.
After the updates are made, all marked vertices will be active, but unmarked vertices
can be either active or inactive. However, once a vertex becomes active, it remains active
forever.

At the start of the game, all vertices are unmarked and all are inactive. On Alice’s
first move, she marks the first (least) element of L. Of course, she immediately updates
the partition by moving this vertex from inactive to active.

Now it is Bob’s turn. Bob marks a second vertex of G. We denote this vertex as
y0. At this point, Alice employs a sequence of “tie-breaking” rules to determine her next
move.

Let W denote the set of unmarked vertices—this definition is of course dynamic.
Without loss of generality, W 6= ∅. Now let RW (y0) denote the set of unmarked vertices
which are reachable from y0. If RW (y0) = ∅, then Alice marks the L-least element of W .
She then updates the partition to reflect the fact that the vertices marked by Bob and
Alice on their last turns are now active and marked.

Now suppose RW (y0) 6= ∅. Let y1 denote the L-least element of RW (y0). At this
point, we describe Alice’s strategy recursively. Suppose for some j ≥ 1, Alice has defined
a vertex and called it yj. If yj is active, Alice marks yj. If yj is inactive, she considers the
set RW (yj) of unmarked vertices which are reachable from yj. If RW (yj) = ∅, then Alice
marks yj . If RW (yj) 6= ∅, let yj+1 denote the L-least element of RW (yj).

This recursive procedure eventually results in the selection of some vertex yt, where
t ≥ 1, which Alice then marks. Note that prior to marking yt, it could have been either
active or inactive. On the other hand, if t > 1, then y1, y2, . . . , yt−1 were all inactive.
However, Alice now updates her records as follows. First, she adds y0 and yt to the list
of marked vertices. If t > 1, she also changes the status of y1, y2, . . . , yt−1 from inactive
to active. Of course, for the moment, y1, y2, . . . , yt−1 are still unmarked.

The remainder of the proof is devoted to showing that Alice’s strategy actually works.
Let x be an unmarked vertex. Recall that A(x) denotes the set of all marked neighbors of
x, while A2(x) denotes the set of all marked vertices y so that there exists an unmarked
vertex z adjacent to both x and y. We now show that |A(x) ∪ A2(x)| < d22. Let A′(x) =
{y ∈ V : y is active and either x ∈ R(y) or y ∈ R(x)}.
Claim 1. At no point will there ever be an unmarked vertex x for which |A′(x)| ≥ d20.

Proof. We argue by contradiction. Suppose the claim is false. Consider a point in the
game where there is an unmarked vertex x for which |A′(x)| ≥ d20. Since |R(x)| < d5,
we may assume that A′(x) contains d19 distinct elements y1, y2, . . . , yd19 with x ∈ R(yk)
and yk active for each k = 1, 2, . . . , d19. Without loss of generality, we may assume that
these elements have been labelled in the order which they became active; in particular,
yd19 was the last of these elements to become active. Then, for each k = 1, 2, . . . , d19 − 1,
there is a vertex zk 6= yk with zk ∈ R(yk) and zk ≤ x in L so that either Alice marked
zk or Alice changed the status of zk from inactive to active. Note that either zk = x
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or zk ∈ R2(x). Also note that the elements in {z1, z2, . . . , zd19−1} need not be distinct.
However, it is clear that there is at most one value of k for which x = zk. Moreover, if
1 ≤ k1 < k2 < d19, and z = zk1 = zk2, then z 6= zk for every k = 1, 2, . . . , d19 − 1 except
k = k1 and k = k2. In other words, for each z ∈ V , there are at most two values of k with
1 ≤ k < d19 so that z = zk. It follows that |R2(x)| ≥ d18. The contradiction completes
the proof of the claim. 4

We already know that |R(x)| < d5. Furthermore, all marked vertices are active. Set

A′′(x) = (A(x) ∪ A2(x)
) − R(x) − A′(x).

To complete the proof of our theorem, it suffices to show that |A′′(x)| < d21. Suppose
this inequality fails. Choose d21 distinct elements y1, y2, . . . , yd21 from A′′(x). Note that
for each j = 1, 2, . . . , d21, there is an unmarked vertex zj adjacent to both x and yj.
Furthermore, we must have zj < x in L, else yj ∈ A′(x). However, since ∆+(GL) ≤ d,
it follows that there is an unmarked vertex z ∈ N+

GL
(x) so that at least d20 elements

of A′′(x) are adjacent to z. However, all these elements belong to A′(z) which then
contradicts Claim 1 above. The contradiction completes the proof. �

6 Two Examples

In this section, we first present an example which shows that the game chromatic number
of a class of graphs may be bounded even when the Go number is not.

Example 6.1 Let Gn be the graph obtained by subdividing every edge of the complete
balanced bipartite graph Kn,n. Then the acyclic chromatic number of Gn is 3, the game
chromatic number of Gn is 4, but the Go number of Gn tends to infinity with n.

Proof. Label the two parts of Kn,n as A and B, and for each a ∈ A and b ∈ B, let
sa,b denote the vertex inserted on the edge ab. First note that we can obtain an acyclic
3-coloring of Gn by letting A, B, and S = {sa,b : a ∈ A, b ∈ B} be color classes. Alice can
win the coloring game using the set [4] of colors by ensuring that any uncolored vertex
in A can be colored with 1 or 2, any uncolored vertex in B can be colored with 3 or 4,
and any uncolored vertex in S can be colored with some color. Until A∪B is completely
colored, Alice will only color vertices from A∪B. Suppose Bob has just colored a vertex
sa,b with α. If α ∈ {1, 2} and a is still uncolored, then Alice will color a with 3 − α. If
α ∈ {3, 4} and b is still uncolored, then Alice will color b with 7 − α. Otherwise Alice
will be able to color any uncolored vertex in A with 1 or 2 and any uncolored vertex in
B with 3 or 4. After A∪B is completely colored, Alice can color S greedily. It is easy to
check that these upper bounds are tight.

It remains to show that the Go number of G = Gn tends to infinity with n. Let
n = 42k+1. We shall describe a strategy for Bob that works in 2k rounds. At the end of
the i-th round, i ∈ [2k], G will contain an induced copy Gi of G42k+1−i such that none of
the vertices of Gi has been marked. Let the vertices of Gi be A′ ∪B′ ∪ S ′ where A′ ⊂ A,
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B′ ⊂ B, and S ′ ⊂ S. In addition we require that there exist two integers s and t with
i = s + t such that every vertex of A′ has at least s marked neighbors in G and every
vertex of B′ has at least t marked neighbors in G. Then the score of the game will be
greater than k. The first round is trivial since G0 = G works with s = 0 = t. So suppose
that Bob has completed the i-th round and has obtained Gi, s, and t. Let A1 ⊂ A′ have
cardinality |A′|

2
and let f be a one-to-one correspondence between A′ and B′. During the

(i + 1)-st round Bob marks the vertices in the set
{
sa,f(a) : a ∈ A1

}
one at a time. While

Bob is doing this, Alice can mark at most |A′|
2

vertices. So there exists a set D consisting

of |A′|
4

= 42k−i unmarked vertices such that either D ⊂ A1 or D ⊂ f (A1). Without
loss of generality, assume that D ⊂ f (A1). There also exists a set C ⊂ A − A1 such
that |C| = 42k−i and neither a nor sa,b is marked for all a ∈ C and b ∈ D. Then the
graph induced by C ∪D ∪ {sa,b : a ∈ C and b ∈ D} satisfies the requirements on Gi with
t := t + 1. �

Our second example shows that the oriented game chromatic number of a class of ori-
ented graphs may be bounded even when the extended Go number is not. This examples
answers a second question of Nešetřil and Sopena [10].

Example 6.2 Let Gn be the graph in Example 6.1. Consider Gn as an oriented graph
with edges (a, sa,b) and (sa,b, b) for each a ∈ A, b ∈ B. Then let Hn be the oriented graph
obtained by subdividing each edge of Gn, inserting ra,b on the edge (a, sa,b), and inserting
ta,b on the edge (sa,b, b). For each a ∈ A and b ∈ B, we have a directed path a, ra,b, sa,b,
ta,b, b from a to b in Hn. Then the oriented game chromatic number of Hn is bounded,
but the extended Go number of Hn tends to infinity with n.

Proof. Bob can drive the extended Go number to infinity by playing in rounds and
coloring vertices of S, essentially as in Example 6.1. It remains to check that the oriented
game chromatic number of Hn is bounded. Let T = ([k] , F ) be a tournament such that:

1. for all colors β there exists an even color α such that (α, β) ∈ F ;

2. for all colors β there exists an odd color γ such that (β, γ) ∈ F ; and

3. for all distinct colors α and γ there exists a color β such that (α, β) , (β, γ) ∈ F .

An easy probabilistic argument shows that such a tournament exists. We claim that
Alice can win the oriented coloring game on (Hn, T ). Much as in Example 6.1, Alice tries
to color the vertices in A with even colors and the vertices in B with odd colors. To
accomplish this, she must be moderately careful. Until A ∪ B is completely colored, she
only colors vertices in A ∪ B. If Bob colors a vertex of the form ra,b and a is uncolored,
she immediately colors a with an even color. Similarly, if Bob colors a vertex of the form
ta,b and b is uncolored, she immediately colors b with an odd color. If Bob colors a vertex
of the form sa,b with an even color and a is uncolored, she immediately colors a with an
even color. If Bob colors a vertex of the form sa,b with an odd color and b is uncolored, she
immediately colors b with an odd color. By Conditions 1 and 2, this is clearly possible.
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It remains to show that Alice, and therefore Bob, will always be able to color an
uncolored vertex u ∈ X. Since Alice will color A ∪ B first, we may assume that the
unique inneighbor of u is colored, say with α. If the unique outneighbor v′ of u is also
colored, then Alice is safe by Condition 3. Otherwise, if the unique outneighbor v′′ of v′

is uncolored, then Alice is safe by condition 2. This leaves only the possibility that v′

is uncolored, but v′′ is colored, say with γ. If α = γ, Alice is still safe by Condition 2.
Otherwise, apply Condition 3 to α and γ to obtain a color β such that (α, β), (β, γ) ∈ F .
Then β 6= γ and so Alice can color u with β. �
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[10] J. Nešetřil and E. Sopena, On the oriented game chromatic number, The Electr. J.
Comb. 8(2) (2001) R14.

[11] X. Zhu, The game coloring number of planar graphs, J. Comb. Theory, Series B 75
(1999), 245–258. His first paper.

[12] X. Zhu, The game coloring number of pseudo partial k-trees, manuscript (1999).

the electronic journal of combinatorics 8 (no. 2) (2001), #R12 15


