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Abstract

A deck of cards consisting of m red and n black cards is given. A guess is
made as to the colour of the top card, after which it is revealed and discarded. To
maximise the number of correct guesses one chooses the colour corresponding to
the majority of cards remaining in the deck. We determine the expected number of
correct guesses with this strategy, as well as the probability of beating an opponent
who uses the naive stategy of random guessing.
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1 Introduction

A number of authors have considered the following simple combinatorial game; [5, 3, 7, 6].
One starts with a deck of cards consisting of m red and n black cards. A guess is made as
to the colour of the top card, after which it is revealed and discarded. To maximise the
number of correct guesses one chooses the colour corresponding to the majority of cards
remaining in the deck. We determine the expected number of correct guesses with this
strategy, as well as the probability of beating an opponent1 who uses the naive stategy of
random guessing. The first of these problems was analysed by Levasseur [3] but only for
the case m = n. The second question was investigated by Zagier [7], again for the case
m = n. He obtained an asymptotic answer only, whereas we can derive exact formulas
for this probability for general m and n. We also re–derive the probability distribution
for the number of correct guesses for a pack of m + n cards, found originally by Sulanke
[6].

Whereas the previous authors made use of lattice paths, our approach will be based
on recurrence relations and probability generating functions. We also consider a variation
of the game in which you and your opponent alternate in guessing the colour of the card.
We find that there is a slight advantage to playing second in this variation.

In what follows, m always refers to number of cards of the colour that is predominant,
n to the other colour.

2 The number of correctly guessed cards

We begin by re–proving some results of [6].
Let p(m, n; k) denote the probability that, assuming that one has m cards of one

colour and n cards of a second colour, with m ≥ n ≥ 0, that one guesses k cards correctly.
Sulanke [6], using lattice path arguments, found the following explicit expression:

p(m, n; k) =
1(

m+n
m

)[(m + n

k

)
−
(

m + n

k + 1

)]
for m ≤ k ≤ m + n. (1)

One can prove this also using the following recursions. Introducing probability gener-
ating functions

ϕm,n(u) =
∑

m≤k≤m+n

p(m, n; k)uk,

one sees the recursions

ϕm,n(u) = u
m

m + n
ϕm−1,n(u) +

n

m + n
ϕm,n−1(u) for m > n ≥ 0,

ϕm,m(u) = (1 + u)
1

2
ϕm,m−1(u) for m ≥ 1, ϕ0,0(u) = 1

1Previous authors [3, 7] used phrases like “How often should you beat your kids?” etc. In accordance
with the editor’s wishes it was decided to avoid such phrases.
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almost immediately. If one defines Φm,n(u) =
(

m+n
m

)
ϕm,n(u) instead, the recursions are

nicer, viz.

Φm,n(u) = uΦm−1,n(u) + Φm,n−1(u) for m > n ≥ 0,

Φm,m(u) = (1 + u)Φm,m−1(u) for m ≥ 1, Φ0,0(u) = 1.

From these, Sulanke’s result (1) is readily proved by induction.
Instead of either guessing or using lattice path arguments, we can use a generating

function method that deserves perhaps to be known more widely to deal with such recur-
sions with boundary conditions. It is due to Knuth [2, page 537]; a tutorial version of it
appears in [4].

If we set

F (z, x) =
∑

m≥n≥0

Φm,n(u)zmxm−n,

F0(z) =
∑
m≥0

Φm,m(u)zm,

F1(z) =
∑
m≥1

Φm,m−1(u)zm,

then the first and second recursion for Φm,n(u) give

F (z, x) − F0(z) = uzxF (z, x) +
1

x

[
F (z, x) − F0(z) − F1(z)x

]
and F0(z) = 1 + (1 + u)F1(z), respectively. Hence

(1 − x + uzx2)F (z, x) = 1 − x + (1 + u − ux)F1(z).

Now the fact that the power series F (z, x) remains finite at x = λ := 2/(1+
√

1 − 4uz )
gives (this is Knuth’s trick) F1(z) = (λ − 1)/(1 + u − λu) and finally

F (z, x) =

(
1 +

√
1 − 4uz

2
− 1 −√

1 − 4uz

2
u

)−1(
1 − 1 −√

1 − 4uz

2
x

)−1

.

From this, using the expansion of the geometric series and the identity [1, (5.61)]

∑
n≥0

(
2n + k

n

)
Xn =

2k

√
1 − 4X(1 +

√
1 − 4X )k

the quantities in (1) can be obtained.

Considering the expected values T (m, n) = d
du

ϕm,n(u)
∣∣
u=1

, simple telescoping leads to(
m + n

m

)
T (m, n) =

∑
k≥m

k

[(
m + n

k

)
−
(

m + n

k + 1

)]
= m

(
m + n

m

)
+
∑
k>m

(
m + n

k

)
.
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Theorem 1. The expected number of correct guesses is given by

T (m, n) = m +
1(

m+n
m

) n−1∑
k=0

(
m + n

k

)
. (2)

Remark. Although this seems to be the nicest expression for the mean, we are able
to derive other equivalent ones:

T (m, n) = m − 1 +
2n(

m+n
m

) n∑
k=0

(
m + k − 1

k

)
1

2k
, (3)

T (m, n) = m +
2n−1(
m+n

m

) n−1∑
k=0

(
m + k

k

)
1

2k
, (4)

T (m, n) = m + n

n−1∑
k=0

(
n − 1

k

)
2n−1−k(−1)k

m + 1 + k
. (5)

Since the equivalence of these binomial expressions is not obvious, we prove these
equalities. To prove that (2) is equivalent to (3), we must show that

n∑
k=0

(
m + n

k

)
= 2n

n∑
k=0

(
m + k − 1

k

)
2−k.

In terms of generating functions, we must prove that

[xn]
1

1 − x
(1 + x)m+n = [xn]

1

1 − 2x

1

(1 − x)m
.

This can be seen by Cauchy’s integral formula (the substitution x = t/(1 − t) is used):

[xn]
1

1 − x
(1 + x)m+n =

1

2πi

∮
dx

xn+1

1

1 − x
(1 + x)m+n

=
1

2πi

∮
dt

tn+1

1

1 − 2t

1

(1 − t)m

= [tn]
1

1 − 2t

1

(1 − t)m
.

The equivalence of (3) and (4) is straightforward by writing(
m + k

k

)
=

(
m + k − 1

k

)
+

(
m + k − 1

k − 1

)

and performing some elementary operations.
For the equivalence of (5) and (4) we use hypergeometric functions:
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n

n−1∑
k=0

(
n − 1

k

)
2n−1−k(−1)k

m + 1 + k
=

n2n−1

(m + 1)
2F1[−n + 1, m + 1; m + 2|1

2
]

=
n2n−1(n − 1)!(m + 1)!

(m + 1)(m + n)!
2F1[−n + 1, m + 1;−n + 1|1

2
]

=
2n−1(
m+n

m

) n−1∑
k=0

(
m + k

k

)
1

2k
.

Here, we have used the transformation (5.105) [1].

Remark. As one referee has pointed out, there are shorter proofs of these equivalences.
The ones presented above have the advantage of offering some insight as opposed to
providing merely mechanical verifications.

It is interesting to note that the formula

m∑
k=0

(
m + k

k

)
1

2k
= 2m

follows from the discussion of Banach’s match box problem, see [1].
It is also not too hard to compute the variance; we start with the second moment:

1(
m+n

m

) ∑
k≥m

k2

[(
m + n

k

)
−
(

m + n

k + 1

)]

= m2 +
1(

m+n
m

) ∑
k>m

(2k − 1)

(
m + n

k

)

= m2 +
2(m + n)(

m+n
m

) ∑
k>m

(
m + n − 1

k − 1

)
− 1(

m+n
m

) ∑
k>m

(
m + n

k

)

= m2 +
m + n(

m+n
m

) ∑
k>m

(
m + n − 1

k − 1

)
+

m + n(
m+n

m

) ∑
k≥m

(
m + n − 1

k

)
− 1(

m+n
m

) ∑
k>m

(
m + n

k

)

= m2 + n +
m + n(

m+n
m

) ∑
k>m

(
m + n

k

)
− 1(

m+n
m

) ∑
k>m

(
m + n

k

)

= m2 + n +
m + n − 1(

m+n
m

) n−1∑
k=0

(
m + n

k

)
.

Subtracting the square of the expectation, we get:

Theorem 2. The variance of the number of correct guesses is given by

n − m + 1 − n(
m+n

m

) n−1∑
k=0

(
m + n

k

)
− 1(

m+n
m

)2
(

n−1∑
k=0

(
m + n

k

))2

.
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In the symmetric case m = n, this can be simplified to

m +
1

4
− 42m−1(

2m
m

)2 ,

in agreement with the earlier result of Sulanke [6].

3 How often will you beat a naive player?

Zagier [7] considered the probability that you beat the naive player (with your superior
strategy) and gave the asymptotic answer

1

2
+

1√
8

+ O(m−1/2)

for the symmetric case m = n.
Now we can give an exact result: Recall that the probability that you score k by

guessing the more likely outcome is given by

A(m, k) =
1(

2m
m

)[(2m

k

)
−
(

2m

k + 1

)]
, m ≤ k ≤ 2m.

The distribution for the naive player is given by

C(m, k) =
1

4m

(
2m

k

)
, 0 ≤ k ≤ 2m.

Therefore the probability that you win is∑
0≤k<m

C(m, k) +
∑

m≤k<j≤2m

C(m, k)A(m, j).

The first, easy sum is ∑
0≤k<m

C(m, k) =
1

2

(
1 −

(
2m
m

)
4m

)
.

The other sum is

1(
2m
m

)
4m

∑
m≤k<j≤2m

(
2m

k

)[(
2m

j

)
−
(

2m

j + 1

)]

=
1(

2m
m

)
4m

∑
m≤k<2m

(
2m

k

)(
2m

k + 1

)

=
1

2
(
2m
m

)
4m

∑
0≤k<2m

(
2m

k

)(
2m

k + 1

)
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=
1

2
(
2m
m

)
4m

∑
0≤k<2m

(
2m

k

)(
2m

2m − k − 1

)

=
1

2
(
2m
m

)
4m

(
4m

2m − 1

)
.

Theorem 3. The probability that the player guessing the more likely colour beats the one
guessing naively is (exactly) given by

1

2
+

1

2

(
4m

2m+1

)
(
2m
m

)
4m

− 1

2

(
2m
m

)
4m

.

Stirling’s formula readily gives the result

1

2
+

1√
8
− 1

2
√

πm
− 7

√
2

64m
+

1

16
√

πm3/2
+ O(m−2).

Very similarly, we can consider the probability that the game against the naive player
is a draw, which turns out to be

∑
m≤k≤2m

C(m, k)A(m, k) =
1(

2m
m

)
4m

∑
m≤k≤2m

(
2m

k

)[(
2m

k

)
−
(

2m

k + 1

)]

=
1

2
(
2m
m

)
4m

[ ∑
0≤k≤2m

(
2m

k

)2

+

(
2m

m

)2
]
− 1

2
(
2m
m

)
4m

(
4m

2m + 1

)

=
1

2
(
2m
m

)
4m

(
4m

2m

)
+

1

2 4m

(
2m

m

)
− 1

2
(
2m
m

)
4m

(
4m

2m + 1

)

=
1

2(2m + 1)
(
2m
m

)
4m

(
4m

2m

)
+

1

2 4m

(
2m

m

)

=
1

2
√

πm
+

√
2

8m
+ O(m−3/2).

4 A variation

Instead of guessing at the same time as the naive player, suppose that the game is now
played alternately. The naive player guesses, then the clever player, then the naive player
again, and so on. We will see that is makes a (small) difference whether the clever or the
naive player starts. We will discuss again the average score of the clever player and start
by considering the case where the clever player plays first.

T (m, n) = [[m + n even]]
m

m + n
+

m

m + n
T (m − 1, n) +

n

m + n
T (m, n − 1), 0 ≤ n < m,
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T (m, m) =
1

2
+ 2T (m, m− 1), m ≥ 1, T (0, 0) = 0.

([[P ]] is 1 if condition P is true, 0 otherwise.) It is quite easy to guess the solution and
prove it by induction:

T (2m, 2n) = m +
1(

2m+2n
2n

) n−1∑
k=0

(
2m + 2n

2k

)
,

T (2m, 2n + 1) = m +
1(

2m+2n+1
2n+1

) n−1∑
k=0

(
2m + 2n + 1

2k + 1

)
− m

2m + 2n + 1
,

T (2m + 1, 2n) = m +
1(

2m+2n+1
2n

) n−1∑
k=0

(
2m + 2n + 1

2k + 1

)
− n

2m + 2n + 1
,

T (2m + 1, 2n + 1) = m +
1(

2m+2n+2
2n+1

) n−1∑
k=0

(
2m + 2n + 2

2k + 1

)
+

1

2
.

Therefore

T (m, m) =
m − 1

2
+

4m−1(
2m
m

) .

Now the case when the naive player starts is briefly sketched.

T (m, n) = [[m + n odd]]
m

m + n
+

m

m + n
T (m − 1, n) +

n

m + n
T (m, n − 1), 0 ≤ n < m,

T (m, m) = 2T (m, m − 1), m ≥ 1, T (0, 0) = 0.

And the solution is

T (2m, 2n) = m +
1(

2m+2n
2n

) n−1∑
k=0

(
2m + 2n

2k + 1

)
,

T (2m, 2n + 1) = m +
1

2
(
2m+2n+1

2n+1

) n∑
k=0

(
2m + 2n + 2

2k + 1

)
,

T (2m + 1, 2n) = m +
1(

2m+2n+1
2n

) n∑
k=0

(
2m + 2n + 1

2k

)
+

n

2m + 2n + 1
,

T (2m + 1, 2n + 1) = m +
1(

2m+2n+2
2n+1

) n−1∑
k=0

(
2m + 2n + 2

2k + 1

)
+

m + 3n + 2

2(m + n + 1)
.

Therefore

T (m, m) =
m

2
+

4m−1(
2m
m

) .

the electronic journal of combinatorics 8 (no. 2) (2001), #R13 8



So one does slightly better (by 1
2
) when one is allowed to play after the naive player.

And the sum of the scores in both instances is

T (m, m) = m − 1

2
+

4m

2
(
2m
m

) ,
as it should be, since the score is only divided into the score obtained at even (resp. odd)
steps.
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