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Dept. of Appl. Math. and Institute of Theoretical Computer Sciences (ITI),

Charles University, Prague, Czech Republic

nesetril@kam-enterprise.ms.mff.cuni.cz

E. Sopena
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Abstract

We consider the oriented version of a coloring game introduced by Bodlaender
[On the complexity of some coloring games, Internat. J. Found. Comput. Sci. 2
(1991), 133–147]. We prove that every oriented path has oriented game chromatic
number at most 7 (and this bound is tight), that every oriented tree has oriented
game chromatic number at most 19 and that there exists a constant t such that
every oriented outerplanar graph has oriented game chromatic number at most t.

1 Introduction

Let G be an undirected graph, with vertex set V (G) and edge set E(G), and X be a
set of colors. We consider the two-players game defined as follows. The two players are
Alice and Bob and they play alternatively with Alice having the first move. Alice’s goal
is to provide a proper k-coloring of G and Bob’s goal is to prevent her from doing so. A
move consists in choosing an uncolored vertex u and assigning it a color from the set X
distinct from the colors previously assigned (by either player) to the neighbors of u. If
after |V (G)| moves the graph is colored then Alice wins, otherwise Bob wins. In other
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words, Bob wins whenever an impass is reached before the whole graph is colored, that is
if, at some intermediate step, for every uncolored vertex u and every color α, u has some
neighbour with color α.

The game chromatic number of G, denoted by gcn(G), is then defined as the least
cardinality of a color set X for which Alice has a winning strategy. This parameter is well
defined since we clearly have χ(G) ≤ gcn(G) ≤ |V (G)|.

The game chromatic number of a graph was first introduced by Bodlaender in [1]
and then studied by Bodlaender and Kratsch [2], Faigle, Kern, Kierstead and Trotter [7],
Kierstead and Trotter [11], Dinski and Zhu [5], Guan and Zhu [8] and Zhu [17, 18]. In
particular, Kierstead and Trotter proved in [11] that gcn(G) ≤ 33 for every planar graph
G (the existence of an upper bound was conjectured by Bodlaender). This bound was
later improved by Dinski and Zhu [5] who proved that if a graph G has acyclic chromatic
number a then gcn(G) ≤ a(a + 1). (The acyclic chromatic number of a graph G is the
minimum number of colors in a proper coloring of G such that every cycle in G uses at
least three colors.) Using a result of Borodin [3], which states that every planar graph
has acyclic chromatic number at most 5, we get gcn(G) ≤ 30 for every planar graph G.
Using a different technique (not based on acyclic colorings), Zhu recently further reduced
this bound to 19 [17]. (Later, Kierstead slightly improved this technique to get a bound
of 18 [9].) On the other hand, it is known that there exist planar graphs with game
chromatic number 8. The edge-coloring version of this game was considered by Cai and
Zhu [4] and by Lam, Shiu and Xu [12].

In this paper, we are interested in the oriented version of this game. Let ~G be an
oriented graph, that is a digraph with no opposite arcs. A mapping c from V ( ~G) to a

set of colors X is an oriented coloring of ~G if (i) c(u) 6= c(v) for every arc uv and (ii)
c(u) = c(x) implies c(v) 6= c(w) for every two arcs uv and wx (v and w not necessarily
distinct). Observe that condition (ii) implies in particular that any two vertices linked
by a directed 2-path, that is a directed path of length 2, must be assigned distinct colors.

The oriented chromatic number of ~G, denoted by ~χ( ~G), is then defined as the least

cardinality of a set X such that ~G has an oriented coloring on X. Raspaud and Sopena
proved in [15] that if an undirected graph G has acyclic chromatic number a then every

orientation ~G of G has oriented chromatic number at most a×2a−1. (Thanks to Borodin’s

result, this gives in particular that ~χ( ~G) ≤ 80 for every oriented planar graph ~G.)
Chromatic and oriented chromatic numbers can be equivalently defined in terms of

graph homomorphisms. A homomorphism ϕ of a graph G to a graph H , denoted ϕ :
G −→ H , is an edge-preserving mapping from V (G) to V (H) (ϕ(u)ϕ(v) is an edge in
H whenever uv is an edge in G). Such a mapping ϕ is called a H-coloring of G. The
chromatic number of an undirected graph G is then the least k such that G admits a
homomorphism to the complete graph Kk on k vertices. Similarly, the oriented chromatic
number of an oriented graph ~G is the least k such that there exists an oriented target
graph ~H on k vertices such that ~G admits a ~H-coloring (similarly, homomorphisms of
oriented graphs are defined as arc-preserving vertex mappings).

Let ~G be an oriented graph and ~H be a fixed oriented target graph whose vertex set
will be used as the set of colors. We consider the oriented version of the coloring game
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defined as follows. Again the two players are Alice and Bob and they play alternatively
with Alice having the first move. Alice’s goal is to provide a ~H-coloring of ~G and Bob’s
goal is to prevent her from doing so. A move consists in choosing an uncolored vertex u
and assigning it a color α from the set V ( ~H) such that:

1. if v is a vertex with color β and uv (resp. vu) is an arc in ~G then αβ (resp. βα) is

an arc in ~H,

2. if w is a vertex with color γ and there exists a directed 2-path linking u and w (in
either direction) then α 6= γ.

In other words, the (partial) oriented coloring of ~G obtained after such a move can be

extended to an oriented coloring of the whole graph ~G (but not necessarily to a ~H-coloring

of ~G). Observe that the undirected game of Bodlaender can also be defined in the same
way by taking the complete graph Kk as a target graph and dropping condition (2) above
(which comes from the fact that in the oriented case the target graph has no opposite
arcs).

In this oriented game, Bob’s goal is thus to “surround” some uncolored vertex u in
such a way that either there exists no color in ~H which is compatible with the already
colored neighbours of u, or such colors exist but all of them are already assigned to some
vertices in ~G which are linked to u by a directed 2-path.

The oriented game chromatic number of ~G, denoted by ogcn( ~G), is then defined as

the least k such that there exists an oriented target graph ~H on k vertices for which Alice
has a winning strategy. The fact that this number is well-defined is not as immediate
as it is in the undirected case and this will be established in the next section. Since
every oriented coloring of an oriented graph is indeed a coloring of the corresponding
underlying undirected graph, we get that gcn(G) ≤ ogcn( ~G) for every orientation ~G of
every undirected graph G.

Our main interest is in characterizing families of oriented graphs having bounded
oriented game chromatic number. In the next section, we introduce two types of “Go-
like” games (by analogy to the Go board-game) and show how these games may help for
proving that families of graphs have bounded (oriented or not) game chromatic number.
Using that, we prove in Section 3 that the families of oriented paths, oriented cycles
or oriented trees have bounded oriented game chromatic number and in Section 4 that
the family of oriented outerplanar graphs has bounded oriented game chromatic number.
Finally, we discuss in Section 5 another type of oriented coloring game and state some
open problems.

2 Go-type games and coloring games

We introduce in this section two new games and show how they are related to the coloring
games discussed in the previous section. For these games, we shall play with tokens instead
of colors (or, equivalently, with only one color) and speak about marked or umarked
vertices.
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Figure 1: A vertex v with extended score s∗(v) = 2 + 3 = 5

Let G be an undirected graph whose vertices are either marked or unmarked. We
set V (G) = M(G) ∪ U(G) where M(G) and U(G) respectively denote the set of marked
vertices and the set of unmarked vertices. For every unmarked vertex u ∈ U(G), we
denote by NM(u) the set of marked neighbours of u and by s(u) the cardinality of NM (u),
called the score of u. The score of the graph G, denoted by s(G), is then defined as
s(G) = Max{s(u) : u ∈ U(G)} if U(G) is non-empty and s(G) = 0 otherwise.

Let now G be an undirected graph on n vertices all of whose vertices are unmarked
(U(G) = V (G)) and k be a positive integer. The two-players games Go(k) is defined
as follows. Alice and Bob play alternatively with Alice having the first move. A move
consists in marking any unmarked vertex. The game thus finishes after n moves, when
all vertices are marked. Alice wins the game if after each move (of any player) the score
of the current graph is at most k.

The Go-number of G, denoted by Go(G), is then defined as the least k such that Alice
has a winning strategy in the game Go(k). We clearly have Go(G) ≤ ∆(G) for every
graph G, where ∆(G) stands for the maximum degree of G.

It is easy to see that any winning strategy for playing the game Go(k) on an undirected
graph G induces a winning strategy for playing the coloring game on G with k +1 colors:
considering colored vertices as marked, if every uncolored vertex has at most k colored
neighbours after each move then every uncolored vertex is colorable provided that we have
at least k + 1 colors available. We have proved the following

Theorem 1 For every undirected graph G, gcn(G) ≤ Go(G) + 1.

A similar parameter, called the game coloring number of a graph, was considered by
Zhu in [17]. The game coloring number gcol(G) of a graph G is given by gcol(G) =
Go(G) + 1 and was used for deriving an upper bound for the game chromatic number of
planar graphs.

In order to get a similar result for the oriented version of the coloring game, we now
introduce a new kind of Go-type game, namely the extended Go(k)-game, or eGo(k)-game
for short. This new game is played on oriented graphs.

Let ~G be an oriented graph with V ( ~G) = M( ~G) ∪ U( ~G). For every unmarked vertex

u ∈ U( ~G), we denote by NM(u) the set of marked neighbours of u (as before) and by
EM(u) the set of marked vertices w such that (i) u and w are linked by a directed 2-path
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(in either direction), and (ii) there exists no directed 2-path linking u and w (in either
direction) whose middle vertex is marked. (In the following, vertices of EM(u) will be
referred to as marked 2-neighbours of u.) The extended score of u, denoted s∗(u), is defined
as the sum s∗(u) = |NM(u)|+ |EM(u)| (see Figure 1, where marked vertices are drawn as

black vertices). The extended score of the graph ~G, denoted by s∗( ~G), is then defined as

s∗( ~G) = Max{s∗(u) : u ∈ U( ~G)} if U( ~G) is non-empty and s∗( ~G) = 0 otherwise.
The two-players games eGo(k) is defined as follows. Alice and Bob play alternatively

with Alice having the first move. A move consists in marking any unmarked vertex. The
game thus finishes after n moves, when all vertices are marked. Alice wins the game if
after each move (of any player) the extended score of the current graph is at most k.

The extended Go-number (or eGo-number for short) of ~G, denoted by eGo( ~G), is then
defined as the least k such that Alice has a winning strategy in the game eGo(k). Clearly,

for every orientation ~G of an undirected graph G the inequality Go(G) ≤ eGo( ~G) holds.

Moreover, for every orientation ~G we have eGo( ~G) ≤ ∆( ~G) + ∆( ~G)(∆( ~G)− 1) = ∆2( ~G).
We now introduce a special type of tournaments that we shall use as target graphs for

defining a winning strategy for Alice when playing the oriented coloring game on graphs
with bounded eGo-number.

Let us call orientation vector of length k a k-tuple ν = (ν1, ν2, . . . , νk) ∈ {0, 1}k. If ~G

is an oriented graph and S = (u1, u2, . . . , uk) a sequence of k distinct vertices of V ( ~G),

we say that a vertex v ∈ V ( ~G) is a ν-successor of S if, for every i, 1 ≤ i ≤ k, uiv ∈ E( ~G)

if νi = 1 and vui ∈ E( ~G) otherwise.

Definition 2 (Property P (k)) We say that a tournament ~T satisfies the property P (k)

if (i) ~T has at least k vertices and (ii) for every sequence S = (t1, t2, . . . , tk) of k distinct

vertices in V (~T ) and every orientation vector ν of length k, the sequence S has a ν-

successor in ~T .

The following observation will be later useful:

Observation 3 If ~T is a tournament satisfying the property P (k) then for every sequence

S = (t1, t2, . . . , tk′) of k′ ≤ k distinct vertices in V (~T ) and every orientation vector ν of

length k′, the sequence S has at least 2k−k′
ν-successors in ~T .

This is obvious since any orientation vector of length k′ can be extended to 2k−k′

disctinct orientation vectors of length k.
Schütte and Erdös (see [6] or [13], pp. 28–31) considered a similar property of tour-

naments, the so-called property S(k), by only requiring the existence of a ν-successor for
the orientation vector ν = (1, 1, . . . , 1). Erdös proved in [6] that for every k, there exist
finite tournaments satisfying the property S(k). In fact, by slightly modifying Erdös’s
proof, we get the following

Theorem 4 For every k > 0, there exists a finite tournament Tk satisfying the property
P (k).
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Proof. Let n be such that 2k
(

n
k

)
(1 − 2−k)n−k < 1 and consider a random tournament

on the set V = {1, 2, . . . , n}. (By a random tournament we mean here a tournament for
which the direction of each arc is determined by the flip of a fair coin.) For every subset
S of k distinct vertices and every orientation vector ν of length k, let AS,ν be the event
that there is no ν-successor of S (S is considered here as the sequence obtained by taking
the vertices in increasing order).

Since for each fixed vertex v ∈ V \ S, the probability that v is not a ν-successor of
S is 1 − 2−k and all these n − k events corresponding to the possible choices of v are
independent, we get Pr(AS,ν) = (1 − 2−k)n−k.

It follows that

Pr
(
∪S,νAS,ν

)
≤∑

S,ν

Pr(AS,ν) = 2k

(
n

k

)
(1 − 2−k)n−k < 1.

Therefore, with positive probability, there is a tournament on n vertices which satisfies
the property P (k).

For small values of k, optimal tournaments are known. Let q be a prime number such
that q ≡ 3 (mod 4); the tournament ~QRq is then defined by V ( ~QRq) = {0, 1, . . . , q − 1}
and for every u, v ∈ V ( ~QRq), uv ∈ E( ~QRq) if and only if v − u (mod q) is a non-zero

quadratic residue of q. It can be checked that the tournament ~QR3, that is the directed
cycle on three vertices, satisfies the property P (1), that the tournament ~QR7 satisfies the

property P (2), that the tournament ~QR19 satisfies the property P (3) and that these three
solutions are optimal (see [16]).

We are now able to prove the following

Theorem 5 For every positive integer k there exists a number c(k) such that for every

oriented graph ~G, if eGo( ~G) ≤ k then ogcn( ~G) ≤ c(k).

Proof. We know that Alice has a winning strategy for the game eGo(k) on ~G. Let ~T
be a finite tournament satisfying the property P (k) (we know by Theorem 4 that such a

tournament exists) and let c(k) denote the order of ~T . We claim that if Alice uses the
same strategy (for choosing the vertex to be colored) when playing the oriented coloring

game on ~G with ~T as a target graph then the whole graph can be ~T -colored and Alice
wins the game. Since ~T has c(k) vertices, this will prove the desired result.

To see that, recall that playing the eGo(k)-game strategy ensures that after each move
every uncolored vertex v has at most k1 colored neighbours and k2 colored 2-neighbours
with k1 + k2 ≤ k. The property P (k) then ensures that such a vertex v can always be
~T -colored: if c1, c2, . . . , ck1 denote the colors of the k1 colored neighbours of v, we know
that there exist 2k−k1 > k2 colors in ~T available for v according to the direction of the
arcs linking v to its k1 colored neighbours. Let α be such a color. The color α cannot be
used for v if and only if there exists a vertex w in ~G, already colored with α, such that v
and w are linked by a directed path of length 2 (in either direction). Moreover, v and w
are not linked by some directed path of length 2 whose middle vertex x is already colored
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by some ci, 1 ≤ i ≤ k1, since in that case αci and ciα would be two opposite arcs in ~T .
Therefore, the vertex w is a colored 2-neighbour of v. Since v has at most k2 such colored
2-neighbours, there is still at least one color available for v.

Since for every oriented graph ~G we have eGo( ~G) ≤ ∆2( ~G), we get that the oriented

game chromatic number of every oriented graph ~G is bounded by some constant only de-
pending on ∆( ~G). The oriented game chromatic number is thus a well-defined parameter.
However, compare this with a far less obvious problem discussed in the last section.

3 Paths, cycles and trees

We study in this section the oriented game chromatic number of oriented paths, oriented
cycles and oriented trees.

Since every vertex in a path or a cycle has degree at most 2 the eGo-number of paths
or cycles is obviously at most 2. Using the tournament ~QR7 introduced in the previous
section, which satisfies the property P (2), we get:

Theorem 6 If ~G is an oriented path or an oriented cycle, then ogcn( ~G) ≤ 7.

In fact, this bound is tight, as shown by the following:

Theorem 7 There exist oriented paths with oriented game chromatic number 7.

Proof. The idea is to prove that for a specific path, Alice cannot win the game if she
uses a target graph which does not satisfy the property P (2). Since no graph having less
than 7 vertices satisfies this property, we get the result.

Therefore, suppose that the game is played with a target graph ~H which does not
satisfy the property P (2). It means that there exist two distinct vertices in ~H , say a and
b, and an orientation vector ν of size 2, such that the sequence (a, b) has no ν-successor in
~H . We claim that there exists an oriented path ~P such that Bob has a winning strategy
when playing the oriented coloring game on ~P .

Let ~P = x1y1z1t1u1vx2y2z2t2u2 be the path on 10 vertices oriented in such a way
that yi is a ν-successor in ~P of (zi, xi) and ti is a ν-successor in ~P of (zi, ui) for every
i ∈ {1, 2}. Bob’s strategy is the following: after Alice’s first move, Bob chooses the vertex
zi, i ∈ {1, 2}, such that none of xi, yi, zi, ti, ui have been colored, and colors it with a.
On his second turn, Bob chooses either the vertex xi, if none of xi, yi have been colored,
or the vertex ui otherwise, and colors it with b. Clearly, the path ~P can no longer be
~H-colored.

Faigle, Kern, Kierstead and Trotter proved in [7] that the game chromatic number of
every tree is at most 4 (Bodlaender gave in [1] examples of trees with game chromatic
number 4). In fact they implicitely deal with the Go-number of trees. The proof we
give below first appeared in a manuscript of Kierstead and Tuza and was independtly
discovered by Zhu.
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Theorem 8 (Faigle, Kern, Kierstead and Trotter, 1993) If T is an undirected tree
then Go(T ) ≤ 3.

Proof. We shall give a winning strategy for Alice when playing the game Go(3). During
the whole game, Alice will ensure that every subtree T ′ of T only containing unmarked
vertices is adjacent to at most two marked vertices. On her first move, Alice marks any
vertex and this condition obviously holds. Suppose now it holds before a move of Bob.
After Bob’s move, at most one unmarked subtree is adjacent to three marked vertices.
Alice then marks the unique vertex which lies on the three paths linking pairs of these
marked vertices. After this move, again the condition holds.

In fact, the strategy used in this proof even ensures that if the eGo-game is played on
an oriented tree the extended score of every intermediate tree is at most 3 and we get:

Theorem 9 If ~T is an oriented tree then eGo(~T ) ≤ 3.

From Theorems 5 and 9, we know that the oriented game chromatic number of any
oriented tree is bounded by the order of any tournament satisfying the property P (3).

Using the tournament ~QR19 introduced in the previous section, we get:

Theorem 10 If ~T is an oriented tree, then ogcn(~T ) ≤ 19.

4 Outerplanar graphs

It is not difficult to observe that every outerplanar graph has acyclic chromatic number
at most 3 (see e.g. [16]). Using the result of Dinski and Zhu [5] we then get that the
game chromatic number of every outerplanar graph is at most 12. In [8], Guan and Zhu
reduced this bound to 7. Kierstead and Trotter exhibited in [11] an outerplanar graph
with game chromatic number 6. The question whether there exist outerplanar graphs
with game chromatic number 7 or not is still an open question.

We shall prove in this section that the oriented game chromatic number of oriented
outerplanar graphs is also bounded. Considering the eGo-game on outerplanar graphs we
have the following:

Theorem 11 If ~G is an oriented outerplanar graph then eGo( ~G) ≤ 29.

Proof. Since any winning strategy on a graph is also a winning strategy on each of
its subgraphs we may assume without loss of generality that the graph ~G is maximal
outerplanar. In that case, each face of ~G except the infinite face is a triangle.

We first discuss some structural properties of ~G. Since these properties are independent
from the orientation of ~G, we shall say that uv is an edge in ~G whenever uv or vu is an
arc in ~G.

We consider a linear ordering v1, v2, . . . , vn of the vertices of ~G such that v1v2 is an edge
(that is an arc in either direction) and every vertex vi, i > 2, has exactly two neighbours
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Figure 2: Every vertex v has at most 2 nephews

vi1 and vi2 such that i1 < i2 < i. (Such an ordering exists since ~G is a 2-tree.) For
simplicity, we shall write x < y if x and y are two vertices with x = vi, y = vj and i < j.

For every vertex v /∈ {v1, v2}, the father of v, denoted by f(v), is the smallest neighbour
of v and the uncle of v, denoted by u(v), is the smallest neighbour of v distinct from f(v)
(we thus have f(v) < u(v) < v and v has no other smaller neighbour). Moreover, we say
that v1 is the father of v2 and that v is a nephew of u(v).

Since ~G is maximal outerplanar, we have:
Claim 1. For every vertex v /∈ {v1, v2}, f(v)u(v) is an edge in ~G.

Considering the number of nephews that a vertex can have, we have:
Claim 2. Every vertex v has at most 2 distinct nephews.

To see that, suppose that v has 3 distinct nephews, say x1, x2 and x3. For every
i, 1 ≤ i ≤ 3, f(xi) < v and f(xi)v is an edge. The set {f(x1), f(x2), f(x3)} has thus

cardinality 1 or 2. Therefore, ~G contains K2,3 or a subdivision of K2,3 as a subgraph,

which contradicts the fact that ~G is outerplanar (see Figure 2).
We call a strong edge an edge linking a vertex and its father. An edge which is not

strong is a weak edge. Then we have:
Claim 3. The subgraph ~T ( ~G) induced by the strong edges is a spanning tree of ~G.

To see that, observe that f(v) is defined for every vertex v 6= v1 and is such that

f(v) < v. Therefore, the graph ~T ( ~G) has n − 1 edges and is acyclic (in the undirected
sense).

Suppose now that Alice plays the eGo(29)-game on ~G as if she were playing on the

subgraph ~T ( ~G), using the strategy defined in the proof of Theorem 8. We claim that this

strategy is a winning strategy for the eGo(29)-game on ~G.
At each step of the game, each unmarked vertex v has at most 3 marked neighbours

in ~T ( ~G) and, by Claim 2, at most 3 marked neighbours not in ~T ( ~G) (at most one uncle
and two nephews). Therefore, the score s(v) of v is at most 6.

Let us now consider the marked 2-neighbours of v. The vertex v has at most one
father, one uncle and two nephews, each of them having at most 5 marked neighbours.
(As discussed above, they have at most 6 marked neighbours, but including v which is
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unmarked). In order to prove that the number of marked 2-neighbours of v is bounded,
we thus only have to consider the marked neighbours of the sons of v. There are at most
3 such marked sons, while the number of unmarked sons is unbounded.

Let us first consider the at most 3 marked sons of v and let m be such a son. Since
m is marked, m can produce a marked 2-neighbour n of v if and only if the path vmn is
not a directed 2-path and there exists a directed 2-path vxn linking v and n. However,
since ~G is outerplanar, m can produce at most 2 such marked 2-neighbours (otherwise ~G
would contain a subdivision of K2,3).

Consider now the unmarked sons of v. Due to Alice’s strategy, we already know that,
altogether, the unmarked sons of v have at most 3 marked neighbours in ~T ( ~G) (otherwise,

the extended score of v in ~T ( ~G) would be greater than 3), already considered as marked

2-neighbours of v in ~T ( ~G). Therefore, we need to bound the number of marked weak
neighbours of the unmarked sons of v (by a weak neighbour we mean a neighbour linked
by a weak edge). We claim that all such vertices have already been considered (counted).
Recall that every vertex has at most 3 weak neighbours, its uncle and its two nephews
and let s be any unmarked son of v.

1. The uncle u(s) of s has already been considered since it is a neighbour of v.

2. Let t be a nephew of s. The father f(t) of t is a neighbour of s with f(t) < s.
Therefore, either f(t) = f(s) = v or f(t) = u(s). In the former case, t has already
been considered as a neighbour of v. In the latter case, t has already been considered
as a 2-neighbour of v in ~T ( ~G) (if f(t) is a son of v) or as a neighbour of a nephew
of v otherwise.

Therefore, no unmarked son of v can provide a new marked 2-neighbour of v. Finally,
each unmarked vertex v has:

• at most 3 marked neighbours or 2-neighbours in ~T ( ~G),

• at most 1 father and 3 weak neighbours, each of them having at most 5 marked
neighbours,

• at most 6 marked 2-neighbours contributed by its at most 3 marked sons,

• no other marked 2-neighbour contributed by its unmarked sons.

The extended score s∗(v) of v is thus at most 3 + 4× 5 + 6 = 29. This finishes the proof.

Theorems 5 and 11 lead to the following

Corollary 12 There exists a constant t > 0 such that ogcn( ~G) ≤ t for every oriented

outerplanar graph ~G.
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5 Discussion and open problems

In this paper, we have shown how to use the notion of the eGo-number of a graph in order
to derive a bound for the oriented game chromatic number of any of its orientations.
It would be interesting to determine the exact bound for the oriented game chromatic
number of oriented trees. In the same vein, it seems that our upper bound on the eGo-
number of oriented outerplanar graphs can easily be improved by looking carefully to the
adjacency constraints. Here again, it would be interesting to derive an exact bound.

In the undirected case, a family of graphs with bounded Go-number has bounded game
chromatic number. However, having bounded Go-number is not a necessary condition for
a family of graphs for having bounded game chromatic number. For instance, it is easy to
see that any bipartite complete graph Kn,n, n > 1, has game chromatic number 3 while
its Go-number is n. In the oriented case, it is not so clear whether having bounded eGo-
number is a necessary condition for having bounded oriented game chromatic number or
not.

It seems not so easy to prove (or disprove) that the eGo-number of planar graphs or of
partial k-trees is bounded (Zhu proved in [18] that the game chromatic number of every
partial k-tree is at most 3k + 2). We thus propose the two following problems:

Problem 1 Does there exist a constant t such that every oriented planar graph has ori-
ented game chromatic number at most t?

Problem 2 Let k > 1 be an integer. Does there exist a constant tk such that every
oriented partial k-tree has oriented game chromatic number at most t?

In our definition of the oriented version of the coloring game, we have used a given
oriented graph ~H as a target graph (in other words, Alice’s goal is to build a ~H-coloring
of the graph on which the game is played). Another possibility is to define the oriented
coloring game by giving the maximum number of colours that can be used but without
choosing a fixed target graph. In that case, the target is built while the game is played,
each move having to be “compatible” with the target under construction.

In the undirected case, the coloring game corresponds to this second version. However,
fixing the maximum number k of colours that can be used is clearly equivalent to playing
with the complete graph Kk as a target graph. The situation is much less clear in the
oriented case and we do not know whether families of graphs with bounded oriented game
chromatic number (with fixed target) and families of graphs with bounded oriented game
chromatic number (with fixed maximum number of colours) coincide or not.
Remark. We have been kindly informed by Kierstead [10] about his related results
with Trotter and with Tuza (unpublished). They define the complete Go-number (cGo-
number) of a graph as the least k so that when Alice and Bob play the Go-game Alice
can prevent any unmarked vertex from being connected to more than k marked vertices
by paths whose internal vertices are all unmarked. Then, for every orientation ~G of a
graph G, Go(G) ≤ eGo( ~G) ≤ cGo(G). Kierstead and Trotter proved that if C is a class
of graphs closed under topological minors that does not contain a k-clique for some k
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then the cGo-number of C is bounded by a function of k. In particular, planar graphs
form such a class. Although they did not considered oriented game chromatic number,
(defined in this paper), via our Theorem 5, this gives a positive answer to our Problem 1.
Kierstead and Tuza proved that if G is a chordal graph then cGo(G) ≤ 6w − 9, where w
is the clique number of G. This allows to decrease to 9 the bound we gave in Theorem 11
for outerplanar graphs and, moreover, gives a positive answer to our Problem 2.
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