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Abstract

An investigation of the size of S + S for a finite Beatty sequence S = (si) =
(biα + γc), where b c denotes “floor”, α, γ are real with α ≥ 1, and 0 ≤ i ≤ k − 1
and k ≥ 3. For α > 2, it is shown that |S+S| depends on the number of “centres” of
the Sturmian word ∆S = (si−si−1), and hence that 3(k−1) ≤ |S +S| ≤ 4k−6 if S
is not an arithmetic progression. A formula is obtained for the number of centres of
certain finite periodic Sturmian words, and this leads to further information about
|S + S| in terms of finite nearest integer continued fractions.

1 Introduction

For the purposes of this paper, an infinite sequence is a two-way infinite sequence, that is,
a sequence indexed by the set Z of all integers. An infinite Beatty sequence is a strictly
increasing sequence of integers

s = (si) = (si)i∈Z

such that for all integers i

(1) si = biα + γc ,
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where b c denotes “floor” or “integer part” and α, γ are fixed real numbers with α ≥ 1.
Let s be such a sequence. It easily shown that for all integers i, j with j ≥ 0 we have

(2) si+j − si ∈ {bjαc, bjαc + 1} ,

and in particular that for all i

(3) si+1 − si ∈ {bαc, bαc + 1} .

The difference sequence of s is the sequence

(4) ∆s = (∆i)i∈Z ,

where for all i

(5) ∆i = si − si−1 .

From (3) we see that we can view ∆s as a binary sequence in two symbols a and b by
denoting one of bαc, bαc + 1 by a and the other by b. Both symbols must occur except
in the special case when α is an integer. In this case ∆s = (∆i) is a constant sequence
and the sequence s is an infinite arithmetic progression with common difference α = bαc,
or, equivalently, a residue class modulo α. Thus the concept of Beatty sequence extends
that of arithmetic progression. In all cases, we shall call α the modulus of the sequence s
given by (1).

For k ≥ 1 a finite Beatty sequence S with cardinality

|S| = k

is a finite nonempty set of integers

(6) S = {s0, s1, . . . , sk−1}

such that si satisfies (1) for all i in

(7) I = Ik = {0, 1, . . . , k − 1} ,

where α, γ are fixed real numbers with α ≥ 1. We shall call α a modulus of S. The set S
and its properties are determined by the infinite Beatty sequence s = (si). However the
sequence s and its modulus are not uniquely determined by the set S.

Consider now any set S of integers such that |S| = k ≥ 1. Let

S = {s0, s1, . . . , sk−1},

where

(8) s0 < s1 < . . . < sk−1 .

the electronic journal of combinatorics 8 (no. 2) (2001), #R15 2



The sumset of S is the set

S + S = {t + u : t ∈ S, u ∈ S} .

For k = 1, we have |S + S| = 1, for k = 2, |S + S| = 3, and for k ≥ 3 it is easily shown
that

(9) |S + S| ≥ 2k − 1,

with equality if and only if S is an arithmetic progression. As we shall see further below,
arithmetic progressions play a special role in results on sets with small sumset. Since finite
Beatty sequences can be regarded as a generalisation of finite arithmetic progressions, their
sumsets are of special interest. In this paper, I shall give some results on the size of S +S
when S is a finite Beatty sequence and |S| ≥ 3.

The results obtained will depend on the notion of a “centre” of a binary word. For
k ≥ 1, by a k-letter binary word x in two letters a and b we mean a finite sequence (xi)i∈I

where the index set I consists of k consecutive integers and xi ∈ {a, b} for all i in I.
Consider such a word x indexed by I = {0, 1, . . . , k − 1}, and write

x = x0x1 . . . xi−1xi . . . xk−1 .

Let i ∈ I. We say that x has a centre at xi if xi−j = xi+j for all j ≥ 0 such that i±j both
belong to I. For i ≥ 1, we say that x has a centre between xi−1 and xi if xi−1−j = xi+j

for all j ≥ 0 such that i− 1− j and i + j both belong to I. We can think of a centre as a
position about which the word has as much mirror symmetry as possible. We note that x
always has a centre at the first letter x0 and the last letter xk−1. The number of centres
of x is at most 2k − 1, with equality if and only if

x = aa . . . a︸ ︷︷ ︸
k a’s

= ak or x = bk.

For given α and γ with α ≥ 1 and integral k ≥ 2, we shall consider a finite Beatty
sequence S as in (6) indexed by I = Ik as in (7) with si satisfying (1) for all i in I. We
shall assume that α is non-integral and α > 2. In this situation it turns out that the size
of S + S is determined by the combinatorial nature of the difference sequence

(10) ∆S = (∆1, ∆2, . . . , ∆k−1) = (s1 − s0, s2 − s1, . . . , sk−1 − sk−2) ,

when viewed as finite binary word.
The material in the remaining sections is arranged as follows.
After giving some further background on sets with small sumset in Section 2, I shall

consider finite Beatty sequences and their sumsets in Section 3 and derive the basic result
(Proposition 1) that for a finite Beatty sequence S with α > 2 and |S| = k ≥ 3 we have

|S + S| = 4k − 4 − C ,
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where C is the number of centres of the binary word ∆S given by (10). In Section 4, I
shall consider the number of centres of a binary word and hence show, in particular, that
if S as above is not an arithmetic progression then

(11) 3k − 3 ≤ |S + S| ≤ 4k − 6 .

In Section 5, I shall give some further auxiliary results, first on rational Beatty se-
quences (those whose modulus α is rational), then on infinite periodic Sturmian sequences
and their connection with the nearest integer algorithm. This will lead, in Section 6, to
Proposition 3, which gives a precise formula for the number of centres of certain finite
periodic Sturmian words. Application of Proposition 3 to ∆S when S is a finite Beatty
sequence will then yield information about |S + S| in terms of nearest integer continued
fractions.

Finally, in Section 7, I shall briefly mention related results in Z2, and suggest some
possible directions of further investigation.
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2 Sets of integers with small sumset

Starting from the inequality (9), Freiman studied the structure of finite sets S of k integers
for which |S + S| is not too far above the minimum value 2k − 1 and showed that they
are closely related to arithmetic progressions. His precise results for the cases

2k − 1 ≤ |S + S| ≤ 3k − 3

are given in the following theorem, and he also obtained detailed results on the case
|S + S| = 3k − 2.
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Theorem A (Freiman). Let S be a finite set of k integers.

(i) Suppose |S + S| = 2k − 1 + `, where 0 ≤ ` ≤ k − 3. Then there is an arithmetic
progression L such that S ⊆ L and |L| = k + `.

(ii) Suppose |S + S| = 3k − 3 and k ≥ 7. Then

either (a) there is an arithmetic progression L such that

S ⊆ L and |L| = 2k − 1

or (b) S is a union of two arithmetic progressions with the same common difference.

Proof. See Freiman [4], Theorems 1.9 and 1.11.

Freiman also obtained a widely applicable fundamental result (now known as Frei-
man’s Main Theorem) which gives information about the structure of S as above when
|S| = k and |S + S| ≤ σk, where σ is a fixed real number such that σ ≥ 2. Freiman’s
proof appeared in different versions in [4] and [5]. Intensive investigation in recent years
has led to different formulations and extensions of the theorem, a new proof by Rusza
[9] and significant modification by Bilu of Freiman’s proof. In [1] Bilu presents his proof
in the context of an exposition of the Main Theorem with full references. Nathanson [7]
gives a self-contained presentation of Rusza’s proof in Chapter 8 and provides extensive
background to the Main Theorem.

Before formulating an appropriate special case of the Main Theorem, we need some
definitions.

For given sets A ⊆ Zn, B ⊆ Zm, a mapping ϕ : A → B is an isomorphism if it is a
bijection of A onto B such that for all x, y, z, w in A

x + y = z + w ⇔ ϕ(x) + ϕ(y) = ϕ(z) + ϕ(w) .

We call A and B isomorphic if such an isomorphism exists, and note that if A and B are
isomorphic then

|A + A| = |B + B| .
(In the language of Bilu [1], an isomorphism as above is an F2-isomorphism.)

An arithmetic progression in Zn is a set P of the form

P = {v0 + l1v1 : l1 = 0, 1, . . . , L1 − 1} ,

where L1 is a positive integer, v0, v1 are in Zn, and v1 is non-zero. We note that the
mapping ϕ from {0, 1, . . . , L1 − 1} to P given by

ϕ(l1) = v0 + l1v1

is an isomorphism.
A generalised arithmetic progression of rank at most 2 in Zn is of the form

P = {v0 + l1v1 + l2v2 : l1 = 0, 1, . . . , L1 − 1; l2 = 0, 1, . . . , L2 − 1} ,
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where L1, L2 are positive integers and v0, v1, v2 are in Zn. If, further, the mapping ϕ
from {0, 1, . . . , L1 − 1} × {0, 1, . . . , L2 − 1} to P given by

ϕ(l1, l2) = v0 + l1v1 + l2v2

is an isomorphism, we shall say that P is proper. We note that in this case |P | = L1L2

and P is a union of arithmetic progressions. (In the language of Bilu [1], P is an F2-
progression.)

In this paper we shall be mainly concerned with finite sets of integers S such that
3k ≤ |S + S| ≤ 4k (compare (11) above). Hence the following very special case of the
Main Theorem is relevant.

Theorem B. (Special Case of Main Theorem) Let σ be a real number such that 3 ≤ σ < 4,
k an integer such that

k >
6

4 − σ
,

and S a set of integers such that |S| = k. Suppose that

|S + S| ≤ σk.

Then there is a set P of integers such that P is a proper generalised arithmetic progression
of rank at most 2, S ⊆ P , and |P | ≤ ck, where c = c(σ) is a positive constant depending
only on σ.

Proof. See Theorem 1.2 of Bilu [1] and its proof. The above result is obtained by taking
s = 2, K a subset of the Abelian group Z, and 3 ≤ σ < 4 in that theorem.

3 Finite Beatty sequences and their sumsets

3.1 Infinite Beatty sequences

We shall look first at infinite Beatty sequences and their difference sequences. For this
purpose, we need some vocabulary associated with a binary sequence x = (xi)i∈Z in two
symbols a and b. For j ≥ 1 a j-letter word of x is simply a binary word in a and b of the
form

w = xixi+1 . . . xi+j−1 .

A j-letter block in x is a maximal word of x with all letters in it identical, that is, of the
form

w = aj or w = bj

for some j ≥ 1. A symbol, b, say, is isolated in x if it occurs in x (xi = b for some i) but
its square does not (there is no i such that xi = xi+1 = b).

A binary sequence x = (xi)i∈Z in a and b is said to be Sturmian (or “two-distance”
or “almost constant”) if it satisfies the following Sturmian condition: If v and w are two
words in x with the same number of letters then the number of a’s in v differs from the
number of a’s in w by at most one. In the following proposition we gather together well
known basic results on Sturmian sequences.
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Proposition C. (i) Suppose s is an infinite Beatty sequence with non-integral modu-
lus α. Then the difference sequence ∆s given by (4) and (5) is non-constant and
Sturmian in two symbols a and b denoting bαc and bαc + 1 (in some order).

(ii) Let x = (xi)i∈Z be Sturmian in two symbols a and b and suppose x is non-constant.
Then at least one of a and b is isolated in x and the only case when both are isolated
is the Sturmian sequence

(12) x = . . . ababa . . . = (ab)∞ .

(iii) Let x = (xi)i∈Z be Sturmian in two symbols a and b. Suppose x is non-constant
and not of the form (12), and let b be the isolated symbol in x. Then there is a
unique integer ν ≥ 1 (called the a-width of x) such that every block of a’s in x is

either aν or aν+1

and aν occurs as a block in x.

(iv) For x, a, b, ν as in (iii), replacement of maximal subwords of the form baν by y
and baν+1 by z yields a sequence (yi) which is Sturmian in y and z. This process is
called left derivation. Similarly, right derivation, replacing aνb by y and aν+1b by z,
yields either (yi) or (yi+1).

Proof. Part (i) follows easily from (2), and parts (ii) to (iv) from the Sturmian condition.

For full discussion of infinite Sturmian sequences and their derived sequences, see for
example, Lunnon and Pleasants [6] and the references given there.

3.2 Finite Beatty sequences

The above vocabulary extends in the obvious way to finite binary sequences, and Proposi-
tion C provides information about finite Beatty sequences and finite Sturmian sequences.
If

w = x1x2 . . . xj

is a j-letter binary word in a and b in which both letters appear, then we can write

w = y1y2 . . . yt

where y1, y2, . . . , yt are distinct blocks in w and t ≥ 2.
We call y1 the first block in w, yt the last block in w, and y2, . . . , yt−1 (if t ≥ 3) the

internal blocks in w. If w is determined by an infinite Sturmian sequence x in which b is
isolated and ν is as in Proposition C (iii), then the first and last blocks of w can each be
any of

b, a, a2, . . . , aν+1,

but the only possible internal blocks are

b, aν , aν+1 .
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Let S be a finite Beatty sequence such that |S| = k ≥ 2. Then S is of the form (6),
where si is given by (1) for all i in the index set I = Ik as in (7). It follows from (2) that
S satisfies the difference condition: we have

|(si+j − si) − (su+j − su)| ≤ 1

for all i, j, u such that j ≥ 0 and i, u, i + j, u + j all belong to I.
It is easily seen that the difference condition is equivalent to the following sum condi-

tion: for all i, t, u, v in I

(13) u + v = i + t ⇒ |(su + sv) − (si + st)| ≤ 1 .

Boshernitzan and Fraenkel [2] have shown that the sum condition (in a slightly different
form) characterises finite Beatty sequences. The following theorem gathers these results
together.

Theorem D. For k ≥ 2, let S = {s0, s1, . . . , sk−1} be a finite set of integers indexed by
I = Ik as in (7) such that (8) holds. Then the following three conditions are equivalent.

(i) There exist real numbers α, γ with α ≥ 1 such that (1) holds for all i in I, that is,
S is a finite Beatty sequence.

(ii) The sequence (si)i∈I satisfies the difference condition stated above.

(iii) The sequence (si)i∈I satisfies the sum condition stated above.

3.3 The mid-points of a finite Beatty sequence

We now consider a finite Beatty sequence S as in (6) such that |S| = k, where (1) holds
for all i in I = Ik as in (7) and k ≥ 3. Let

M =
{

1
2
(t + u) : t ∈ S, u ∈ S

}

be the set of all mid-points of S. Then

|M | = |S + S|

and it is easy to think geometrically in terms of M since all the mid-points belong to 1
2
Z

and to the closed interval [s0, sk−1].
The basic mid-points of S are the 2k − 1 distinct elements of the set

B = S ∪ {
1
2
(si−1 + si) : i = 1, 2, . . . , k − 1

}
.

The family of mid-points associated with the basic mid-point

m = si

(
= 1

2
(si + si)

)
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is

F(si) =
{

1
2
(si−j + si+j) : j ≥ 0, i − j, i + j ∈ I

}
(14)

=
{

1
2
(su + sv) : u + v = 2i, u, v ∈ I

}
.

Similarly, the family associated with m = 1
2
(si−1 + si) is

F (
1
2
(si−1 + si)

)
=

{
1
2
(si−1−j + si+j) : j ≥ 0, i − 1 − j, i + j ∈ I

}
.

Trivially we have
|F(s0)| = |F(sk−1)| = 1.

For all other basic mid-points m in B, it follows from the sum condition (13) that

1 ≤ |F(m)| ≤ 2,

and we now determine when |F(m)| = 1.
For m = si with 1 ≤ i ≤ k − 2, we see from (14) that |F(m)| = 1 if and only if

(15) si−j + si+j = 2si

for all j ≥ 1 such that i− j and i+ j both belong to I. In terms of the difference sequence
∆S as in (10),

si+j − si = ∆i+1 + ∆i+2 + · · ·+ ∆i+j ,

si − si−j = ∆i + ∆i−1 + · · ·+ ∆i−j+1.

It follows that (15) holds for all j as above if and only if

∆i−j+1 = ∆i+j

for all such j, that is, if and only if the binary sequence ∆S has a centre between the
letters corresponding to ∆i and ∆i+1.

Similarly, for m = 1
2
(si−1 + si) with 1 ≤ i ≤ k − 1, |F(m)| = 1 if and only if ∆S has

a centre at the letter corresponding to ∆i. Thus we now conclude that

(16)
∑
m∈B

|F(m)| = 2(2k − 1) − 2 − C = 4(k − 1) − C,

where C is the number of centres of the binary word ∆S.
Since every mid-point 1

2
(su + sv) belongs to one of the families F(m), we have

(17) |M | ≤
∑
m∈B

|F(m)| .

The following lemma gives a condition for equality to hold here.
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Lemma 1. Let S be a finite Beatty sequence of the form (6), where si is given by (1) for
all i in I = Ik as in (7) and |S| = k ≥ 3. Suppose the modulus α satisfies α > 2. Then
for all i, t, u, v in I we have

su + sv = si + st ⇒ u + v = i + t .

Proof. Suppose su + sv = si + st. We have

b(u + v)α + 2γc = su + sv + ε1,

b(i + t)α + 2γc = si + st + ε2,

where ε1 ∈ {0, 1}, ε2 ∈ {0, 1}. Hence it follows that

|b(u + v)α + 2γc − b(i + t)α + 2γc| ≤ 1 .

However by (3) the Beatty sequence (ti) = (biα + 2γc) has

|tν − ts| ≥ bαc ≥ 2

whenever ν 6= s. Hence we must have u + v = i + t.

The following corollaries are immediate consequences:

Corollary 1 to Lemma 1. Under the assumptions of the lemma, the families of mid-points
F(m) with m in B (the set of basic mid-points) are pairwise disjoint.

Corollary 2 to Lemma 1. Under the assumptions of the lemma, the mapping ϕ defined
by

ϕ(si) = (i, si)

is an isomorphism (in the sense of Section 2) of S onto ϕ(S) = Z2 ∩ B, where B is the
plane parallelogram

B : 0 ≤ x ≤ k − 1, αx + γ − 1 < y ≤ αx + γ .

By Corollary 1 we see that under the conditions of the lemma equality holds in (17). By
combining this with (16) and the preceding discussion, we obtain the following proposition.

Proposition 1. Let S be a finite Beatty sequence of the form (6), where si is given by (1)
for all i in I = Ik as in (7) and |S| ≥ k ≥ 3. Suppose that the modulus α satisfies α > 2.
Then

|S + S| = 4(k − 1) − C,

where C is the number of centres of ∆S as in (10) when ∆S is viewed as a binary sequence.

Since ∆S always has a centre at each of the letters corresponding to ∆1 and ∆k−1 for
k ≥ 3, we always have C ≥ 2 and so

(18) |S + S| ≤ 4k − 6 .

the electronic journal of combinatorics 8 (no. 2) (2001), #R15 10



We note that the restriction α > 2 is not very serious. If 1 < α < 2 then

sk−1 = bα(k − 1) + γc ≤ 2k − 2 + s0 ,

so that
S ⊆ L = {s0, s0 + 1, . . . , s0 + 2k − 2} ,

and L is an arithmetic progression with |L| = 2k− 1, that is, S satisfies the conclusion of
Theorem A (ii) (a).

We note also that if S is an arithmetic progression with any modulus and |S| = k ≥ 3,
then ∆S has C = 2k − 3 centres and the conclusion of Proposition 1 holds.

4 Centres of binary words

For any finite binary word x in two distinct symbols a and b, let

C(x) = number of centres of x .

We note that C(x) is unchanged by reversing x or interchanging a and b.

Consider now a fixed binary word in a and b,

w = x1x2 . . . xj ,

say, in which both a and b appear. Write

(19) w = y1y2 . . . yt, (t ≥ 2)

where each yi is a (maximal) block (of a’s or of b’s) as in Section 3. No centre occurs
between yi and yi+1 for any i, since this position is between two distinct letters (a, b or b,
a). We note the following simple observations about C(w).

(i) If w has a centre occurring at some position in a subword y of w, then y itself has
a centre in this position.

(ii) Each internal block of w contributes at most one centre to C(w).

(iii) If the first block y1 of w is of the form

y1 = ar (r ≥ 1)

then w has exactly r centres at positions in y1 (in fact in the first r possible posi-
tions).

(iv) For w as in (19) above and 1 ≤ i < t we have

C(w) ≤ C(y1 . . . yi) + C(yi+1 . . . yt) .
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Combining (ii) and (iii), we obtain the first part of the following proposition. The
second part is easily checked.

Proposition 2. Let w be a finite binary word in a and b in which both a and b appear.

(i) The number of centres of w is less than or equal to the number of letters in w.

(ii) Suppose, further, that w is Sturmian with b isolated. Then equality occurs in (i) if
and only if either both letters are isolated (and so appear alternately)

or w = arbas , r ≥ 0, s ≥ 0, r + s ≥ 2 .

If S is a finite Beatty sequence with |S| = k ≥ 3 and S is not an arithmetic progression,
then Proposition 2 applies to ∆S and so the number C of centers of ∆S satisfies C ≤ k−1.
Thus by Proposition 1 and (18) we obtain:

Corollary to Proposition 2. Let S be a finite Beatty sequence with |S| = k ≥ 3. Suppose
that S has modulus α > 2 and S is not an arithmetic progression. Then

3(k − 1) ≤ |S + S| ≤ 4k − 6 ,

with equality on the left if and only if ∆S satisfies one of the conditions in (ii) of Propo-
sition 2.

5 Infinite periodic Sturmian sequences

Periodic Sturmian sequences arise as difference sequences of rational Beatty sequences.
In this section, we will start with auxiliary results on rational Beatty sequences and the
nearest integer algorithm. We will then describe the connection between left and right
derivation of an infinite periodic Sturmian sequence and the nearest integer algorithm.

5.1 Rational Beatty sequences

A finite or infinite Beatty sequence S is called a rational Beatty sequence if it has a
rational modulus α = P/Q where P , Q are relatively prime positive integers. We first
gather together the basic properties in the infinite case.

Lemma 2. Let s = (si) be a strictly increasing sequence of integers indexed by Z.

(i) Suppose s is a rational Beatty sequence with modulus α = P/Q, where P , Q are
relatively prime positive integers, P > Q ≥ 2. Let c0, R1, ε1 be the unique integers
such that

P = c0Q + ε1R1

ε1 = ±1, R1 ≥ 1, −1
2
Q < ε1R1 ≤ 1

2
Q .
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Then ∆s as in (4) and (5) is periodic with least period Q, and Sturmian in a and b
with b isolated, where

a = c0, b = c0 + ε1 .

The number of b’s in each Q-letter word of ∆s is exactly R1.

(ii) Conversely, suppose ∆s is periodic with least period Q ≥ 2 and Sturmian in two
symbols a, b representing two positive integers which differ by exactly one. Then s
is a rational Beatty sequence with modulus P/Q, where P = ∆1 + ∆2 + . . . + ∆Q.

Proof. Part (i) follows easily from Proposition C, the observation that si+Q equals si + P
for all i, and the uniqueness of the expression for P in the form

P = (Q − R1)c0 + R1(c0 + ε1) ,

with 0 < R1 ≤ Q − R1 which follows from the choice of c0, R0, ε1 above. Part (ii) is
well known. It follows, for example, from the results of Lunnon and Pleasants [6] and is
proved in Pitman and Wolff [8].

We note that c0 as in Lemma 2 is the nearest integer to P/Q and is the initial partial
quotient in the nearest integer continued fraction expansion of P/Q. (This expansion is
discussed in Section 5.2 below.)

The following result is easily checked (using, for example, the ideas of Lemma 1 of
Simpson [10] and the fact that translation by an integer is an isomorphism of Z onto
itself.)

Lemma 3. Let P , Q be relatively prime positive integers such that

P > Q ≥ 2.

Let
S =

{
biP

Q
+ γc : 0 ≤ i ≤ k − 1

}

be a finite rational Beatty sequence with |S| = k ≥ 2 and let s = (si) be an infinite
rational Beatty sequence with modulus P/Q.

(i) The Beatty sequence S is isomorphic to one of the Q finite Beatty sequences of the
form {

biP
Q

+ T
Q
c : 0 ≤ i ≤ k − 1

}

with T = 0, 1, . . . , Q − 1.

(ii) Each of the Q sequences in (i) is isomorphic to one of the Q sequences

{sj, sj+1, . . . , sj+k−1}

with j = 0, 1, . . . , Q − 1, that is, it is isomorphic to a sequence obtained by using
an appropriate shift of s.
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It easily seen (for example by using Corollary 2 to Lemma 1) that if k = tQ (t ≥ 1)
then S as in Lemma 3 is the union of Q arithmetic progressions

{ui + jP : j = 0, 1, . . . , t − 1}
such that for i = 0, 1, . . . , Q − 1

ui+1 − ui ≡ d (modP ),

where d is an integer relatively prime to P and d ≥ 2. We can think of S as satisfying a
weaker definition of generalised arithmetic progression of rank at most 2 than that given
in Section 2.

5.2 The nearest integer algorithm

In order to cover multiples of 1
2
, we define the nearest integer N = N(x) to a real number

x to be the unique integer N such that

N − 1
2

< x ≤ N + 1
2

.

The nearest integer algorithm is the analogue of the Euclidean algorithm when division
with least remainder (in absolute value) replaces ordinary division. We start with two
relatively prime positive integers R0, R1 such that

R0 ≥ 2R1, R1 ≥ 1,

and produce unique integers n ≥ 1, c1, c2, . . . , cn, ε2, . . . , εn, R2, . . . , Rn such that Ri and
Ri+1 are always relatively prime, as follows.

At Step 1, let
c1 = nearest integer to R0/R1 .

If R1 = 1, we have R0 = c1, n = 1 and the process stops. Otherwise, let ε2, R2 be the
unique integers such that

R0 = c1R1 + ε2R2, ε2 = ±1, R2 ≥ 1 .

If Steps 1, 2, . . . , j − 1 have occurred, so that Rj ≥ 1, then at Step j, let

cj = nearest integer to Rj−1/Rj .

If Rj = 1, we have Rj−1 = cj, n = j, and the process stops. Otherwise, let εj+1, Rj+1 be
the unique integers such that

Rj−1 = cjRj + εj+1Rj+1, εj+1 = ±1, Rj+1 ≥ 1 .

Since R0 > R1 > . . . > Rj−1 > Rj we must reach n such that Rn = 1, Rn−1 = cn and
the process stops. By the definition of cj it follows that

1 ≤ Rj ≤ 1
2
Rj−1 for j = 1, 2, . . . , n,
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in fact with strict < in the second inequality except when j = n and Rj−1 = 2.
If the process stops at Step n, where n > 1, we obtain the nearest integer continued

fraction expansion of R0/R1,

R0

R1
=c1 +

ε2

c2+
· · · εn−1

cn−1+

εn

cn

=[c1; ε2c2, ε3c3, . . . , εncn] .

(We note that ci ≥ 2 for all i, ci ≥ 3 if εi+1 = −1, and εn = 1 if cn = 2.)
We note that at Step j we have

Rj−1 = (Rj − Rj+1)cj + Rj+1(cj + εj+1) ,

and ` = Rj − Rj+1, m = Rj+1, c = cj , ε = εj+1 are the unique solutions in integers of

(20) Rj−1 = `c + m(c + ε)

such that ε = ±1, ` + m = Rj , m ≤ `.

5.3 Derivation of a periodic infinite Sturmian sequence

Consider an infinite sequence x = (xi) which is Sturmian in two symbols a and b with
b isolated and is also periodic with least period Q ≥ 2. By a period of x we shall mean
a Q-letter word of x. Let ν be the a-width of x (as in Proposition C (iii)) and R1 the
number of b’s per period of x. If R1 = 1, then x is of the form

(21) x = (baQ−1)∞ = (aQ−1b)∞ ,

and we exclude this case from now on.
We can view x as made up of consecutive words of the forms baν , baν+1, which we will

call left-basic, with both left-basic words appearing, and similarly in terms of right-basic
words aνb, aν+1b. By a basic word we shall mean a word which is either left-basic or
right-basic. By Proposition C (iv), we know that left derivation, that is, replacement of
baν by one symbol and baν+1 by another, yields a sequence x′ which is a Sturmian in the
two new symbols, at least one of which must be isolated in x′. (Exactly one is isolated
unless x′ has period 2.) We call a left-basic word isolated in x if the corresponding
symbol is isolated in x′, and similarly for right-basic words. The following lemma gives
the connection between repeated derivation of x and the nearest integer algorithm for
Q/R1.

Lemma 4. Let x = (xi) be an infinite binary sequence which is Sturmian and periodic,
with least period Q and exactly R1 isolated symbols in each period, where R1 ≥ 2.

Write Q = R0 and carry out the nearest integer algorithm for R0/R1 as set out above,
finishing with Rn−1 = cn, Rn = 1, where n ≥ 2.

Let x(0) be the given sequence x, and, for i = 1, 2, . . . , n, let x(i) be obtained from
x(i−1) by either left or right derivation. Then the sequences x(0), . . . , x(i), . . . , x(n) have
the following properties.

the electronic journal of combinatorics 8 (no. 2) (2001), #R15 15



(i) For given i such that 1 ≤ i ≤ n− 1, let a and b be the two symbols in the sequence
x(i−1), with b isolated. The sequence x(i−1) is periodic with least period Ri−1 and
has exactly Ri isolated symbols b in each period. A period of x(i−1) beginning with
b is made up of Ri consecutive left-basic words, of which Ri+1 are isolated. The
left-basic words of x(i−1) are

bac−1+ε , bac−1 ,

the first being isolated, where c = ci, ε = εi+1. The a-width of x(i−1) is

min{c − 1 + ε, c − 1} = ci − 1 − 1
2
(1 − εi+1) .

(ii) Finally, the sequence x(n−1) is of the form

x(n−1) = (zycn−1)∞

and x(n) is a constant sequence.

(iii) Corresponding results in terms of the right-basic words also hold.

Proof. Part (i) is easily proved by induction on i, using Section 5.2 and, in particular, the
observation above regarding the equation (20). Part (ii) follows since x(n−1) has period
Rn−1 = cn and exactly one isolated symbol as Rn = 1. Part (iii) follows, for example, by
reversing the sequence x.

5.4 Centres of infinite periodic binary sequences

Consider now an infinite periodic binary sequence x = (xi) with least period Q ≥ 2. The
sequence has a centre in a given position (at xi or between xi−1 and xi, for some i) if
the whole sequence has mirror symmetry about that position. We regard a period of x,
w = xj+1xj+2 . . . xj+Q, say, as including exactly one of the two adjacent positions (before
xj+1 and after xj+Q). It is easily shown that the sequence has either no centres or exactly
two centres per period.

If, further, the sequence x as above is Sturmian, it is easily seen that the derivation
process does not change the number of centres per period; since the sequences (21), and
hence those in Lemma 4 (ii), have exactly two centres per period, it follows that every
infinite periodic Sturmian sequence has exactly two centres per period. This was proved
geometrically by Lunnon and Pleasants [6] (see Theorem 4).

6 Centres of finite periodic Sturmian words

We can now use the above results on derivation to obtain a formula for the number of
centres of certain finite periodic Sturmian words and hence to evaluate |S +S| for certain
finite Beatty sequences.
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6.1 Finite periodic Sturmian words

We would like to use derivation to investigate the number of centres in a finite word w
of an infinite periodic Sturmian sequence x. However we run into difficulties because
repeated derivation of a given word may not be feasible, since we may reach a word which
does not start or finish with an isolated symbol or one which does not consist only of
complete basic words. For this reason, we confine attention to the case when w consists
of t consecutive v’s, where v is a suitable period of x.

The following lemma shows the effect of derivation on C(w) for w as above, where, as
in Section 4, C(w) denotes the number of centres in w.

Lemma 5. Let x = (xi) be an infinite periodic Sturmian sequence in a and b, with b
isolated, a-width ν and period Q ≥ 3. Let v be a period of x which either begins or ends
with an isolated basic word. Let

w = vt (t ≥ 1) ,

and let w′ be the word obtained from w by left derivation if v begins with b or right
derivation if v ends with b. Then

C(w) ≥ C(w′) + ν + 1,

with equality if, further, v ends or begins with aν+1.

Proof. We note first that our hypothesis on v ensures that v (and hence also w) begins or
ends with b, so that the derivation is possible. We assume that v starts with b (the other
case being exactly similar). Let y and z be the two symbols in x′, with y replacing baν

and z replacing baν+1. Since v is a period of x, it is easily seen that exactly one of the
following two cases occur.

Case (i) In this case

w = b| . . . . . .b|aν+1 ,

w′ = | . . . . . . |z .

The first b contributes one centre to C(w) and disappears in w′. The last aν+1

contributes ν +1 centres to C(w) and is replaced by z, which contributes one centre
to C(w′). Each internal block of w contributes a centre to C(w) if and only if the
corresponding letter or position contributes a centre to C(w′). Thus

C(w) − C(w′) = (1 − 0) + ((ν + 1) − 1) = ν + 1 .

Case (ii) In this case, for some r ≥ 1,

w = b| . . . . . aν+1|(baν)r

w′ = | . . . . . . . . z|yr .
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This time the last (baν)r contributes r + ν centres to C(w) and is replaced by yr,
which contributes r centres to C(w′). For each centre in w′ preceding yr, there is a
centre at a corresponding position in w, but there may also be other centres in w
(caused by the possibility of “matching” the last aν with an aν occurring in a block
aν+1). Thus this time

C(w) − C(w′) ≥ (1 − 0) + (r + ν − r) = ν + 1 .

Since the only case when v ends with aν+1 is Case (i), when equality occurs, this completes
the proof of the lemma.

Derivable periods. Let x = (xi) be an infinite periodic Sturmian sequence such that
derived sequences x(i) exist and are non-constant for

1 ≤ i < n

and x(n) is constant, where n ≥ 2. Let v be a period of x beginning or ending with an
isolated symbol. Let v′ = δ1(v), where δ1 is the unique operation of either left or right
derivation such that δ1(v) exists (and so δ1(v) is a period of x′). We call v derivable if
there is a sequence δ1, . . . , δn with each δi either a left or a right derivation such that
v(i) = δi(v

(i−1)) exists and is non-constant for 1 ≤ i ≤ n−1 while v(n) exists and v(n) = u,
say, where x(n) = u∞. By working backwards from u, we can see that for any sequence
δ1, . . . , δn of derivations there is a derivable period v of x such that the v(i) are obtained
by these operations.

Remark. Suppose x and v are as in Lemma 5, and let the isolated basic words of x
be bac−1+ε, ac−1+εb, where ε = ±1. We note that if v begins with b, then v will end with
aν+1 provided that either ε = −1 and v begins with the isolated word or ε = 1 and v ends
with the isolated word, and a corresponding result holds if v ends with b. It follows that
the operations δn, δn−1, . . . , δ1 and hence v can be chosen so that each v(i) begins or ends
with

(ai)
1+νi ,

where ai is the non-isolated symbol of x(i) and νi is the ai-width of x(i).
These observations together with Lemma 4 and 5 lead to the main combinatorial result

of this paper which is as follows:

Proposition 3. Let x = (xi) be an infinite binary sequence which is Sturmian and periodic
with least period Q and has exactly R1 isolated symbols per period, where R1 ≥ 2. Let
the nearest integer continued fraction expansion of Q/R1 be

Q/R1 = [c1; ε2c2, ε3c3, . . . , εncn] ,

where n ≥ 2.

(i) Let
w = vt ,
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where t ≥ 1 and v is a derivable period of x. Then C(w), the number of centres of
w, satisfies

C(w) ≥ 2t + C ′,

where

(22) C ′ = cn +

n−1∑
i=1

(
ci + 1

2
εi+1

) − 1
2
(n + 3) .

(ii) There exists a derivable period v0 of x such that for all t ≥ 1

C(vt
0) = 2t + C ′ .

(iii) We have

C ′ = C(v0) − 2,

2 ≤ C ′ ≤ Q − 3 .

Proof. (i) Let v(1), v(2), . . . , v(n) be the successive derived words obtained from v as
above. Note that, for each i , w(i) exists and equals (v(i))t. By Lemma 4 (i) and
Lemma 5, for 1 ≤ i ≤ n − 1, we have

C(w(i−1)) ≥ C(w(i)) + ci + 1
2
(εi+1 − 1) ,

and hence

C(w) ≥
n−1∑
i=1

(
ci + 1

2
εi+1

) − 1
2
(n − 1) + C(w(n−1)) .

By Lemma 4 (ii)

w(n−1) =
(
zycn−1

)t
or

(
ycn−1z

)t
,

and it is easily checked that

C(w(n−1)) = cn + 2(t − 1) .

The required inequality now follows.

(ii) The remark preceding the proposition shows that there exists a period v0 such that
if v = v0 then equality holds in each application of Lemma 5 and hence C(w) equals
2t + C ′, as required.

(iii) Taking t = 1 in (ii) we obtain C(v0) = 2 + C ′. Since n ≥ 2, we have

C ′ ≥ c2 + c1 + 1
2
(ε2 − 1) − 2 ≥ 2 .

Since R1 ≥ 2, v0 does not satisfy (ii) of Proposition 2 and so C(v0) ≤ Q− 1, giving
C ′ ≤ Q − 3.
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6.2 Sumsets of finite Beatty sequences

The rational case

The result below follows immediately from Proposition 3 by using Proposition 1 and
Lemmas 2 and 3.

Corollary 1 to Proposition 3. Let P , Q be relatively prime positive integers such that
P > 2Q, Q ≥ 5 and P/Q has nearest integer continued fraction expansion

P/Q = [c0; ε1c1, ε2c2, . . . , εncn] ,

where n ≥ 2. Then there exists an integer T such that 0 ≤ T ≤ Q−1 and for every t ≥ 1,
if k = tQ + 1 and S is the rational Beatty sequence

(23) S =
{
biP

Q
+ T

Q
c : i = 0, 1, . . . , k − 1

}
,

then
|S + S| = 2(k − 1)

(
2 − 1

Q

)
− C ′ ,

where C ′ is given by (22).

From the results of Section 5.2 with R0 = Q, we have

Q ≥ (
c1 − 1

2

) (
c2 − 1

2

) · · · (cn−1 − 1
2

)
cn ,

and hence C ′/(k− 1) = C ′/(tQ) is small if n is large or c1, . . . , cn are large, even if t = 1.
We note that a 2Q-letter word of a periodic sequence with least period Q includes every

period of the sequence. The following corollary can be obtained by using this observation.

Corollary 2 to Proposition 3. For P , Q as in Corollary 2 above, suppose that

k = tQ + 1 + R = (t − 1)Q + 1 + (Q + R) ,

where 0 ≤ R ≤ Q − 1 and t ≥ 2. Then for every T such that 0 ≤ T ≤ Q − 1 the Beatty
sequence S given by (23) satisfies

|S + S| ≥ 2(k − 1)
(
2 − 1

Q

)
− 2(Q + R)

(
1 − 1

Q

)
− C ′ ,

where C ′ is given by (22).

We note that if S is a rational Beatty sequence with modulus P/Q such that Q = 2, 3
or 4 then each period of ∆S is of a form covered by Proposition 2, and so the number C of
centres of ∆S is easily determined and |S + S| can be obtained directly from Proposition
1.
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The irrational case

For irrational α > 2, let P , Q be relatively prime positive integers such that Q ≥ 5 and

(24) α = P
Q

+ ε
Q2 , 0 < ε < 1 .

Then it is easily seen that for every given integer T such that 0 ≤ T ≤ Q − 1 we have

biα + T
Q
c = biP

Q
+ T

Q
c for i = 0, 1, . . . , Q .

Thus we can use Corollary 1 above with t = 1 to obtain information about the sumset of a
finite Beatty sequence with irrational modulus. (Unfortunately we cannot simply use the
nearest integer continued fraction expansion of α since its convergents do not in general
satisfy (24) with ε ≥ 0.)

Suppose, for example, that α has an ordinary (regular) continued fraction expansion

α = (c0; c1, c2, . . .)

where all ci ≥ 2, let p2m/q2m be an even convergent, and write P = p2m, Q = q2m. Then
(24) holds and we have εi = 1 for all i and

P
Q

= [c0; c1, c2, . . . , c2m] .

Hence there exists T such that 0 ≤ T ≤ Q − 1 and the finite Beatty sequence S with
|S| = k = Q + 1 given by

S =
{
biα + T

Q
c : 0 ≤ i ≤ Q

}

satisfies

|S + S| = 4Q − 2 −
2m∑
i=1

ci = 4k − 6 −
2m∑
i=1

ci .

7 Concluding Comments

7.1 Sumsets in Z2

By Corollary 2 to Lemma 1 we know that if S = {s0, s1, . . . , sk−1} is a finite Beatty
sequence with non-integral modulus α > 2 and k ≥ 3 then S is isomorphic to the set of
points

T = ϕ(S) = {(i, si) : i = 0, 1, . . . , k − 1}
in Z2. Further, if α = P/Q with P and Q relatively prime positive integers then the
points of T form arithmetic progressions in Z2, each progression consisting of consecutive
lattice points on one of Q adjacent lattice lines.

For subsets of Z2, results along the lines of those in Section 2 have been obtained by
Freiman and significantly extended recently by Stanchescu. References and details are
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given in Stanchescu [11]. For a finite subset T of Z2, this work includes bounds on |T +T |
which ensure that T is covered by Q parallel lattice lines and also includes detailed study
of the case when T is covered by 2 or 3 parallel lines. When interpreted geometrically
in Z2, the above results on sumsets of finite rational Beatty sequences provide a fund of
examples illustrating this work of Freiman and Stanchescu.

7.2 Further investigation

We note that Beatty sequences have close connections with special expansions of positive
integers (see, for example, Fraenkel, Levitt and Simshoni [3]). It seems likely that further
investigation of the sumset of a finite Beatty sequence and the number of centres of its
difference sequence may require some such expansion, possibly related to the nearest
integer continued fraction.

In connection with sets of integers with small sumsets, it would be desirable to consider
generalisations of Beatty sequences, for example, sequences (si) such that

|(si+j − si) − (su+j − su)| ≤ d

for a given positive integer d ≥ 2. I hope to study such sequences (si) further.
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