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1 Abstract

The Ehrenfeucht-Fraisse game is a two-person game of perfect information which is con-
nected to the Zero-One Laws of first order logic. We give bounds for roughly how quickly
the Zero-One Laws converge for random bit strings and random circular bit sequences. We
measure the tenaciousness of the second player (“Duplicator”) in playing the Ehrenfeucht-
Fraisse game, by bounding the numbers of moves Duplicator can play and win with prob-
ability 1−ε. We show that for random bit strings and random circular sequences of length
n generated with a low probability (p � n−1), the number of moves, Tε(n), is Θ(log2 n).
For random bit strings and circular sequences with isolated ones (n−1 � p � n−1/2),
Tε(n) = O(min(log2 np,− log2 np2)). For n−1/2 � p and (1 − p) � n−1/2, we show that
Tε(n) = O(log∗ n) for random circular sequences, where log∗ n has the usual definition–
the least number of times you iteratively apply the logarithm to get a value less than one.

2 Introduction

In this paper, we examine the Ehrenfeucht-Fraisse game, and the length of such games over
random structures for which a Zero-One Law holds. Assume Mn is a random structure
on n elements. For example, it could be the binary tree with n leaves under uniform
probability, the random graph of Erdős and Renyi [4], or the random bit string on n
bits. In a general setting (a random structure defined for all n) and fixing positive ε, we
define the tenacity function, Tε(n), equal to the maximal k so that if n1, n2 ≥ n, then
Duplicator wins this k-move Ehrenfeucht-Fraisse game played on independent structures
of size n1 and n2 with probability at least 1 − ε. A Zero-One Law holds if for every first
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order sentence, φ, and random structure of size n, Mn:

lim
n→∞Pr[Mn |= φ] = 0 or 1

where M |= φ is an abbreviation for “M has the property φ.” In terms of the Ehrenfeucht-
Fraisse game, a Zero-One Law implies that, for every k, Duplicator will eventually win,
and Tε(n) → ∞ (this is not obvious, see [6] for more details). But how quickly does the
tenacity function grow?

The answer varies for different random structures. The choice of ε has little effect in
the overall answer, and we focus on the growth rates in terms of the size of the structures.
While this paper concentrates on random bit strings and random circular orders, we could
also look at the growth rates for other random structures such as the random graph of
Erdős and Renyi [4] and random binary trees.

2.1 The Ehrenfeucht-Fraisse Game

In the Ehrenfeucht-Fraisse Game, the players alternate placing pebbles on one of two
structures that serve as the game boards. The number of rounds that are played corre-
spond to the complexity of first order sentences considered. Given two structures, M1

and M2, M1 and M2 are indistinguishable by first order sentences with quantifier rank
at most k (written M1 ≡k M2) if and only if the second player has a winning strategy
for every k-move Ehrenfeucht-Fraisse game played on M1 and M2. We define the game
below:

Definition 1 The k-move Ehrenfeucht-Fraisse game (EF game) on M1 and M2

is a two-person game of perfect information. For the game, we have:

• Players: There are two players:

– Player I, often called Spoiler, who tries to ruin any correspondence between the
structures.

– Player II, often called Duplicator, who tries to duplicate Spoiler’s last move.

• Equipment: We have k pairs of pebbles and the two structures M1 and M2 as
game boards.

• Moves: The players take turns moving. At the ith move, the Spoiler chooses a
structure and places his ith pebble on an element in that structure. Duplicator then
places her ith pebble on an element in the other structure.

• Winning: If after any of Duplicator’s moves, the substructures induced by the
pebbles are not isomorphic, then Spoiler wins. After both players have played k
moves, if Spoiler has not won, then Duplicator wins.
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Figure 1: K3 and K4

For example, let K3 and K4 be the complete graphs on 3 and 4 vertices, respectively
(see Figure 1). Then K3 6≡4 K4, since Spoiler can place each pebble on a different vertex
in K4, and Duplicator has no response in K3 since there are only 3 vertices. However,
there is a winning strategy for Duplicator to win the 3-move game (i.e. K3 ≡3 K4). To
win, Duplicator needs to maintain an isomorphism between the substructures induced
by the pebbles, after every move. But, in this case, since every pair of distinct vertices
are connected, only equality matters in the placement of pebbles (that is, if the ith
and jth pebble are on the same vertex in the first structure, then they need to be in
second structure for Duplicator to win). So, on these structures, Duplicator has a winning
strategy if and only if the number of moves is less than the number of vertices in either
structure.

2.2 Random Bit Strings and Random Circular Sequences

We concentrate on bit strings, that is ordered strings of zeros and ones, and circular
orders of bit sequences. Let n be a positive integer, and 0 ≤ p(n) ≤ 1. We will write
U(i) if the ith bit is “on” in the string, and ¬U(i) if the ith bit is “off.” U is an unary
predicate– there are 2n possible choices for such a predicate over n elements. The random
bit string Un,p is a probability space over predicates U on [n] = {1, . . . , n} with the
probabilities determined by Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events U(x) are
mutually independent over 1 ≤ x ≤ n. Similarly, the random circular bit sequence Cn,p is
a probability space over predicates U on [n] = {1, . . . , n} with the probabilities determined
by Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events U(x) are mutually independent over
1 ≤ x ≤ n. A bit string is a linearly ordered sequence of zeros and ones, while a circular
order roughly is a bit string with the ends “glued” together. The bit strings have an
underlying order to their bits, and we will write i ≤ j if the ith bit comes before the jth
bit. For the circular ordering, there is no beginning or end, we can only talk about the
order of two elements with respect to a third. We will write cc(i, j, k) if j is between i
and k (see Figure 2), when moving in a counter-clockwise direction.

We form statements about the bit strings and circular orders using = (equality), ≤
(linear order for bit strings) or cc (counterclockwise order for circular sequences), U (an
unary predicate, indicating if a bit is one or zero), the binary connectives ∨ (disjunction)
and ∧ (conjunction), ¬ (negation), and the first order quantifiers ∃ (existential quantifica-
tion) and ∀ (universal quantification). “First-order” refers to the range of the quantifiers–
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Figure 2: A circular bit sequence with cc(i, j, k)

we only allow quantification over variables, not sets of variables. For example, let φ be
the first order sentence for bit strings:

(∃x)(∀y)(x ≤ y)

φ expresses the property that there is a least element. The x and y are assumed to range
over elements of the universe, or underlying set of the structure. The sentence

(∃x)[U(x) ∧ (∀y)(x ≤ y)]

expresses the property that the bit string starts with a one. No equivalent statement can
be made in the circular language as there is no notion of least element. We can, however,
express the property that there exists two consecutive ones by the first order sentence:

(∃x)(∃y)[x 6= y ∧ U(x) ∧ U(y) ∧ ¬(∃z)(cc(x, z, y))]

While many things can be expressed using first order sentences, many cannot. For
example, there is no first order sentence that captures the property that a structure’s
underlying set has an even number of elements (see [3], p. 21). That is, there is no first
order sentence φ such that for every model M, M |= φ ⇐⇒ m is even.

By the work of Dolan [2], the random bit string satisfies the Zero-One law for p(n) �
n−1 and n−1 � p(n) � n−1/2. Dolan also showed that the Zero-One Law does not hold
for bit strings with n−1/k � p(n) � n−1/(k+1), k > 1. In [5], Shelah and Spencer showed
that for p(n) � n−1 or n−1/k � p(n) � n−1/(k+1), k > 1, a Zero-One Law holds for
circular sequences. (The same result holds for 1 − p(n) � n−1 or n−1/k � 1 − p(n) �
n−1/(k+1), k > 1.)

3 Very, Very Sparse

When the probability generating the random bit strings and circular sequences is small,
p � n−1, then, almost surely, ones do not occur, and a Zero-One Law holds (see [7]). We
will focus on bit strings in this section, but the results hold also for circular sequences.

the electronic journal of combinatorics 8 (no. 2) (2001), #R17 4



Since the random bit string for these probabilities is just a string of zeros, the game
on any structures reduces to counting the number of bits. For n1, n2 ≥ 2k − 1, Duplicator
wins the k-move game on Un1 and Un2. We omit the proof of this since it can be found
in many places, including [3]. Instead, we give an example to illustrate why this fact is
true. Consider the Ehrenfeucht-Fraisse game on U7 and U8:

U7 U8

[ 0 0 0 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 ]

Let’s play a 3-move game on these bit strings. Spoiler moves first. His goal is to illustrate
the difference between the bit strings, which, in this case, is just their differing lengths.
Assume Spoiler places his first pebble (call it s1) on the middle bit of U7:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑
s1

[ 0 0 0 0 0 0 0 0 ]

Duplicator tries to duplicate Spoiler’s last move on the other bit string, U8. Let’s assume
that she chooses to place her pebble (d1) on an element close to middle bit, say the fourth
bit:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑
s1

[ 0 0 0 0 0 0 0 0 ]
↑
d1

Spoiler can choose to play his move on either bit string. Assume he responds by playing
his second pebble, s2, the seventh bit on U8:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑
s1

[ 0 0 0 0 0 0 0 0 ]
↑ ↑
d1 s2

Duplicator must respond with her move, d2, on an element of U7. Recall that if at the
end of Duplicator’s move, the substructures, induced by the pebbles are not isomorphic,
then Spoiler wins. Since the d1 < s2 in U8, the choice of d2 must be greater than s1 in U7,
to maintain the correspondence of the structures and keep Duplicator in the game. This
gives Duplicator the choice of the fifth, sixth, and seventh bits in U7. Assume she chooses
to place d2 on the sixth bit:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑ ↑
s1 d2

[ 0 0 0 0 0 0 0 0 ]
↑ ↑
d1 s2
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We have that the first pebble is strictly less than the second in both structures, so Spoiler
has not won yet. If we’re playing the 3-move game, then this would be Spoiler’s last move.
For Spoiler to win, he needs to place his pebble such that Duplicator cannot duplicate the
order of pebbles in the other structure. So, let’s assume he puts his pebble, s3 between
the pebbles in U7:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑ ↑ ↑
s1 s3 d2

[ 0 0 0 0 0 0 0 0 ]
↑ ↑
d1 s2

To keep up the correspondence, Duplicator must play between the pebbles on U8:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑ ↑ ↑
s1 s3 d2

[ 0 0 0 0 0 0 0 0 ]
↑ ↑ ↑
d1 d3 s2

The substructures induced by the pebbles are isomorphic. So, Duplicator wins this 3-
move game. In general, Duplicator’s strategy at the ith round of a k-move game is if
Spoiler plays within 2(k−i) of a placed pebble, then she plays her pebble with that exact
distance to the corresponding pebble in her structure. If Spoiler plays farther than 2(k−i)

from any pebble, then Duplicator plays “far” (greater than 2(k−i) at the ith round) from
any pebble (but preserving the order).

If the game was to go on for just one more, Spoiler could win. To win, Spoiler plays
his fourth pebble, s4, between d3 and s2 on U8:

U7 U8

[ 0 0 0 0 0 0 0 ]
↑ ↑ ↑
s1 s3 d2

[ 0 0 0 0 0 0 0 0 ]
↑ ↑ ↑ ↑
d1 d3 s4 s2

To maintain the correspondence, Duplicator must play on a distinct element between s3

and d2 in U7. Since there is no such element, Spoiler wins this 4-move game. Further
analysis shows that Spoiler can always win the 4-move game played on U7 and U8, and
we write: U7 6≡4 U8. In general, Spoiler’s strategy is to show the difference in length by
splitting the smallest distance between any two placed pebbles or endpoints. If one of
the structures has length less than 2k − 1, then Spoiler can show the difference within k
moves.

Duplicator can win any k-move game on structures of size larger than 2k. So, Tε(n) ≥
log2 n. We also have that if the structures differ in size and one is smaller than 2k − 1,
then Spoiler has a winning strategy. This gives that Duplicator loses on such structures,
and Tε(n) = O(log2 n). Thus, Tε(n) = Θ(log2 n).

the electronic journal of combinatorics 8 (no. 2) (2001), #R17 6



4 Very sparse

As in the section above, we will focus on random bit strings, but a Zero-One Law holds
for both bit strings and circular sequences, as do the results of this section.

For n−1 � p � n−1/2, we shall see that the resulting structures almost surely have
arbitrarily many ones, and the ones that do occur are isolated from one another by
arbitrarily many zeros. The players’ strategies for Ehrenfeucht-Fraisse game become much
more interesting. As in Section 3, Spoiler can win the k-move game if the lengths of the
structures are different and at least one has length less than 2k −1. So, we have an upper
bound, Tε(n) = O(log2 n). We can improve this bound by examining the conditions which
give a winning strategy for Duplicator.

Before giving sufficient conditions for Duplicator, let’s look at a game on two struc-
tures, U and V :

U V
[000100100001000100] [000010000010001000]

Spoiler’s goal is illustrate the differences between the two structures. Duplicator’s strategy
is two-fold, depending on whether Spoiler plays on a one or zero. If he played on a one,
then Duplicator must also play a one. If the moves are restricted to the elements that
are ones, then we can view the game as occurring on an ordered structure of identical
elements, as in Section 3. The strategies from Section 3 serve both players well, and if the
number of ones in both structures is greater than 2k, Duplicator wins the k-move game
played only on the ones.

If Spoiler plays on a zero, Duplicator must play on a zero, with the same relative po-
sition as Spoiler’s move. For example, assume Spoiler placed his pebble, s1, two elements
before the second one:

U V
[000100100001000100] [00001000 0 010001000]

↑
s1

Let’s view Spoiler’s move as actually three moves: the placement of s1, plus the placement
of two more “shadow” pebbles, S1 and S2 on ones nearest to Spoiler’s move:

U V
[000100100001000100] [0000 1 000 0 0 1 0001000]

↑ ↑ ↑
S1 s1 S2

These extra shadow pebbles are used only by Duplicator to determine her next move and
are not a part of the actual game. For Duplicator’s next move, we first, using the strategy
for playing on the ones from Section 3, place the “shadow” pebbles, D1 and D2:
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U V
[000 1 00 1 00001000100]

↑ ↑
D1 D2

[0000 1 000 0 0 1 0001000]
↑ ↑ ↑
S1 s1 S2

The placement of the “real” pebble now reduces to a game on the strings of zeros between
the shadow pebbles: [00] in U and [00000] in V . If these subintervals have length at
least 2i, where i is the number of moves left in the game, than Duplicator has a winning
strategy on this substructure.

To summarize the discussion above: Duplicator has a winning strategy for the k-move
game if:

1. The lengths of both structures are greater than 2k.

2. The number of ones in each structure is greater than 2k.

3. The distance between any two ones in each structure is greater than 2k. Also, the
distance between any one and an endpoint is greater than 2k.

In [7], these conditions for Duplicator to win the k-move game were shown to be necessary
(following from the definition of “k-types”).

Given n, for what k will these conditions hold 1 − ε of the time? We have already
addressed the first condition above. We would like the second and third condition to hold
at least 1 − ε amount of the time. For the second condition to hold, we need that the
number of ones is greater than 2k at least 1− ε of the time. Let be the random variable X
count the number of ones that occur. The expectation, µ = E[X], is np, and the variance,
σ2 = Var[X] = np(1 − p). As σ = o(µ), by Chebyshev’s Inequality, X > µ/2, almost
surely (see, for example, [1]). So, the second condition, that there is at least 2k ones, is
satisfied if k ≤ log2(µ/2) = log2(np) − O(1).

To guarantee the third condition, that the ones occur far apart (at distances greater
than 2k), we let D be the random variable for the number of pairs of ones within distance
2k. The expectation, E[D] ≤ n2kp2. When k = − log2(np2)−O(1), E[D] < ε, so the third
condition holds with probability at least 1 − ε.

This gives Tε(n) = O(min(log2(np),− log2(np2))). To illustrate why the minimum
cannot be removed from the above equation, we focus on the probability functions of the
form, p = n−α for 1

2
< α < 1. Figure 3 contains the graph of the y = log2(np) = log2(n

1−α)
and y = − log2(np2) = log2(n

2α−1). For α > 2
3
, the minimum is attained by log2(np), and

for α < 2
3
, − log2(np2) provides the better bound.

5 p � n−1/2

Throughout this section we assume p � n−1/2 and 1 − p � n−1/2. In this realm, consec-
utive pairs 11 (and their counterpart 00) occur arbitrarily often. Our result will be the
upper bound Tε = O(log∗ n). We look, therefore, only at Spoiler strategies for the game
played on circular sequences Cn, Cm.
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Figure 3: The functions, log2(np) and − log2(np2) for p = n−α and 1
2 < α < 1.

Spoiler begins (see Figure 4) by playing s1, s2 ∈ Cm to which Duplicator responds by
playing some d1, d2 ∈ Cn Thereafter, all Spoiler’s plays in Cm will be in [s1, s2] and all his
plays in Cn will be in [d1, d2]. (Formally, [s1, s2] is s1, s2 and those x with cc(s1, x, s2).)
As Duplicator must preserve the ordering, cc, she must also play in these intervals. Thus,
it will suffice to show that Spoiler can win the EF game on these intervals. To simplify
the arguments, we will encode the bit strings into strings of As and Bs, with 11 encoding
to A and 101 to B (see Section 5.1.1). We show that it suffices for Spoiler to win a game
on the encoded strings (see Theorem 1).

We show in Section 5.2 that all patterns w of {A, B} of fixed length occur almost
surely in the encoding of some interval of Cn,p. In Section 5.1.2 we show that there are
w ∈ {A, B}∗ that can be distinguished from any w′ ∈ {A, B}∗ of length at most Tower(k)
in approximately 5k moves (the function Tower(k) is defined inductively as Tower(0) = 1
and Tower(k + 1) = 2Tower(k) for k > 0). This leads us to the Main Result (Theorem 5
in Section 5.3) that Tε(n) = O(log∗ n). For very large m, the random Cm with high
probability has a subinterval that encodes to the pattern w above. Spoiler picks that
subinterval in Cm. For all structures of size n or smaller, Spoiler will win because the
second structure is just not large enough to contain a pattern w′ indistinguishable from
w.

5.1 Logic

In this section, we define the encoding function, ENC, and show that if Spoiler has
a winning strategy for the the k-move game on the encoded structures, then he has a
winning strategy for the (k + 2)-move game on the original structures.

The rest of this section focuses on showing that there are Tower(k) different structures
that can be distinguished by the (5k − 8)-move game. From this, we find a sequence w0

which can be distinguished from all sequences w of length at most Tower(k) in only 5k−3
moves.
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Figure 4: Spoiler first chooses an interval from the circular sequence. The string is then encoded
into a string of A’s and B’s.

5.1.1 Encoding

To get our results, it will suffice to focus on just two pairs of ones: A =“11” and B =“101”,
and ignore all other occurrences of pairs. We show first that given two intervals, w1 and w2,
if Spoiler wins the k-move game played on encoded sequences, ENC(w1) and ENC(w2),
then Spoiler will win the (k + 2)-move game played on the original sequences, w1 and w2.

We define an encoding function ENC : {0, 1}∗ → {A, B}∗ as follows. Each 1 followed
by 1 is encoded as A, each 1 followed by 01 is encoded as B, all other symbols are ignored.

Theorem 1 : Let w1, w2 ∈ {0, 1}∗. If ENC(w1) 6≡k ENC(w2) then w1 6≡k+2 w2.

Proof: If ENC(w1) 6≡k ENC(w2), then Spoiler has a winning strategy on the k-
move game played on the encoded structures of strings of {A, B}∗. Let Si be Spoiler’s ith
move, following his winning strategy, on the encoded structures, ENC(w1) and ENC(w2).
Translate Spoiler’s ith move, Si, to a move on the original structure, si, by playing the first
element of the corresponding pair. For example, if Spoiler moved on the third element of
ABABAAB in the encoded structure, then his move, si, on the original structure would
be the first one that occurs in the second pair of “11.” Duplicator responds with her move,
di, on the other original structure. Her move must be on a one for the game to continue.
Moreover, if Spoiler’s move on the encoded structures was an A, then Duplicator must
have played the first one of a pair “11”, and if Spoiler played a B, the Duplicator must
play in the original structure on the first one of “101.” If not, in an additional two moves,
Spoiler can distinguish “11” or “101” from the string Duplicator.

Thus, with an additional two moves in the original structures, we can distinguish the
strings, and Spoiler wins the (k + 2)-move game on the original structures. 2

5.1.2 Equivalence Classes

The k-move Ehrenfeucht-Fraisse game induces equivalence classes on the structures. We
will say that two structures M1 and M2 are equivalent (with respect to k), if Duplicator
has a winning strategy for the k-move game, M1 ≡k M2. A well-known, but not obvious
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fact, is that the number of equivalence classes with respect to the k-move game is finite
(see [3] for details).

Theorem 2 The number of ≡(5k−8)-classes is greater than Tower(k) for k ≥ 2.

Proof: We proceed by induction on k. For the base case k = 2 we observe that the
bit strings 00, 01, 10, 11 are mutually inequivalent with respect to ≡2, hence there are at
least Tower(2) = 4 ≡2-classes.

For the inductive step, assume there are more than Tower(k) equivalence classes for
the (5k − 8)-move game, and show that there are more than Tower(k + 1) equivalence
classes for the (5(k + 1)− 8)-move game. We begin by expanding the alphabet to include
a marker, M , to simplify the arguments.

By inductive hypothesis, there exist more than Tower(k) equivalence classes for the
(5k − 8)-move game. Let E = {e1, e2, . . . , eT} be representatives of these T > Tower(k)
classes. For any subset, A = {a1, a2, . . . , am} ⊆ E, let wA be the string:

Ma1Ma2M . . .MamM

where M is a marker. This string belongs to an extended alphabet of {0, 1, M}.
We claim that for any two subsets A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bl} ⊆ E, if

A 6= B, then wA 6≡(5k−6) wB. We need to show Spoiler wins the (5k − 6)-move game. If
A 6= B, then, without loss of generality, there exists a′ ∈ A such that a′ 6∈ B. Assume
Spoiler plays the markers on either side of a′ ∈ A:

U V
[Ma1Ma2M . . . M a′ M . . . amM ]

↑ ↑
S1 S2

[Mb1Mb2M . . .Mb′M . . . bmM ]

Duplicator must respond by playing markers on wB that surround some element of B,
say b′. By choice, a′ 6∈ B, and a′ 6= b′. Since a′ and b′ are distinct representatives of the
≡(5k−8) equivalence classes, this gives that a′ 6≡(5k−8) b′. Spoiler has a winning strategy
for the (5k − 6)-move game on the intervals wA and wB.

The above argument is for the extended alphabet of {0, 1, M}. Instead of the extra
symbol M , we could have been encoded the three letter alphabet by sequence of zeros
and ones. For example, f : {0, 1, M} → {0, 1}∗ such that f(0) =“1”, f(1) = “10,” and
f(M) = “100.” If we now play the game on these strings in {0, 1}, we follow the strategy
above with the following addition: if Spoiler plays i in the structures on the three letter
alphabet, then Spoiler now plays the the first element of the encoded substring, f(i). In
the worst case (where Duplicator plays on a different encoded symbol on the (5k − 6)th
move), Spoiler needs three more moves to distinguish the encoded symbols. Thus, Spoiler
needs 5k − 3 = 5(k + 1) − 8 moves to distinguish any two subsets. So, the number of
≡(5(k+1)−8) equivalence classes is more than Tower(k + 1). 2

Corollary 1 There exists a sequence, w0 ∈ {0, 1}∗ such that for all sequences, w, if
w ≡5k−3 w0, then |w| > Tower(k).

the electronic journal of combinatorics 8 (no. 2) (2001), #R17 11



Proof: Let E = {e1, e2, . . . , eT} be representatives of the equivalence classes for
the (5k − 8)-move game. We first expand the alphabet to {0, 1, M} and let w∗

0 =
[Me1Me2M . . .MeT M ] the concatenation of all the ≡(5k−8) representatives. Then let
w0 = f(w∗

0) ∈ {0, 1}∗ with the encoding f given in Theorem 2.
For any w ≡(5k−3) w0, w must contain a representative of each ≡(5k−8) equivalence class.

Otherwise, Spoiler could distinguish w and w0 in (5k−3) moves using the strategy outlined
in the proof of Theorem 2. The length of w is larger than the number of representatives
of ≡(5k−8) classes (since it contains all of them) which is greater than Tower(k), by
Theorem 2. 2

5.2 Probability

We show that all patterns of {A, B} of fixed length occur with positive probability in the
encoding of Cn,p. We begin by showing that any string of {A, B} occurs with positive
probability.

Theorem 3 Let p = p(m) ∼ m−1/2. Let ~v = X1 · · ·Xs ∈ {A, B}∗. Then the probability
that ENC(Um,p) = ~v is at least 1

e2s!
(1−o(1)). The asymptotics are for fixed ~v as m → ∞.

Proof: For any 1 ≤ u1 < . . . < us ≤ m − 4 with all ui+1 − ui ≥ 5, consider the event
E[~v, ~u] that

• When Xi = A, the U sequence starting at ui goes 11000.

• When Xi = B, the U sequence starting at ui goes 10100.

• There are no strings 11 nor 101 in the U string other than these s.

Then E[~v, ~u] has probability at least [p2(1−p)3]s(1−p2)2m. The first term is the probability
of those particular 5s entries. For the second term we have less than 2m potential pairs
of ones adjacent or one apart and each has probability 1−p2 of not being there. From the
FKG inequality (the easy part of Janson’s Inequality, see [1]) the probability that none
are there is at least 1 − p2 to the power which is the number of those events. The events
E[~v, ~u] are disjoint over all ~u and the number of ~u is ∼ ms/s!. Hence the event that some
E[~v, ~u] holds is at least asymptotically

ms

s!
[p2(1 − p)3](1 − p2)2m ∼ 1

e2s!
2

Theorem 4 Let p = p(n) satisfy n−1/2 � p(n) ≤ 1/2. Let ~v = X1 · · ·Xs ∈ {A, B}∗ be
fixed. Then almost surely Cn,p has a substring that encodes to ~v.

Proof: First, assume p(n) = o(1). Set m = bp−2c so that m → ∞ and m = o(n). Split
Cn,p into bn/mc disjoint strings of length m. Each encodes to ~v with probability ∼ 1

e2s!
.

They are independent so the probability that none encodes to ~v is at most (1− 1
e2s!

)bn/mc

which goes to zero. Finally, if p(n) is bounded from below by a positive constant then
almost surely Cn,p contains any particular substring and hence one that encodes to ~v. 2
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5.3 Main Result

Theorem 5 Assume p(n) � n−1/2 and 1 − p(n) � n−1/2 and ε > 0 is fixed. If n ≤
Tower(k), then Tε(n) < 5k + 1. In particular, Tε(n) = O(log∗ n).

Proof: Fix k (and don’t worry about n at this point). Let w0 be the string from
Corollary 1. So, w0 has the property that if w ≡5k−3 w0, then |w| > Tower(k). Let ~v be
the encoding of w0 into {A, B}∗ described in Section 5.1.1. Note that ~v is a fixed string.
So, by Theorem 4, for sufficiently large m, Cm contains a substring encoding w0 with
probability at least 1 − ε. The choice of m depends on k and w0, but not on n.

Now, to show Tε(n) < 5k + 1 is the same as showing that for some n1, n2 ≥ n, Spoiler
wins the (5k+1)-move game on independent structures of size n1 and n2 with probability
at least ε. Since we need to show this only for some n1 and n2, let n1 = m (from the
application of Theorem 4 above), and let n2 = n.

Consider the (5k + 1)-move Ehrenfeucht-Fraisse game with such a Cm and any Cn.
Spoiler first selects s1, s2 ∈ Cm so that [s1, s2] encode to w0. Duplicator selects d1, d2 ∈ Cn

and [d1, d2] encodes to some w. Since w ⊆ Cn, |w| ≤ n. n is less than Tower(k), so
w 6≡5k−3 w0 by the construction of w0 in Corollary 1.

From Theorem 1, Spoiler distinguishes the bit strings on [s1, s2] and [d1, d2] in the
5k − 3 + 2 remaining moves. This gives Cm 6≡5k+1 Cn for every Cn. By Theorem 4, Cm

has the desired substring w0 with probability 1 − ε. So, Cm 6≡5k+1 Cn with probability
1 − ε > ε (for ε < 1

2
). This gives that Tε(n) < 5k + 1. Since n ≤ Tower(k), this implies

Tε(n) = O(log∗ n). 2

6 Conclusion and Future Work

We give bounds for roughly how quickly the Zero-One Laws converge for random bit
strings and random circular bit sequences. We show that for random bit strings and
random circular sequences of length n generated with a low probability (p � n−1), Tε(n) =
Θ(log2 n). For random bit strings and circular sequences with isolated ones (n−1 � p �
n−1/2), Tε(n) = O(min(log2 np,− log2 np2)). For n−1/2 � p and (1− p) � n−1/2, we show
that Tε(n) = O(log∗ n) for random circular sequences.

While we have restricted our attention to random bit strings the tenacity function can
be defined whenever there is a Zero-One Law. Can we get similar bounds on the tenacity
function for other random structures such as random graphs and random trees?

For the last case we considered, where n−1/2 � p and (1−p) � n−1/2, we achieved an
upper bound for all such p and all ε > 0. The question naturally arising is whether one
can get matching lower bounds. One needs some caution, for some p, such as n−1/3, the
Zero-One Law itself fails so that Tε(n) does not approach infinity. Further, one might be
extremely close to a threshold function. If p = n−1/3g(n) where g(n) approaches infinity
extremely slowly, say the inverse Ackermann function, then certainly Tε(n) would be of
lower order. Still, it seems reasonable to conjecture, for example, that if p = n−α and the
Zero-One Law holds then Tε(n) is of the order log∗(n).
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