
Optimal Token Allocations in
Solitaire Knock ’m Down

Arthur T. Benjamin
Department of Mathematics

Harvey Mudd College

Claremont, CA 91711
benjamin@hmc.edu

Matthew T. Fluet
Department of Computer Science

Cornell University

Ithaca, NY 14853
fluet@cs.cornell.edu

Mark L. Huber

Department of Statistics
Stanford University

Stanford, CA 94305
mhuber@orie.cornell.edu

Submitted: February 28, 2000; Accepted: August 14, 2000

Abstract

In the game Knock ’m Down, tokens are placed in N bins. At each step of the
game, a bin is chosen at random according to a fixed probability distribution. If a
token remains in that bin, it is removed. When all the tokens have been removed,
the player is done. In the solitaire version of this game, the goal is to minimize
the expected number of moves needed to remove all the tokens. Here we present
necessary conditions on the number of tokens needed for each bin in an optimal
solution, leading to an asymptotic solution.
MR Subject Classifications: primary: 91A60

1 Introduction

Knock ’m Down is a simple game to play that proves surprisingly difficult to analyze. At
the beginning of the game, the player allocates t tokens to N bins. An allocation can be
described by a vector X = (x1, x2, . . . , xN) of non-negative integers, with

∑
xi = t. At

each step of the game, a bin is chosen at random, with the probability of choosing bin i
fixed at pi > 0. If at least one token remains in bin i when it is chosen, then one token is
removed from the bin. The game continues until all of the tokens have been removed.
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In Solitaire Knock ’m Down, the goal is to remove all the tokens in the shortest time
possible. Given t tokens, N bins, and a fixed probability vector P = (p1, p2, . . . , pN), we
will say that an initial token allocation X∗ = (x∗

1, x
∗
2, . . . , x

∗
N) is optimal if it minimizes

the expected time needed to remove all of the tokens.
Intuitively, one would expect the optimal token placement to resemble the shape of the

probability histogram, so that roughly tpi tokens are placed in bin i. However, recursive
calculations in [3] reveal that even when one can allocate tokens exactly proportional to
the probabilities, this allocation is seldom optimal. For example, when P = (1/3, 2/3)
and t = 9, then X∗ = (2, 7). When t = 1200 with the same P , X∗ = (393, 807). When
P = (.1, .2, .3, .4) and t = 10, then X∗ = (0, 2, 3, 5). In the original version of Knock ’m
Down, described in [1], t = 12 and P is the “dice total” vector 1

36
(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1).

Here X∗ = (0, 0, 1, 2, 2, 3, 2, 1, 1, 0, 0).
When N = 2 and P = (p, 1−p), it is shown in [2] that with t tokens, the optimal allo-

cation is X∗ = (m, t−m), where m is the pth percentile of the Binomial(t, p) distribution.
As a consequence, limt→∞ X∗/t = P.

In this paper, we generalize these results to obtain necessary conditions for X∗ when
N > 2, and achieve the same asymptotic conclusion.

2 The Token Adding Theorem and Consequences

Given a probability distribution P = (p1, . . . , pN) and token allocation X = (x1, . . . , xN),
we define the random variable TX to be the number of rolls needed to clear allocation X.
Consider arbitrary bins a and b, with pa < pb. Let Xa and Xb be the allocations obtained
from X by adding one token to bins a and b respectively. Our first theorem maintains
that if xa/xb is at least pa/pb then Xa has a greater expected clearing time than Xb. More
precisely,

Theorem 1. The Token Adding Theorem. Let X be a token allocation with t tokens
such that pbxa ≥ paxb, where pa < pb. Then E[TXa ] > E[TXb

].

Proof. To clear allocation Xa, we must first clear suballocation X and then clear the
remaining token in bin a, if it has not already been removed. Thus TXa = TX +Ra, where
Ra is the number of extra turns needed to clear the extra token in bin a. Ra is either 0
or a geometric random variable with mean 1/pa. Defining Rb analogously, we obtain

E[TXa ] − E[TXb
] =

(
E[TX ] +

1

pa

Pr(Ra > 0)

)
−

(
E[TX ] +

1

pb

Pr(Rb > 0)

)

=
1

pa
Pr(Ra > 0) − 1

pb
Pr(Rb > 0).

It remains to show that 1
pa

Pr(Ra > 0) > 1
pb

Pr(Rb > 0).

Notice that Pr(Ra > 0) is the probability that suballocation X is cleared with bin a
chosen exactly xa times. Thus, we define An,m to be the set of length n sequences of bin
choices such that X is cleared on the nth turn with bin a selected exactly xa times and
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bin b selected xb + m times, where m ≥ 0. Pr(An,m) =
∑

α∈An,m
Pr(α), where Pr(α) is

the product of the probabilities of the values in the sequence. Note that An,m may be
empty for some values of t, n, and m. In particular, An,m = ∅ for n < t and for m > n− t.
Therefore,

Pr(Ra > 0) =

∞∑
n=t

n−t∑
m=0

Pr(An,m).

Similarly, let Bn,m be the set of length n sequences of bin choices such that X is cleared
on the nth turn with bin b selected exactly xb times and bin a selected xa+m times. Thus,

Pr(Rb > 0) =
∞∑

n=t

n−t∑
m=0

Pr(Bn,m).

Hence to prove our theorem, it suffices to prove the following

Lemma 1. Let X be a token allocation with t tokens and N values such that pbxa ≥ paxb,
where pa < pb. Then for n ≥ t > 0 and 0 ≤ m ≤ n − t, 1

pa
Pr(An,m) ≥ 1

pb
Pr(Bn,m).

Further, the inequality is strict in the case n = t and m = 0.

We begin with the case n = t and m = 0. Recalling the definitions of An,m and Bn,m,
we note that both At,0 and Bt,0 are the set of sequences of values of length n such that
X is cleared on the tth turn with exactly xa a’s and xb b’s. Hence At,0 = Bt,0. Further,
since n = t, neither At,0 nor Bt,0 is empty. Since, pa < pb, then 1

pa
Pr(At,0) > 1

pb
Pr(Bt,0).

Next, consider the case n > t and m = 0. Again, we note that An,0 = Bn,0. Thus,
1
pa

Pr(At,0) ≥ 1
pb

Pr(Bt,0). The inequality is strict except when N = 2 and m > t, where

Pr(An,0) = Pr(Bn,0) = 0.
Finally, consider the case n > t and 0 < m ≤ n − t.
Let X ′ be the allocation of t − xa − xb tokens with all xa + xb tokens removed from

bins a and b in allocation X. Let T ′ be the number of turns needed to clear X ′ using
probability vector P ′ = (p′1, . . . , p

′
n), where p′a = p′b = 0, and p′i = pi/(1 − pa − pb) for

i 6= a, b. In other words, T ′ is the number of non-a and non-b turns needed to clear X ′.
We may write Pr(An,m) as the sum of two probabilities:

Pr(An,m) = Pr(A1) + Pr(A2),

where A1 is the event that X is cleared on the nth turn with exactly xa a’s and xb + m
b’s and the nth token removed is from bin a. A2 is the event that X is cleared on the nth

turn with exactly xa a’s and xb + m b’s and the nth token removed is not in bin a nor bin
b. Note that since m > 0, the nth token removed can not be from bin b.

Likewise, we may write Pr(Bn,m) as the sum of two probabilities:

Pr(Bn,m) = Pr(B1) + Pr(B2),

where B1 is the event that X is cleared on the nth turn with exactly xa + m a’s and xb

b’s and the nth token removed is from bin b. B2 is the event that X is cleared on the nth
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turn with exactly xa + m a’s and xb b’s and the nth token removed is neither in bin a nor
bin b. Since m > 0, the nth token removed can not be from bin a.

In order to show that 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m), we show that 1
pa

Pr(A1) ≥ 1
pb

Pr(B1)

and 1
pa

Pr(A2) ≥ 1
pb

Pr(B2).

First, we show 1
pa

Pr(A1) ≥ 1
pb

Pr(B1). The inequality is obviously true when Pr(B1) =

0, (e.g., when xb = 0). Now when Pr(B1) 6= 0,

Pr(A1) =

(
n − 1

xa − 1

)(
n − xa

xb + m

)
pxa

a pxb+m
b Pr(T ′ ≤ n − xa − xb − m.)

Pr(B1) =

(
n − 1

xb − 1

)(
n − xb

xa + m

)
pxb

b pxa+m
a Pr(T ′ ≤ n − xa − xb − m.)

Then,

1
pa

Pr(A1)
1
pb

Pr(B1)
=

1
pa

(
n−1
xa−1

)(
n−xa

xb+m

)
pxa

a pxb+m
b Pr(T ′ ≤ n − xa − xb − m)

1
pb

(
n−1
xb−1

)(
n−xb

xa+m

)
pxb

b pxa+m
a Pr(T ′ ≤ n − xa − xb − m)

=

(n−1)!
(xa−1)!(xb+m)!(n−xa−xb−m)!

pm+1
b

(n−1)!
(xb−1)!(xa+m)!(n−xa−xb−m)!

pm+1
a

=

(
pb

pa

)m+1
(xb − 1)!(xa + m)!

(xa − 1)!(xb + m)!

=

(
pb

pa

)m+1
xa(xa + 1) · · · (xa + m)

xb(xb + 1) · · · (xb + m)

=

m∏
k=0

pb(xa + k)

pa(xb + k)

≥ 1.

The last step follows from our theorem’s initial assumptions, since

pb(xa + k) − pa(xb + k) = pbxa − paxb + k(pb − pa) ≥ 0.
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By a similar calculation, when Pr(B2) 6= 0,

1
pa

Pr(A2)
1
pb

Pr(B2)
=

1
pa

(
n−1
xa

)(
n−xa−1
xb+m

)
pxa

a pxb+m
b Pr(T ′ = n − xa − xb − m)

1
pb

(
n−1
xb

)(
n−xb−1
xa+m

)
pxb

b pxa+m
a Pr(T ′ = n − xa − xb − m)

=

(n−1)!
xa!(xb+m)!(n−1−xa−xb−m)!

pm+1
b

(n−1)!
xb!(xa+m)!(n−1−xa−xb−m)!

pm+1
a

=

(
pb

pa

)m+1
xb!(xa + m)!

xa!(xb + m)!

=

(
pb

pa

)m+1
(xa + 1)(xa + 2) · · · (xa + m)

(xb + 1)(xb + 2) · · · (xb + m)

=
pb

pa

m∏
k=1

pb(xa + k)

pa(xb + k)

≥ 1,

as desired. The lemma and theorem are now established.

The Token Adding Theorem leads to practical necessary conditions for optimal token
allocation. The first corollary establishes a relationship between the ratio of tokens in any
two bins and their ratio of probabilities. Specifically,

Corollary 1. Let X∗ = (x∗
1, . . . , x

∗
N) be an optimal allocation of t tokens with probability

vector P = (p1, . . . , pn). If pa < pb, then pb(x
∗
a − 1) < pax

∗
b .

Proof. Suppose pb(x
∗
a − 1) ≥ pax

∗
b . Then by applying the Token Adding Theorem to the

t−1-token allocation X = (x∗
1, . . . , x

∗
a−1, . . . , x∗

N), we see that X∗ can not be optimal since
it has a higher average clearing time than allocation (x∗

1, . . . , x
∗
a−1, . . . , x∗

b+1, . . . , x∗
N ).

As an immediate corollary, we have the following intuitive result.

Corollary 2. Let X∗ = (x∗
1, . . . , x

∗
N) be an optimal allocation of t tokens with probability

vector P = (p1, . . . , pn). If pa < pb, then x∗
a ≤ x∗

b .

By modifying the proof of the Token Adding Theorem, one can also obtain, as done
in [3], the following two corollaries.

Corollary 3. Let X∗ = (x∗
1, . . . , x

∗
N) be an optimal allocation of t tokens with probability

vector P = (p1, . . . , pn). If pa = pb, then |x∗
a − x∗

b | ≤ 1.

Corollary 4. If the bins are arranged so that P satisfies p1 ≥ p2 ≥ · · · ≥ pN , then there
exists an optimal allocation X∗ such that x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

N .

The four previous corollaries can be used to drastically cut down the number of can-
didates for optimal allocation. For instance, in the original game of Knock ’m Down with
t = 12 tokens, the candidates for optimal allocation are reduced from 646, 646 to 49.
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However, some allocations, such as putting all tokens in the most probable bin, are not
eliminated by the previous corollaries. In the next section, we obtain lower bounds for
the optimal number of tokens in each bin, resulting in a natural allocation of tokens in
the long run.

3 Lower Bounds

As in the previous section, given a configuration X = (x1, . . . , xN ) where
∑

xi = t, we
let TX denote the first time that all of the tokens have been removed. Then an optimal
solution X∗ will satisfy E[TX∗ ] ≤ E[TX ] for all configurations X.

Theorem 2. Let X∗ = (x∗
1, . . . , x

∗
N) be an optimal allocation of t > 0 tokens, with proba-

bility vector P = (p1, . . . , pN). Then for N ≥ 2, in each bin i, x∗
i is at least as big as the

pi/(N − 1) percentile of the Binomial distribution with parameters t and pi.

Proof. When N = 2, this is proved in [2]. For N > 2, we shall prove something slightly
stronger. The idea behind our proof is that in an optimal configuration, the probability
of choosing from bin i more than x∗

i times before the end of the game should be small.
For each bin i, let τi be the first time that bin i is chosen x∗

i + 1 times. If bin i has been
chosen more than x∗

i times by the end of the game, then τi < TX∗ . Otherwise, when bin
i is chosen exactly x∗

i times at the end of the game, we set τi = ∞. Note that τi cannot
equal TX∗ since the game cannot end on a “wasted” turn. Summarizing, τi > TX∗ if and
only if bin i is chosen exactly x∗

i times at the end of the game. Our theorem is based on
the following lemma.

Lemma 2. For N > 2, let X∗ be an optimal allocation of t tokens. Then for each bin i,

Pr(τi > TX∗) >
pi

N − 1
.

Proof. We shall show the contrapositive. Let X be a configuration with Pr(τi > TX) ≤
pi/(N − 1). We shall construct a new configuration X ′ with E[TX′ ] < E[TX ].

Let Ej be the event that a token in bin j was the last one removed in the game.
Consider the event τi < TX . When this occurs, all of the tokens in bin i are gone before
time τi, but at least one token remains in some other bin. In particular, there exists
at least one bin j with Pr(Ej|τi < TX) ≥ 1/(N − 1) and xj ≥ 1. Construct the new
configuration X ′ by setting x′

i = xi + 1, x′
j = x′

j − 1 and x′
k = xk for k different from i

and j. In other words, X ′ is created from X by transferring a token from bin j to bin i.
Since τi 6= TX , we have,

E[TX ] = E[TX |τi < TX ]Pr(τi < TX) + E[TX |τi > TX ]Pr(τi > TX),

and
E[TX′ ] = E[TX′ |τi < TX ]Pr(τi < TX) + E[TX′ |τi > TX ]Pr(τi > TX).

Now we show how these expectations relate to one another.
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Suppose that τi > TX . Then when all of the tokens of X have been removed, one
token still remains in bin i under configuration X ′. The expected number of additional
steps needed to remove this final token is 1/pi. Therefore,

E[TX′ |τi > TX ] = E[TX |τi > TX ] +
1

pi
.

Suppose that τi < TX . Then we have chosen bin i at least xi +1 = x′
i times, and so no

tokens remain in this bin. If any bin other than bin j has the last token under X, then
this will also be the last token under X ′ as well, and TX = TX′ . On the other hand, if j
is the last token remaining under X, at this point there are no tokens left under X ′, so
TX′ < TX . The expected time to remove this final token from bin j is 1/pj, so altogether

E[TX′ |τi < TX ] = E[TX′ |τi < TX , Ej]Pr(Ej|τi < TX)

+ E[TX′ |τi < TX , Ēj]Pr(Ēj|τi < TX)

=

(
E[TX |τi < TX , Ej] − 1

pj

)
Pr(Ej|τi < TX)

+ E[TX |τi < TX , Ēj]Pr(Ēj|τi < TX)

= E[TX |τi < TX ] − 1

pj

Pr(Ej|τi < TX)

≤ E[TX |τi < TX ] − 1

(N − 1)pj

< E[TX |τi < TX ] − 1

(N − 1)(1 − pi)
.

Putting it all together, we have that

E[TX′ ] <

(
E[TX |τi > TX ] +

1

pi

)
Pr(τi > TX)

+

(
E[TX |τi < TX ] − 1

(N − 1)(1 − pi)

)
Pr(τi < TX)

= E[TX ] + Pr(τi > TX)

(
1

pi
+

1

(N − 1)(1 − pi)

)
− 1

(N − 1)(1 − pi)
.

Therefore, since Pr(τi > TX) ≤ pi

N−1
,

E[TX′ ] − E[TX ] <
1

N − 1
+

pi

(N − 1)2(1 − pi)
− 1

(N − 1)(1 − pi)

=
(N − 1)(1 − pi) + pi − (N − 1)

(N − 1)2(1 − pi)

=
pi(2 − N)

(N − 1)2(1 − pi)
< 0.

Thus, E[TX′ ] < E[TX ], and X is not an optimal solution, establishing our lemma.
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To complete the proof of Theorem 2, suppose that x∗
i was less than the pi/(N − 1)

percentile of the Binomial distribution with parameters t and pi. Then since TX∗ ≥ t,

Pr(τi > TX∗) ≤ Pr(τi > t)

= Pr(Bin i is chosen at most x∗
i times among the first t turns)

< pi/(N − 1),

contradicting our lemma.

Because pi/(N − 1) is a constant, and the binomial distribution concentrates near tpi

for large t, we have as an immediate corollary,

Corollary 5. Let X∗ = (x∗
1, . . . , x

∗
N) be an optimal allocation of t tokens with probability

vector P = (p1, . . . , pn). Then limt→∞ X∗/t = P.
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