
Six Lonely Runners

Tom Bohman ∗

Department of Mathematics
Massachusetts Institute of Technology

tbohman@moser.math.cmu.edu

Ron Holzman †‡

Department of Mathematics
Technion - Israel Institute of Technology

holzman@tx.technion.ac.il

Dan Kleitman
Department of Mathematics

Massachusetts Institute of Technology
djk@math.mit.edu

Submitted: March 8, 2000; Accepted: February 6, 2001.
MR Subject Classifications: 11B75, 11J71

Abstract

For x real, let {x} be the fractional part of x (i.e. {x} = x − bxc). In this paper
we prove the k = 5 case of the following conjecture (the lonely runner conjecture):
for any k positive reals v1, . . . , vk there exists a real number t such that 1/(k + 1) ≤
{vit} ≤ k/(k + 1) for i = 1, . . . , k.

1 Introduction

Consider the following problem. There are n people running on a circular track of cir-
cumference 1. All n runners start at the same time and place. It is not a race; runner i
runs at constant speed vi. Thus, the position of runner i at time t is {vit} where {x} is
the fractional part of x (i.e. {x} = x − bxc). All the speeds are different (i.e. vi 6= vj for
i 6= j). A runner is said to be lonely if the smallest distance (along the track) to another
runner is at least 1/n. To be precise, runner i is lonely at time t if the following holds:

{vit − vjt} ∈ [1/n, (n − 1)/n] for all j 6= i.
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For example, if there are exactly two runners on the track then there comes a time when
they are opposite each other, and at this moment both runners are lonely. The question:
does every runner get lonely?

This question originally arose in the context of diophantine approximations (see [BW],
[W]) and in the study of so-called View Obstruction Problems (see [C1], [C2], [C3]). It
has been shown that if there are less than or equal to five runners on the track then
every runner gets lonely [BGGST], [CP]. In [BGGST], this result was used to prove a
theorem on flows in graphs related to Seymour’s six-flow theorem [S]. Furthermore, it
was pointed out that a proof of the lonely runner conjecture for higher values of n would
have analogous consequences regarding flows in regular matroids.

While the formulation of the question in the above paragraph (due to Goddyn [BGGST])
is poetic, the following reformulation of the problem will be easier to handle.

Conjecture 1 (Wills, Cusick). For any collection v1, v2, . . . , vn−1 ∈ R+ there exists
t ∈ R+ such that the following holds:

{vit} ∈ [1/n, (n − 1)/n] for i = 1, . . . , n − 1. (1)

To get this conjecture from the original simply choose an i and subtract vi from each of
the original speeds. After doing so, runner i is standing still and is lonely at time t if all
the other runners are far from the starting point at time t (i.e. far from 0). Condition (1)
holds for time t if and only if the original runner i is lonely at time t.

The following example shows that Conjecture 1 is sharp. Let vi = i for i = 1, . . . , n−1,
and assume for the sake of contradiction that there exists a time t for which {vit} ∈
(1/n, (n− 1)/n) for all i. Then there exist i and j such that {vit} ≤ {vjt} < {vit}+ 1/n.
However, vj − vi = vk for some k ∈ {1, . . . , n − 1} (note that for the purposes of this
problem vi and −vi are equivalent speeds) and {vkt} = {vjt} − {vit} < 1/n. This is a
contradiction. It should be noted that a number of other, sporadic extremal examples
have been discovered for particular values of n.

Before stating our central result, we give a third formulation of the problem, a restate-
ment of the conjecture as a covering problem. Define

B = {x ∈ R+ : ∃k ∈ Z such that |k − x| < 1/n}
and xi = 1/vi for i = 1, . . . , n− 1. Runner i is near the imaginary stationary runner (i.e.
near the starting point) for t ∈ Bi := xiB. Thus, there exists t satisfying condition (1) if
and only if we have

B :=

n−1⋃
i=1

xiB 6= R+ . (2)

Thus, condition (1) is equivalent to the statement that no set of n−1 contractions and/or
expansions of B covers R+ . Throughout the remainder of the paper we will pass between
the formulation of the problem given by (1) and that given by (2) without comment.

Conjecture 1 has been proven for n ≤ 5 [CP], [BGGST]. Here we prove that the
conjecture holds for n = 6.
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Theorem 2. For any collection v1, v2, v3, v4, v5 ∈ R+ there exists t ∈ R+ satisfying

{vit} ∈ [1/6, 5/6] for i = 1, . . . , 5. (3)

Now, the arguments used in [CP] and [BGGST] for the proof of Conjecture 1 for n ≤ 5
rely on number theoretical analyses of the speeds (which are assumed to be integers)
focusing on how the runners cover discrete sets of times. In contrast, the proof we give
here takes advantage of the fact that runners must cover intervals of times. Because of
this difference in approach, we are also able to show that there are, up to scaling, only
two sets of speeds for which B = R+ ; in other words, there are two extremal examples.
The second of these is one of the sporadic extremal examples found by Flor (see [W]).

Theorem 3. Let v1 < v2 < v3 < v4 < v5 be a collection of positive reals. Either
(v1, . . . , v5) = x(1, 2, 3, 4, 5) for some x ∈ R+ , (v1, . . . , v5) = y(1, 3, 4, 5, 9) for some y ∈
R+ or there exists a time t and an ε > 0 satisfying

[t, t + ε] ∩ B = ∅.
The methods developed in this paper can certainly be used to prove statements anal-

ogous to Theorems 2 and 3 for n < 6. For the sake of brevity, a discussion of such
arguments is not included here. The same methods may be used to attack the problem
for n > 6, but the amount of work involved seems to grow so fast with n as to make this
approach impractical.

2 The Argument

We begin with some preparatory assumptions and definitions. We first assume v1, . . . , v5

are rational. This assumption is justified by Lemma 8, which is stated and proved in
Section 4. For notational convenience we assume v1 < v2 < v3 < v4 < v5 and v3 = 1 (in
other words x1 > x2 > x3 > x4 > x5 and x3 = 1). For S ⊆ {1, 2, 3, 4, 5}, a maximal
interval contained in ∪i∈SBi is called a S-block and a maximal interval contained in
R+\(∪i∈SBi) is called a S-gap. Note that S-gaps are closed intervals and S-blocks are open
intervals. For notational convenience we will drop brackets and commas when discussing
S-blocks and S-gaps; for example, we will write 45-gap instead of {4, 5}-gap. The length
of an interval I will be denoted |I|.

The starting point for our argument is the following simple observation.

Lemma 4. If I is a 45-block then |I| < 2x4/3.

Proof. First note that I contains at most one 4-block because a 4-gap (which has length
2x4/3) cannot be contained in a 5-block (which has length x5/3 < x4/3). Let I be the
union of at most one 4-block and k 5-blocks.

If k ≤ 1 then |I| < x4/3 + x5/3 < 2x4/3.
Suppose k ≥ 2. In this case I contains a 5-gap. This 5-gap is a subset of some 4-block

J . Therefore, 2x5/3 < x4/3. There are at most two 5-blocks that are contained in I but
not contained in J . Thus, |I| < x4/3 + 2x5/3 < 2x4/3.
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Corollary 5. If there exists a 3-gap that is also a 123-gap then B 6= R+ .

Proof. Let I be a 3-gap that is also a 123-gap. Since I is a 3-gap, |I| = 2x3/3 > 2x4/3.
Thus, I is contained in no 45-block, and I 6⊆ B.

In this section we establish sufficient conditions for the existence a 3-gap that is also
a 123-gap. Later in the paper we handle collections of speeds that fail to satisfy these
sufficient conditions case by case. The machinery developed in this section will be used
repeatedly when we consider the special cases.

When does there exist a 3-gap that is also a 123-gap? Consider an arbitrary 3-gap I.
It is an interval of time when runner 3 is in the interval [1/6, 5/6]. The interval I is also
a 23-gap if and only if runner 2 is also in [1/6, 5/6] throughout I, which is the case if and
only if runner 3 passes runner 2 somewhere in I. Now, the times when runner 3 passes
runner 2 are the positive integer multiples of t0, where t0 is defined by

t0 :=
1

v3 − v2

=
1

1 − v2

.

If we have
{v3kt0} = {kt0} ∈ [1/6, 5/6] (4)

then runner 3 is in [1/6, 5/6] at time kt0, and kt0 is in a 3-gap that is also a 23-gap. This
23-gap is also a 123-gap if and only if the following three conditions are satisfied:

1. runner 1 is in [1/6, 5/6] at time kt0:

{v1kt0} ∈ [1/6, 5/6], (5)

2. the last time before kt0 that runner 3 enters [1/6, 5/6] follows the last time before
kt0 that runner 1 enters [1/6, 5/6]:

{v1kt0} − 1/6

v1

≥ {kt0} − 1/6

1

and

3. the first time after kt0 that runner 3 leaves [1/6, 5/6] precedes the first time after
kt0 that runner 1 leaves [1/6, 5/6]:

5/6 − {v1kt0}
v1

≥ 5/6 − {kt0}
1

.

Conditions 2 and 3 are equivalent to

1/6 + ({kt0} − 1/6)v1 ≤ {v1kt0} ≤ 5/6 − (5/6 − {kt0})v1. (6)

Thus, there exists a 3-gap that is also a 123-gap if and only if there exists a positive
integer k satisfying (4), (5) and (6).
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In order to get a better feel for this, we restate these conditions in slightly different
language. Let G ⊆ T := [0, 1) × [0, 1) be defined by

G = {({kt0}, {v1kt0}) : k = 0, 1, . . .} . (7)

Note that the rationality of v1 and v2 implies that G is finite. Also note that G is merely
the subgroup of T , with respect to addition modulo 1 in each coordinate, generated by
({t0}, {v1t0}). Now, let P be the collection of (x, y) ∈ T satisfying

1/6 ≤ x ≤ 5/6, and (8)

(1 − v1)/6 + v1x ≤ y ≤ 5(1 − v1)/6 + v1x. (9)

There exists a 3-gap that is also a 123-gap if and only if G∩P 6= ∅ (note that (5) follows
from (8) and (9)).

This formulation of our problem leads naturally to the question: under what conditions
does a finite cyclic subgroup of the two dimensional torus intersect a given polygon lying
on the torus? It seems reasonable to think that if the polygon is sufficiently large then
such an intersection will exist when G is ‘random looking;’ that is, the intersection is
nonempty so long as G doesn’t follow some very restrictive pattern (e.g. G lies on a
coordinate axis). This is in fact the case when the polygon in question is a rectangle with
sides parallel to the coordinate axes, as is seen in the lemma below. Before stating this
technical lemma we must establish some definitions. As above, let T = [0, 1) × [0, 1) be
the two-dimensional torus. We shall sometimes specify a point (x, y) ∈ T using values of
x, y which are not in [0, 1) – these should be understood modulo 1. Let G be an arbitrary
finite subgroup of T . Define

N1 = {x : ∃y such that (x, y) ∈ G},
N2 = {y : ∃x such that (x, y) ∈ G},

n1 = |N1|, n2 = |N2| and n = |G|.

Note that N1 = {i/n1 : i = 0, . . . , n1−1} , N2 = {i/n2 : i = 0, . . . , n2−1}, n is a common
multiple of n1, n2 (if G is cyclic, it actually equals lcm{n1, n2}), and G ⊆ {(i/n, j/n) :
0 ≤ i, j ≤ n − 1}. A rectangle in T is a set of the form

R := {(u, v) ∈ T : 0 ≤ {u − x1} ≤ α and 0 ≤ {v − x2} ≤ β}

for some x = (x1, x2) ∈ T , width α, and height β.
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Figure 1: The conditions in the main lemma. The region in Z2 which must contain
an element (i, j) 6= (0, 0) such that (i/n, j/n) ∈ G is shaded. The polygon with bold
boundary in (b) is an example of a possible choice of K.

Main Lemma. Let G be a finite subgroup of the torus T of order |G| = n. Let 0 <
α, β ≤ 1 be given, and suppose αβ ≥ 1/n. Then G intersects every rectangle R in T of
width α and height β, unless one of the following conditions holds:

1. αβ ≥ 2/n and there exists (i, j) ∈ Z2\{(0, 0)} in the box (−1/β, 1/β)×(−1/α, 1/α)
satisfying

(i/n, j/n) ∈ G and β|i| + α|j| − 2

n
|i||j| < 1.

2. 1/n ≤ αβ < 2/n and for every symmetric closed convex neighborhood K of the origin
in R2 which is contained in the box [−αn, αn]× [−βn, βn] and has area A(K) ≥ 4n,
there exists (i, j) ∈ K ∩ Z2 \ {(0, 0)} satisfying

(i/n, j/n) ∈ G and β|i| + α|j| − 2

n
|i||j| < 1.

Note that when the area αβ of the rectangles in question is less than 1/n, it is impossible
for the group G of order n to intersect all of them. Hence, we restrict attention to
αβ ≥ 1/n. We chose to distinguish the cases αβ ≥ 2/n and 1/n ≤ αβ < 2/n in the
statement of the lemma because when n is large enough so that αβ ≥ 2/n the condition
in the lemma admits a simpler form. Figure 1 illustrates the condition in each of the two
cases.

When applying the Main Lemma we will use the following simpler form.

Corollary 6. Let G be a finite subgroup of the torus T of order |G| = n > 1. Let
0 < α, β < 1 be fixed. Either G intersects every rectangle R in T of width α and height β
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or there exists (i, j) ∈ Z2 \ {(0, 0)} satisfying

0 ≤ i <
1

β
, − 1

α
− β

α
i < j <

1

α
+

β

α
i, and (i/n, j/n) ∈ G. (10)

The proofs of the main lemma and Corollary 6 are given in the next section. A
central idea in these proofs is the following elementary observation that is used repeatedly
throughout the paper. We begin with some more definitions. A rational circle in T is a
set of the form

L = {x + yt : t ∈ R+}
for some x, y = (y1, y2) ∈ T where both y1 and y2 are rational and either y1 = 1 or y2 = 1.
We will opt for a ‘horizontal parameterization’ (i.e. y1 = 1) whenever possible (in fact,
the only circles that we consider that have a vertical parameterization are of the form L1

j

defined below). Note that any rational circle has finite length as there exists a finite t
such that x + yt = x. Now, if L intersects G then it does so periodically; let the period of
G in L be defined by

p = min{t ∈ R+ : ∃g, h ∈ G ∩ L such that g = h + yt}.
For example, if g = (g1, g2) ∈ G and g1 6= 0 then the circle generated by g, which we define
as

Lg =

{
(0, 0) + t

(
1,

g2

g1

)
: t ∈ R+

}
,

has period at most g1. A second important example of rational circles are the circles

L1
j =

{
(j/n1, 0) + t(0, 1) : t ∈ R+

}
for j = 0, . . . , n1 − 1 and

L2
j =

{
(0, j/n2) + t(1, 0) : t ∈ R+

}
for j = 0, . . . , n2 − 1.

For i ∈ {1, 2} the circle Li
j has period ni/n. Our elementary observation is the following:

if L ∩ P contains a segment longer than the period of G in L (where the length of the
segment is measured in terms of the parameterization of L) then G intersects P . To be
more precise,

∃z ∈ L such that z + yt ∈ P for 0 ≤ t ≤ p ⇒ G ∩ P 6= ∅. (11)

With this observation in hand, we are ready to apply the main lemma to the group G
defined in (7) and parallelogram P described in (8) and (9). To be more precise, we apply
the lemma to a large rectangle R contained in P . As the dimensions of P depend on v1,
such a large rectangle will not exist if v1 is too large. So, for the sake of this discussion,
we assume v1 ≤ 1/4. It follows from this assumption that R = [1/6, 5/6]× [1/3, 2/3] ⊆ P .
Since R is a rectangle having width 2/3 and height 1/3, Corollary 6 implies that G
intersects P unless one of the following conditions hold:

1. |G| = 1, (1/n, 0) ∈ G or (0, 1/n) ∈ G.

2. (2/n, 0) ∈ G.
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3. there exists (u, v) ∈ G such that u ∈ {1/n, 2/n} and v = ±u.

4. (2/n, 1/n) ∈ G or (2/n,−1/n) ∈ G.

In these cases the condition (u, v) ∈ G assumes (u, v) is minimal in that there does not
exist (u′, v′) ∈ G and integer k > 1 such that u = ku′ and v = kv′.

In the discussion that follows, we show that G and P do, in fact, intersect when
conditions 2, 3 or 4 are satisfied. Condition 1, on the other hand, is a completely different
matter. The condition (0, 1/n) ∈ G implies {v3t0} = {t0} = 0 which means that runner
3 is at 0 whenever runner 3 passes runner 2. So, in this case there is obviously no 3-gap
that is also a 23-gap. The condition (1/n, 0) ∈ G, on the other hand, implies {v1t0} = 0
which corresponds to runner 1 being at 0 whenever runner 3 passes runner 2. In such
a situation there is clearly no 23-gap that is also a 123-gap. When |G| = 1 we have
{v1t0} = {v3t0} = 0; in words, when runner 3 passes runner 2, runners 1, 2 and 3 are at
0. Thus, we cannot use Lemma 4 when condition 1 is satisfied: different arguments are
required. These arguments are fairly intricate (especially in the case {v1t0} = 0), and are
relegated to later sections of the paper. We now return to conditions 2, 3 and 4, dealing
with them case by case.

Case 2.1. (2/n, 0) ∈ G.

Here we must have n2 = 2 and n ≥ 4. Consider the circle L2
1. The period of G in L2

1

is n2/n = 2/n ≤ 1/2 while L ∩ P contains a segment of length 2/3. It then follows from
(11) that G ∩ P 6= ∅.
Case 2.2. There exists (u, v) ∈ G such that u ∈ {1/n, 2/n} and v = ±u.

If n = 2 then (1/2, 1/2) ∈ G ∩ R. For n ≥ 3 consider the circle L generated by (u, v).
The period of G in L is u, and L ∩ P contains a segment of length at least 1/3. Thus, if
u ≤ 1/3 it follows from (11) that G ∩ P 6= ∅. On the other hand, it follows from n ≥ 3
that u ≤ 2/3. So, if u > 1/3 then 1/3 < u ≤ 2/3 and (u, v) itself lies in G ∩ P .

Case 2.3. There exists v = ±1/n such that (2/n, v) ∈ G.

Consider the circle generated by (2/n, v). The period of G in L is 2/n, and L ∩ P
contains a segment of length 1/3. Thus, (11) implies G∩P 6= ∅ for n ≥ 6. For n = 3, 4, 5
it is easy to see that either (2/n, v) itself is in G ∩ P or 2(2/n, v) ∈ G ∩ P .

Note that for n = 4 the only elements of G ∩ L in P lie on the boundary of P . Thus,
for v1 > 1/4 such a group corresponds to a set of speeds for which there exists no 3-gap
that is also a 123-gap. This is the fact that motivated our choice of v1 ≤ 1/4 for this
discussion.

To summarize, we have shown in this section that B 6= R+ under the assumptions
v1 ≤ 1/4, {t0} 6= 0 and {v1t0} 6= 0. As noted above, we handle the cases {t0} = 0
and {v1t0} = 0 via applications of the main lemma. Each of these applications, like the
application given in this section, require that we assume v1 is small, and become easier
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as the assumed value of v1 shrinks. We handle large v1 using different ad hoc arguments,
and as v1 shrinks these arguments become more difficult. Thus, we have a tradeoff in
the difficulty of the proof depending on where we ‘switch’ between an ad hoc proof and
applications of the main lemma. In this paper, we make the transition at v1 = 1/3, but
this choice is arbitrary.

The rest of this paper is organized as follows. The next section, Section 3, contains the
proofs of the main lemma and Corollary 6 as well as an additional technical lemma that
will be used in all later applications of the main lemma. In Section 4 the case of irrational
speeds is considered. In Section 5 we handle the case {v1t0} = 0, and in Section 6 we
deal with {t0} = 0. In both Section 5 and Section 6 we assume v1 < 1/3. In Section 7 we
consider the case {t0} 6= 0, {v1t0} 6= 0 and 1/4 < v1 < 1/3; this is merely an extension
of the argument in this section to slightly larger values of v1. In Section 8 we consider
v1 ≥ 1/3.

Taken together, these sections constitute a proof of Theorem 2. A proof of Theorem 3
is obtained by following that of Theorem 2 and observing that, except for the sets of
speeds specified in Theorem 3, the argument provides an uncovered interval, or may be
easily enhanced so that it will. We omit the extra details needed for that.

3 Tools

3.1 Proof of the Main Lemma

Let G be a finite subgroup of T of order n > 1, let 0 < α, β < 1 be given such that
αβ ≥ 1/n, and let K be an arbitrary symmetric closed convex neighborhood of (0, 0) in
R2 which is contained in the box [−αn, αn] × [−βn, βn] and has area A(K) ≥ 4n.

We first show that there exists an element (i, j) ∈ (Z2 ∩ K) \ {(0, 0)} such that
(i/n, j/n) ∈ G (this statement could be deduced from a well-known theorem of Minkowski,
but we prefer to give a proof here). Consider the family F of subsets of T of the form
(i/n, j/n) + (1/2n)K, where (i/n, j/n) ∈ G. If two sets in F intersect, say (i1/n, j1/n) +
1/2n(x1, y1) = (i2/n, j2/n)+1/2n(x2, y2) for (x1, y1), (x2, y2) ∈ K, then, (i1− i2, j1−j2) =
1/2(x2, y2) + 1/2(−x1,−y1) holds modulo n, and we obtain an element as desired. But it
is impossible for the sets in F to be disjoint, as there are n of them and each is a closed
set of area at least 1/n, with n > 1.

We now pick an (i, j) as above which is minimal in the sense that it is not of the form
(i, j) = k(i0, j0) for some integer k > 1 and (i0/n, j0/n) ∈ G. We will show that if G
misses some α × β rectangle R in T then (i, j) must satisfy

β|i| + α|j| − 2

n
|i||j| < 1. (12)

This will establish the condition stated in part 2 of the lemma. In order to obtain the
condition stated in part 1 of the lemma, it suffices to take K to be the box [−1/β, 1/β]×
[−βn, βn] and to observe that αβ ≥ 2/n, (i, j) ∈ K and (12) imply −1/β < i < 1/β,
−1/α < j < 1/α.
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We assume w.l.o.g. that i, j ≥ 0. If i = 0 then G consists of n/j equidistant points
on each of the j vertical circles L1

0, . . . , L
1
j−1. Since the distance between two consecutive

points on one of these vertical circles is j/n ≤ β (recall, K ⊆ [−αn, αn] × [−βn, βn]), in
order for G to miss R the latter must lie in the interior of a strip between two vertical
circles. But, the distance between two vertical circles is 1/j which is no more than α,
unless (12) holds. The argument in the case j = 0 is similar.

Thus, we may assume i, j > 0. The circle Lg generated by g = (i/n, j/n) has period
(measured horizontally) exactly i/n (due to the minimality of (i, j)). Consider the family
L of line segments which are parallel to Lg, pass through a point of G and have the same
projection onto the horizontal axis as R. By (11), if the intersection of such a line segment
with R has length (measured horizontally) at least i/n, then G ∩ R 6= ∅. Let (x1, x2) be
the lower left hand corner of R. Since i/n ≤ α and j/n ≤ β (which is due to the fact that
K ⊆ [−αn, αn] × [−βn, βn]), the intersection of a line in L with R is of length at least
i/n if and only if the line intersects the set{

x1 +
i

n

}
×

[
x2 +

j(2i − αn)

in
, x2 + β

]
.

The number of line segments in L is determined by

|L| = |G ∩ ([x1, x1 + i/n) × [0, 1)) | = i.

Since G is a group, these line segments are equally spaced. Hence, these line segments
cross the vertical circle {x1 + i

n
} × [0, 1) at equally distanced points, and if none of these

has second coordinate between x2 + j(2i−αn)
in

and x2 + β, then we must have

β − j(2i − αn)

in
<

1

i
,

or equivalently (12).

3.2 Proof of Corollary 6

Let G be a finite subgroup of T of order n > 1, let 0 < α, β < 1 and define

X =

{
(i, j) ∈ Z2 : 0 ≤ i <

1

β
,− 1

α
− β

α
i < j <

1

α
+

β

α
i

}
\ {(0, 0)}.

We show that either G intersects every α×β rectangle in T or there exists (i/n, j/n) ∈ G
such that (i, j) ∈ X. If n ≥ 2/αβ this follows directly from part 1 of the Main Lemma.

Assume 1/β ≤ n < 2/αβ. Define

K =

{
(x, y) ∈ R2 : − 1

β
< x <

1

β
,−βn ≤ y ≤ βn

}
.

As in the proof of the Main Lemma, there exists a minimal (i, j) ∈ (Z2 ∩ K)\{(0, 0)} such
that i ≥ 0 and (i/n, j/n) ∈ G (note that the conditions n ≥ 1/β and β < 1 guarantee
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that (1/2n)K does not self-intersect on the torus, and that although it is only half-closed
n translates of it cannot be disjoint). If n < 1/αβ then (i, j) ∈ X, and the proof is
complete. If 1/αβ ≤ n < 2/αβ then either (i, j) ∈ X or we have

|j| ≥ 1

α
+

βi

α
and |j| ≤ βn.

But, if the latter holds then we obtain

β|i| + α|j| − 2|i||j|
n

≥ βi + α

(
1

α
+

βi

α

)
− 2i|j|

n

= 1 + 2i

(
β − |j|

n

)

≥ 1 + 2i

(
β − βn

n

)
= 1,

and it follows from the proof of the main lemma that G intersects all α × β rectangles.
Finally, assume n < 1/β. Then, since α < 1, X contains the set

{0, 1, . . . , n − 1} × {−1, 0, 1} \ {(0, 0)},

which must contain some (i, j) such that (i/n, j/n) ∈ G.

3.3 Minimal group elements

In the applications of the main lemma in the following sections there are many pairs (i, j)
that satisfy (10) (i.e. α and β are small). In these situations there are groups of small
order that contain more than one element that satisfies (10). Thus, when we consider the
pairs (i, j) that satisfy (10) case by case, these particular small groups could be considered
more than once.

In order to attempt to avoid this repetition, we strengthen the notion of minimality
used in the proofs of the Main Lemma and Corollary 6. For i, j ≥ 0 let Zi,j be the
following subset of Z2

Zi,j = [−i, i] × [−j, j] \ {(±i,±j)}.
We say that (i/n, j/n) ∈ G is minimal if the following holds:{

(k/n, l/n) : (k, l) ∈ Z|i|,|j|
} ∩ G = {(0, 0)}. (13)

Note that, in spite of our terminology, minimality is a property of the pair (i, j) and not
of the group element (i/n, j/n); in other words, it may happen that (i/n, j/n), (i′/n, j′/n)
represent the same group element and one is minimal while the other is not.

We have the following lower bound on the order of a group having minimal element
(i/n, j/n).
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Lemma 7. Let G be a group of order n > 1 having minimal element (i/n, j/n). Then we
have

|i|, |j| ≥ 2 ⇒ n ≥ (|i| + 1)(|j| + 1) − 1,
|i|, |j| ≥ 1 ⇒ n ≥ (|i| + 1)(|j| + 1) − 2,
i = 0 or j = 0 ⇒ n ≥ 2 max{|i|, |j|}.

(14)

Proof. Suppose i, j 6= 0. Let Y be the following subset of Z2

Y = [0, |i|] × [0, |j|] \ {(|i|, 0), (|i|, |j|)}.

Note that Y − Y ⊆ Z|i|,|j|. We will show that for (a1, a2) 6= (b1, b2) we have

(a1/n, a2/n), (b1/n, b2/n) ∈ G ⇒ ((a1, a2) + Y ) ∩ ((b1, b2) + Y ) = ∅ (15)

(where addition is modulo n). If (15) holds then {g + Y/n : g ∈ G} (where addition is
in T ) is a collection of disjoint subsets of {(k/n, l/n) : 0 ≤ k, l < n}. Thus, |G||Y | ≤ n2,
and the second part of (14) follows. The first part of (14) follows from the observation
that when |i|, |j| ≥ 2 the shape Y/n cannot tile the torus.

It remains to prove (15). Assume for the sake of contradiction that a = (a1/n, a2/n), b =
(b1/n, b2/n) ∈ G, (x1, x2), (y1, y2) ∈ Y and (a1, a2)+(x1, x2) = (b1, b2)+(y1, y2). It follows
that a − b = (y1/n − x1/n, y2/n − x2/n) ∈ G. However, (y1 − x1, y2 − x2) ∈ Z|i|,|j|. This
contradicts the minimality of (i/n, j/n).

If i = 0 or j = 0 the conclusion of (14) is straightforward.

Now, in the proofs of the Main Lemma and Corollary 6, we chose (i, j) ∈ (Z2 ∩ K) \
{(0, 0)} such that (i/n, j/n) ∈ G, i ≥ 0 and (i, j) is not a positive integer multiple of
(i0, j0) ∈ Z2 such that (i0/n.j0/n) ∈ G. Note that in both proofs we can actually choose
an element (i′, j′) ∈ (Z2 ∩ K) \ {(0, 0)} such that i′ ≥ 0 and (i′/n, j′/n) is a minimal
element of G in the place of (i, j). We thereby conclude that either G intersects every α
by β rectangle or there exists (i, j) ∈ Z2 \ {(0, 0)} satisfying (10) and (14).

4 Irrational Speeds

In this section we justify why, in the rest of this paper, we restrict our attention to
rational speeds. In some of the previous papers that treated Conjecture 1, a reduction of
the irrational case to the rational case was attributed to Wills. However, it seems to us
that what Wills did does not amount to that, and therefore we address the issue here.

It follows from the lemma below that if Conjecture 1 holds when n − 1 is substituted
for n and all speeds are assumed to be rational, then it also holds true (in fact, with some
slack) for n, except possibly when the speeds are proportional to a collection of rational
speeds. To see this, apply Lemma 8 with any δ satisfying 1/n < δ < 1/(n − 1). In
particular, the irrational case of Conjecture 1 for n = 6 follows from the rational case of
the conjecture for n = 5 (proved in [CP] and [BGGST]). Similarly, the irrational case of
Conjecture 1 for n = 7 is implied by the results of the current paper.
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Lemma 8. Let 0 < δ < 1/2. Suppose that for every collection v1, . . . , vn−2 ∈ Q+ there
exists t ∈ R+ satisfying

{vit} ∈ (δ, 1 − δ) for i = 1, . . . , n − 2.

Then for any collection u1, . . . , un−1 ∈ R+ for which there is a pair ui ,uj such that
ui/uj 6∈ Q there exists t ∈ R+ satisfying

{uit} ∈ (δ, 1 − δ) for i = 1, . . . , n − 1.

Proof. Let u = (u1, . . . , un−1) and consider the set

M(u) =
{
y ∈ Rn−1 : ∃t ∈ R and k ∈ Zn−1 such that y = tu − k

}
.

Clearly, the conclusion of the lemma is equivalent to the assertion that M(u) intersects
the open hypercube (δ, 1− δ)n−1. It suffices to prove that the closure of M(u), which we
denote by M(u), intersects the same hypercube.

By a generalization of Kronecker’s theorem (see [P, Satz 65]), the set M(u) is char-
acterized as follows. If u1, . . . , un−1 are linearly independent over Q , then M(u) = Rn−1 ;
in this case there is nothing to prove. Otherwise, the speeds u1, . . . , un−1 satisfy some
homogeneous linear equations over Q of the form

a1u1 + · · ·+ an−1un−1 = 0. (16)

Consider a maximal set of linearly independent equations of the form (16) satisfied by
u1, . . . , un−1, and write them as the rows of a matrix A; thus, A is a m×(n−1) matrix over
Q of rank m, satisfying u ∈ Ker(A). In this setting, the above mentioned generalization
of Kronecker’s theorem is the statement

M(u) = Ker(A) + Zn−1. (17)

Since Ker(A) contains the vector u which lies in the positive orthant of Rn−1 , and
A has rational entries, it follows that Ker(A) also contains some vector r with positive
rational components. By assumption, u is not proportional to a rational vector, and hence
Ker(A) has dimension two or more. We can therefore find a vector s ∈ Ker(A) which has
rational components and is not a constant multiple of r. It follows that we can find i, j
obeying

si

ri
<

sj

rj
and

sk

rk
6∈

(
si

ri
,
sj

rj

)
for k = 1, . . . , n − 1. (18)

Consider now the vector
w = (ri + rj)s− (si + sj)r.

It is clearly a rational vector in Ker(A). We observe that we have

wi = −wj and wk 6= 0 for k = 1, . . . , n − 1. (19)
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To verify the second part of (19), note that wk = 0 is equivalent to

sk

rk
=

si + sj

ri + rj
,

which would imply that sk/rk lies between si/ri and sj/rj, contradicting (18).
Now, let v1, . . . , vn−2 be a collection of positive rationals that contains |w1|, . . . , |wn−1|;

we can find such a collection by virtue of (19). Applying the assumption of the lemma,
we find t ∈ R+ such that {vit} ∈ (δ, 1 − δ) for i = 1, . . . , n − 2. Since tw ∈ Ker(A), it
follows from (17) that M(u) intersects the hypercube (δ, 1 − δ)n−1, which completes the
proof.

5 {v1t0} = 0 and x1 > 3

In this case runner 1 is at 0 whenever runner 3 passes runner 2. In terms of the speeds of
the runners, this condition is equivalent to

1

1 − v2
v1 = k ⇒ v2 = 1 − v1

k
(20)

for some integer k ≥ 1. As we have already noted, there is no chance of applying Lemma 4
when (20) holds (i.e. when (20) holds there exists no 123-gap of length 2/3). The difficulty
is further compounded by the fact that the behavior of the system varies depending on
the value of k in (20). In order to deal with these differences, we divide our treatment of
this topic into two cases.

Case 5.1. t0v1 = k for some integer k ≥ 3.

While there exists no 123-gap of length 2/3, we will show that in this situation there
usually are two (or more) 123-gaps of length at least 1/2 near each other. To make this
notion more precise, we establish some definitions. For a fixed time t define

I1 = [t, t + 1/2] , I2 = (t + 1/2, t + 1) and I3 = [t + 1, t + 3/2].

We say that t initiates the triple configuration I1, I2, I3 if

I1 ∩ (B1 ∪ B2 ∪ B3) = ∅ and I3 ∩ (B1 ∪ B2 ∪ B3) = ∅.
Before analyzing if and when triple configurations arise, we show that x4 and x5 must
satisfy very special conditions if we are to have

I1 ∪ I3 ⊆ B4 ∪ B5. (21)

For the purposes of this discussion, we assume t initiates a triple configuration and
that (21) holds. Our first observation is that Lemma 4 implies

x4 > 3/4. (22)
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Claim 9. If I1 ∪ I3 ⊆ B4 ∪ B5 then no 4-block is contained in I2.

Proof. Assume for the sake of contradiction that there exists j satisfying

(j − 1/6)x4, (j + 1/6)x4 ∈ I2.

This implies
[(j − 5/6)x4, t + 1/2], [t + 1, (j + 5/6)x4] ⊆ B5,

and therefore we have

2x4/3 > 2x5/3

> (t + 1/2) − (j − 5/6)x4 + (j + 5/6)x4 − (t + 1)

= 5x4/3 − 1/2.

Therefore, x4 < 1/2, which contradicts (22).

Claim 10. If I1 ∪ I3 ⊆ B4 ∪ B5 then no 4-block is contained in I1 or I3.

Proof. Assume without loss of generality that there exists j satisfying

t ≤ (j − 1/6)x4 and (j + 1/6)x4 ≤ t + 1/2. (23)

This implies
2x5/3 < x4/3 and 2x5/3 + x4/3 > 1/2, (24)

and therefore 1/4 < x5 < 1/2. This absolute upper bound, in turn, implies x4/3+x5/3 <
1/2. Thus, we must have

t + 1 ≤ (j + 5/6)x4 and (j + 7/6)x4 ≤ t + 3/2. (25)

Now, (23) and (25) imply that there exist four 1234-gaps in I1 ∪ I3 that are covered
by B5. It follows from this observation and 1/4 < x5 that no 5-block is contained in the
4-block ((j − 1/6)x4, (j + 1/6)x4). So, the first two 1234-gaps in I1 ∪ I3 must be covered
by consecutive 5-blocks, which implies

4x5/3 > 1/2.

From this observation it follows that no 5-block is contained in I2, and therefore the first
three 1234-gaps in I1 ∪ I3 must be covered by consecutive 5-blocks. We therefore have
4x5/3 > 2x4/3, which contradicts (24).

To summarize, we have shown that if t initiates a triple configuration and (21) holds
then there exists a j such that the following holds:

either [(j − 1/6)x4 < t and (j + 3/2)x4 > t + 3/2]
or [(j − 1/2)x4 < t and (j + 7/6)x4 > t + 3/2].

(26)
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One implication of (26) is
10x4/6 > 3/2 ⇒ x4 > 9/10. (27)

It also follows from (26) that if there exists t satisfying

([t, t + 1/2] ∪ [t + 1, t + 3/2] ∪ . . . ∪ [t + l, t + l + 1/2]) ∩ (B1 ∪ B2 ∪ B3) = ∅ (28)

(we call this a multiple configuration) then there exists a j for which we have:

either (j − 1/6)x4 < t and (j + l + 1/2)x4 > t + l + 1/2,
or (j − 1/2)x4 < t and (j + l + 1/6)x4 > t + l + 1/2.

(29)

This implies

(l + 2/3)x4 > l + 1/2 ⇒ x4 >
6l + 3

6l + 4
. (30)

We now turn to an analysis of how triple and multiple configurations arise. Our first
observation here is the following: if t satisfies

jkx1 ≤ t ≤ (j + 1/6)kx1 (31)

then runners 2 and 3 are very close to each other. In fact, if (31) holds then (20) implies

{{v3t} − {v2t}} =
{
t − (1 − v1

k
)t

}
=

{
t
v1

k

}
≤ 1/6.

Thus, if J is a 23-gap and J ⊆ [jkx1, (j + 1/6)kx1] then |J | ≥ 1/2. More importantly, if
we have

x1/6 ≤ i + 1/3, i + l + 1/3 ≤ kx1/6 and i + l + 5/6 ≤ 5x1/6 (32)

then t = i + 1/3 and l satisfy (28). It then follows from (29) that we must have

(i + 1/2)x4 < i + 1/3 ⇒ x4 <
6i + 2

6i + 3
. (33)

It follows from (30) and (33) that we have a contradiction if l ≥ i (note that our
multiple configuration begins in the 123-gap following the time i and ends in the 123-gap
following time i + l). A multiple configuration satisfying l ≥ i exists unless one of the
following conditions holds.

1. k = 3 and x1 < 14/3

2. k = 3 and 8 < x1 < 26/3

3. k = 4 and x1 < 14/4

4. k ≥ 5 and x1 < 17/5.

We give a unified argument for three of these conditions.

Case 5.1.1. k ≥ 3 and x1 < 14/3.
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Since v1 < 1/3 and k ≥ 3, we have

v2 = 1 − v1

k
> 1 − 1

3 · 3 =
8

9
.

Therefore, [21/16, 11/6] is contained in a 123-gap, implying

2x4

3
>

11

6
− 21

16
=

25

48
.

It follows that [21/16, 275/192] is contained in a 1234-gap. So, there exists an i ≥ 2 such
that (i−1/6)x5 < 21/16 and 275/192 < (i+1/6)x5. The only values of i that may satisfy
these equations are i = 2, 3. Thus, we obtain

19x5 > 11x4 ⇒ x5 > x4/2.

In particular, if 13x4 ≤ 11 then [13x4/6, 11/6] is a 1234-gap that cannot be covered by
runner 5. So, we may assume 13x4 > 11. But this implies that [21/16, 121/78] is a 1234-
gap. For runner 5 to cover this gap, there must be i ∈ {2, 3} such that (i−1/6)x5 < 21/16
and 121/78 < (i + 1/6)x5. However (by the narrowest of margins) no such i exists.

Case 5.1.2. k = 3 and 8 < x1 < 26/3.

In this situation, there exists a triple configuration ((28) holds with t = 14/6 and
l = 1). It then follows from (27) that x4 > 9/10. Furthermore, we have

v2 = 1 − v1

3
> 1 − 1

24
=

23

24
.

It follows from these two observations that [52/23, 51/20] is contained in a 1234-gap.
Thus, there exists an i ≥ 3 such that (i − 1/6)x5 < 52/23 and (i + 1/6)x5 > 51/20. No
such i exists.

Case 5.2. v1t0 = k for k ∈ {1, 2}.
In this case the above method of exploiting triple configurations will not work. We

shall handle the cases k = 1, 2 jointly by proving the following

Proposition 11. Let v1 < v2 < v3 < v4 < v5 be a collection of rational speeds satisfying
v1 + v2 = v3 = 1.

1. If v1 < 1/3 then there exists a positive real t∗ such that {vit
∗} ∈ [1/6, 5/6] for

i = 1, . . . , 5.

2. If, moreover, v1 < 1/6, then there exists t∗ satisfying the requirements in part 1 as
well as {v1t

∗} 6∈ (5/12, 7/12).
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In the case k = 1, (20) becomes v1 + v2 = 1, and we apply part 1 of the proposition to
conclude that B 6= R+ . In the case k = 2, (20) becomes v1/2 + v2 = 1. By applying part
2 of the proposition to the collection of speeds v1/2, v2, v3, v4, v5, we obtain t∗ such that
{vit

∗} ∈ [1/6, 5/6] for i = 2, . . . , 5 and {(v1/2)t∗} ∈ [1/6, 5/6] \ (5/12, 7/12). The latter
implies that {v1t

∗} ∈ [1/6, 5/6], so that B 6= R+ for the original collection of speeds.
The remainder of this section is devoted to the (long) proof of Proposition 11, which is

organized into the following parts. We begin in Part 1 by making some initial assumptions
and fixing notation. Part 2 consists of a number of preliminary developments based
on the initial assumptions. These include showing that v4 is small, showing that the
denominators of v4 and v5 equal the denominator of v1, and eliminating the v1 = 1/4
case. With these observations in hand we are able to apply the main lemma in Part 3.
Before handling the (many) exceptional groups that are left by this application of the
main lemma we develop in Part 4 techniques for getting an expression for v4 in terms
of v1 for each exceptional group. These expressions are then used in Part 5 to show
that all exceptional groups but one actually intersect the polygon defined in Part 3. The
remaining exceptional group (which does not necessarily intersect the polygon defined in
Part 3) is treated (using different techniques) in Part 6. This organization is presented
schematically in Figure 2.

We begin with our initial assumptions and notation. We proceed indirectly in a way
that proves part 1 and 2 of the Proposition simultaneously. Define:

B′ =

{
B ∪ 1/2B1 if v1 < 1/6

B if 1/6 ≤ v1 < 1/3

We assume at the outset that B′ = R+ . If v1 < 1/6 we will, for ease of notation, introduce
a fictional runner 0 having speed 2v1. This runner is in the interval (−1/6, 1/6) whenever
runner 1 is in (5/12, 7/12). This will allow us, for example, to distinguish those 123-gaps
during which runner 1 is known not to be in (5/12, 7/12), now 0123-gaps, from 123-gaps
in which runner 1 might intersect (5/12, 7/12), simply 123-gaps. Note that the times
covered by this fictional runner 0 are simply B0 := 1/2B1. For 1/6 ≤ v1 < 1/3 this
fictional runner is not introduced. However, the 0 is not dropped from the notation in this
setting; for example, we will discuss both 0123-gaps and 123-gaps, but these objects are
identical, by convention, for 1/6 ≤ v1 < 1/3.

We assume p and q are relatively prime positive integers that satisfy

v1 = p/q < 1/3 and v2 = (q − p)/q.

We are now ready for Part 2 of the proof of Proposition 11: preliminary observations
that will allow us to make some simplifying assumptions on the values of the speeds in
the main part of the argument.

Lemma 12. Assume v1 = p/q, v2 = (q − p)/q and B′ = R+ . If I is a 0123-gap then
I ⊆ B4 or I ⊆ B5 or there exist integers r, s such that v4 = r/q and v5 = s/q.
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Part 1: Notation and initial assumptions
Assume B′ = R+

Let v1 = p
q

< 1
3

v2 = q−p
q

↓
Part 2: Preliminary observations

Lemmas 12 – 18, Table 1
v4 is small

∃r, s ∈ Z such that v4 = r
q

and v5 = s
q

q ≥ 5
↓

Part 3: An application of the main lemma
(36) – (50), Figure 3

↓
Part 4: Pre-processing the exceptional groups

Table 2
↙ ↘

Part 5: Treating all exceptional cases
except v4 = q+p

q

Cases 5.2.1 – 5.2.11, Tables 3–8

Part 6: v4 = q+p
q

Case 5.2.12

Figure 2: A road-map of the proof of Proposition 11.
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Proof. Suppose I 6⊆ B4 and I 6⊆ B5. Note that {vjq} = 0 for j = 0, 1, 2, 3. Thus I + iq
is a 0123-gap for i = 0, 1, . . . Since I ⊆ B4 ∪ B5, there exists a time u ∈ I ∩ B4 ∩ B5.
Furthermore, the time u + iq must be contained in B4 ∪ B5 for i = 1, 2, . . . Now, for
j ∈ {4, 5}, the set

Pj := {{vj(u + iq)} : i = 0, 1 . . .}
is a finite set that is equidistributed on the circle [0, 1). Thus, if nj = |Pj|, then we have

|{x ∈ Pj : x 6∈ [1/6, 5/6]}| ≤
⌊

nj + 2

3

⌋
. (34)

In particular, if nj > 1 then the proportion of elements of Pj that lie in (−1/6, 1/6) is at
most 1/2. Since runners 4 and 5 both cover u itself, it follows from (34) that there exists
a ∈ {4, 5} such that na = 1. It follows that the denominator of va is q.

Let b be the element of {4, 5} not equal to a. Since I is contained in neither B4 nor
B5, there is a 0123a-gap J ⊆ I. Let w ∈ J . Since {vjq} = 0 for j = 0, 1, 2, 3, a, runner b
must cover the time w + iq for i = 0, 1, . . . However, the set of positions of runner b at
these times is equidistributed in [0, 1). Therefore, as in (34), there can be only one such
position, and the denominator of vb is q.

We will find it useful to consider the case q = 4 separately.

Lemma 13. If v1 = p/q, v2 = (q − p)/q and B′ = R+ then q ≥ 5.

Proof. Suppose q = 4. Since v1 < 1/3, we must have p = 1. Thus, v1 = 1/4 and v2 = 3/4.
By assumption, B = R+ . Note that I1 = [2/3, 5/6] and I2 = [13/6, 44/18] are 123-gaps.

Let k ∈ {4, 5}. If I2 ⊆ Bk then there exists an i ≥ 3 such that (6i − 1)xk < 13/6 and
(6i + 1)xk > 44/18. As these are contradictory inequalities, we have

I2 6⊆ B4 and I2 6⊆ B5. (35)

Therefore, it follows from Lemma 12 that there exist integers r, s such that v4 = r/4 and
v5 = s/4.

We now make two observations about the integers r and s. First, consider the time
t = 2/3. The positions of runners 4 and 5 at this time are r/6 and s/6, respectively. Since
t = 2/3 must be covered by either runner 4 or runner 5, we must have either 6|r or 6|s.
For our second observation, we consider I2. Since I2 is a 123-gap of length 5/18, we can
conclude, by Lemma 4, that r ∈ {5, 6, 7, 8, 9}. We consider each of these possible values
of r separately.

If r = 6 then I2 is a 1234-gap and we have a contradiction by (35). For each of the
remaining cases we may assume 6|s. If r = 5 then [13/6, 68/30] is a 1234-gap of length
1/10, it follows that s ∈ {6, 12}, and in either case we have a contradiction. If r = 7 or
r = 8, then I1 is a 1234-gap of length 1/6, and runner 5 cannot possibly cover this gap as
in either of these cases s ≥ 12. If r = 9 then [2/3, 44/54] is a 1234-gap of length x4/3.

the electronic journal of combinatorics 8 (no. 2) (2001), #R3 20



In most of the remainder of this section we focus on times of the form t = l + 1/2
where l is a positive integer. These are times when runner 3 is at 1/2, opposite the starting
point. Note that if we know the location of runner 1 at such a time t then we know the
location of runner 2 at that time via v1t + v2t = v3t = t. In particular, if runner 1 is in
the interval [1/6, 1/3] at such a time t, then so is runner 2, and the interval [t, t + 1/3]
is a 0123-gap (note that we must use v1 < 1/6 to ensure that B0 does not intersect this
123-gap). The following lemma strengthens this observation.

Lemma 14. Assume v1 + v2 = 1. Let 0 ≤ ρ ≤ 1/6. If there exists a time t satisfying
{v3t} = 1/2 and

{v1t} ∈ [1/6 + ρv1, 1/3 − ρv2]

then there exists a 0123-gap of length at least 1/3 + ρ.

Proof. Note that for t satisfying the conditions of the lemma, {v2t} = 1/2−{v1t}. Thus,
the 123-gap containing t starts either at the last time before time t when runner 2 leaves
(−1/6, 1/6) or the last time before t when runner 1 leaves (−1/6, 1/6). These times are
given by

t − ({v2t} − 1/6)x2 = t − (1/3 − {v1t})x2

and
t − ({v1t} − 1/6)x1

respectively. Since the 123-gap in question ends at t + 1/3, it has length at least 1/3 + ρ
if

min{({v1t} − 1/6)x1, (1/3 − {v1t})x2} ≥ ρ,

which is equivalent to the condition in the lemma. Once again, it follows from the condi-
tion v1 < 1/6 on the existence of runner 0 that this 123-gap is also a 0123-gap.

Corollary 15. Assume v1 = p/q, v2 = (q − p)/q and B′ = R+ . There exists a 0123-gap
of length at least 1/3.

Proof. We apply Lemma 14 with ρ = 0. It suffices to find a time of the form t = l + 1/2
such that {v1t} ∈ [1/6, 1/3]. However, the set of positions of runner 1 at the times
t = l + 1/2 is simply a set of q equidistributed points on the circle. Thus, if q ≥ 6 one of
them will lie in [1/6, 1/3]. By Lemma 13 and the fact that v1 < 1/3, the only remaining
possibility is v1 = 1/5, for which we find v1(1 + 1/2) = 3/10 ∈ [1/6, 1/3].

Corollary 16. If v1 = p/q, v2 = (q − p)/q and B′ = R+ then v4 < 2.

Proof. This follows from Corollary 15 and Lemma 4.

Lemma 17. Assume v1 = p/q, v2 = (q − p)/q and B′ = R+ . There exist r, s ∈ Z such
that v4 = r/q and v5 = s/q.

Proof. By Corollary 15, there exists a 0123-gap that is neither covered entirely by runner 4
nor covered entirely by runner 5. The result then follows directly from Lemma 12.
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In the very technical case analysis below, we will find it useful to have a better upper
bound on v4 than the one provided by Corollary 16. In the following lemma and table
we get such an upper bound on v4 by using the full power of Lemma 14 (rather than just
ρ = 0).

Lemma 18. Assume v1 = p/q, v2 = (q−p)/q and B′ = R+ . If q ≥ 12 then v4 ≤ 3/2. For
each possible (p, q) with q ≤ 17, {v4} is bounded above by the number given in Table 1.

Proof. In order to prove that v4 ≤ 3/2 it suffices, by Lemma 4, to show that there exists
a 0123-gap I such that |I| ≥ 4/9. The set of positions of runner 1 at times t = l + 1/2 is
a set of q points that is equidistributed in [0, 1). Thus, if we have

1/6 ≥ ρv1 + ρv2 +
1

q
= ρ +

1

q

then there exists such a position in the interval [1/6 + ρv1, 1/3 − ρv2]. Therefore, by
Lemma 14 there exists a 0123-gap I satisfying

|I| ≥ 1/3 + 1/6 − 1/q =
q − 2

2q
.

This is at least 4/9 for q ≥ 18.
For q ≤ 17, we first note that the actual set of positions of runner 1 at times l +1/2 is

{i/q : i = 0, . . . , q − 1} for p even and {(2i + 1)/2q : i = 0, . . . , q − 1} for p odd. Then for
each possible pair (p, q) we identify the position of runner 1 in (1/6, 1/3) for which the
0123-gap given by Lemma 14 is longest. This 0123-gap, in turn, gives an upper bound on
v4, by Lemma 4. This upper bound is further reduced by noting that the denominator
of v4 is q. These calculations are organized in Table 1. An inspection of the table shows
that, in fact, v4 ≤ 3/2 holds already for q ≥ 12.

We now come to Part 3 of the proof of Proposition 11, the application of the main lemma.
Once again, we consider times of the form t = l + 1/2. As noted above, if runner 1 is
in [1/6, 1/3] at such a time then [t, t + 1/3] is contained in a 0123-gap. If, in addition,
runner 4 is in the interval [1/6, 1/2] at time t, then [t, t+x4/3] is contained in a 01234-gap.
Of course, runner 5 cannot cover this gap. Thus, we may conclude that there does not
exist a time t of the form t = l + 1/2 such that l is a positive integer and we have

{v1t} ∈ [1/6, 1/3], and (36)

{v4t} ∈ [1/6, 1/2]. (37)

In other words, the set

S = {({v4(l + 1/2)}, {v1(l + 1/2)}) : l = 0, 1, . . .} (38)

in the torus T does not intersect the 1/3 × 1/6 rectangle determined by (36) and (37).
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q p {v1t} x1

({v1t} − 1
6

)
x2

(
1
3
− {v1t}

) |I| {v4} ≤
5 1 3

10
2
3

1
24

9
24

3
5

6 1 3
12

1
2

1
10

13
30

3
6

7 1 3
14

1
3

5
36

17
36

2
7

7 2 2
7

5
12

1
15

2
5

4
7

8 1 3
16

1
6

1
6

1
2

2
8

9 1 5
18

1 1
16

19
48

6
9

9 2 2
9

1
4

1
7

10
21

3
9

10 1 5
20

5
6

5
54

23
54

5
10

10 3 5
20

5
18

5
42

19
42

4
10

11 1 5
22

2
3

7
60

27
60

5
11

11 2 2
11

1
12

5
27

5
12

6
11

11 3 5
22

2
9

7
48

23
48

4
11

12 1 5
24

1
2

3
22

31
66

5
12

13 1 5
26

1
3

11
72

35
72

4
13

13 2 3
13

5
12

4
33

15
33

6
13

13 3 5
26

1
9

11
60

4
9

6
13

13 4 3
13

5
24

4
27

13
27

4
13

14 1 5
28

1
6

1
6

1
2

4
14

14 3 7
28

7
18

7
66

29
66

7
14

15 1 7
30

1 3
28

37
84

7
15

15 2 3
15

1
4

2
13

19
39

5
15

15 4 3
15

1
8

2
11

11
24

6
15

16 1 7
32

5
6

11
90

41
90

7
16

16 3 7
32

5
18

11
78

37
78

6
16

16 5 7
32

1
6

1
6

1
2

5
16

17 1 7
34

2
3

13
96

45
96

7
17

17 2 4
17

7
12

1
9

4
9

8
17

17 3 7
34

2
9

13
84

41
84

6
17

17 4 4
17

7
24

5
39

18
39

7
17

17 5 7
34

2
15

13
72

7
15

7
17

Table 1: Upper bounds on {v4} for small values of p and q that follow from the argument
given in Lemma 18.
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In fact, we are able to conclude that S does not intersect a certain pentagon that is
obtained by relaxing the conditions given in (36) and (37). We shall see that if 1/6 ≤
v1 < 1/3 and (x, y) ∈ S then we cannot simultaneously have

x ≥ 1

6
− v4

3
(1 − x5), (39)

y ≥ 1

6
− v1

3
(1 − x5), (40)

y ≤ 1

3
+

v2

3
(1 − x5), and (41)

x ≤ 5

6
− v4

[
x5

3
− min

{
1

v1

(
y − 1

6

)
,

1

v2

(
1

3
− y

)}]
(42)

Furthermore, if v1 < 1/6 and (x, y) ∈ S then we can not have (39), (40), (41), (42) and

y ≤ 5

12
− v1

3
. (43)

This will follow from observing that if (x, y) satisfies these conditions then there exists
a 01234-gap of length at least x5/3 near the time t = l + 1/2 that determines (x, y).
To see that this is the case, first observe that conditions (39), (40) and (41) allow run-
ners 4, 1, and 2, respectively, to be behind 1

6
at time t, but they guarantee that they will

arrive at 1/6 no later than time t + (1 − x5)/3. The expression

min

{
1

v1

(
y − 1

6

)
,

1

v2

(
1

3
− y

)}

in (42) is positive for 1/6 < y < 1/3 and measures for such y the length of the portion of
the 123-gap that precedes time t; it is negative for y < 1/6 or y > 1/3 and its absolute
value measures for such y the time that will elapse from time t until the beginning of the
coming 123-gap.

Now, at time t we are either in a 1234-gap, or, according to the conditions, such a
gap will start as soon as runners 4, 1 and 2 have all passed 1/6. That 1234-gap will end
when runner 3 or runner 4 arrive at 5/6 - whichever comes first (it is easy to see that
runners 1 and 2 cannot arrive at 5/6 before runner 3). Conditions (39) thru (42) are
designed so that the length of that 1234-gap will be at least x5/3. Indeed, if the gap ends
when runner 3 arrives at 5/6, i.e. at time t + 1/3, then conditions (39), (40) and (41)
imply that its length is at least x5/3. If, on the other hand, the gap ends when runner 4
arrives at 5/6 then the argument depends on the identity of the runner who was at 1/6
when the gap started. It is easy to see that it could not be runner 3. If it was runner 1
or runner 2, then condition (42) implies that the length of the gap is at least x5/3. If it
was runner 4, then the length of the gap is 2x4/3 > x5/3. In any case, the 1234-gap is
too long for runner 5 to cover.

Condition (43) insures that, when v1 < 1/6 runner 1 does not arrive at 5/12 (i.e.
runner 0 does not arrive at 5/6) before the end of the 1234-gap. Thus, when (43) is

the electronic journal of combinatorics 8 (no. 2) (2001), #R3 24



satisfied, we in fact have a 01234-gap that runner 5 cannot cover. So, it follows from our
initial assumption B′ = R+ that S does not intersect the pentagon defined by (39)-(43) for
v1 < 1/6 and S does not intersect the pentagon defined by (39)-(42) for 1/6 ≤ v1 < 1/3.
We will refer to these pentagons as the expansion of the original 1/3 × 1/6 rectangle.

We proceed now to rewrite the above conditions in a manner that is convenient for an
application of the main lemma. As 1 < v4 < 2 (by Corollary 16) and 0 < v1 < 1, we have

v4t = v4(l + 1/2) = lv4 + {v4}/2 + 1/2 (44)

v1t = v1(l + 1/2) = lv1 + {v1}/2. (45)

Let G be the subgroup of T generated by ({v4}, {v1}), and let C be the coset

C = G + ({v4}/2, {v1}/2).

Since S = C + (1/2, 0), our conditions can be rewritten in the form: C does not intersect
a translate (by 1/2 in the x-coordinate) of the pentagon from the above discussion. More
explicitly, let P be the region on the torus defined by

2

3
− v4

3
(1 − x5) ≤ x ≤ 4

3
− v4

[
x5

3
− min

{
1

v1

(
y − 1

6

)
,

1

v2

(
1

3
− y

)}]
(46)

1

6
− v1

3
(1 − x5) ≤ y ≤ 1

3
+

v2

3
(1 − x5). (47)

(note that we refer to points to the right of our 1/3×1/6 rectangle as having x-coordinate
greater than 1). Let P ′ be the region defined by (46), (47), and (43). To reiterate, it
follows from our initial assumption that C ∩ P = ∅ for 1/6 ≤ v1 < 1/3 and C ∩ P ′ = ∅
for v1 < 1/6.

The pentagons P and P ′ contain the rectangle R := [2/3, 1] × [1/6, 1/3]; the latter is
the translate of the original rectangle that we had before the expansion. Figure 3 shows
the shape of P and its position relative to R; the shape of P ′ is similar, except the part
above the line y = 5/12−v1/3, if any, is cut off. We note for later reference that the sides
of P which are not parallel to the coordinate axes meet the respective horizontal sides of
P at points having first coordinate x = 4/3 − v4/3.

In fact, P and P ′ contain a rectangle that is somewhat larger than R, namely

R′ =

[
2

3
− v4

3
(1 − x5), 1

]
×

[
1

6
,
1

3

]
.

The width of R′ is α = 1/3 + v4(1 − x5)/3 > v4/3 and the height of R is β = 1/6. We
now apply the main lemma to the group generated by ({v4}, {v1}) using these values of
α and β. Clearly, if G intersects every α×β rectangle in T then so does every coset of G;
in particular, C ∩ R′ 6= ∅, which is a contradiction. By the corollary to the main lemma,
this implies the existence of a minimal element (i/n, j/n) ∈ G \ {(0, 0)} satisfying

0 ≤ i <
1

β
= 6 and |j| <

1

α
(1 + βi) <

3

v4

(
1 +

i

6

)
. (48)
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Figure 3: The pentagon P and the rectangle R.

Thus, the values of (i, j) that we must consider are

i = 0, 1, . . . , 5, j = 0,±1, . . . ,±
(

2 +

⌈
i

2

⌉)
. (49)

Moreover, it follows from (48) that whenever we consider a pair (i, j) with j 6= 0 we may
assume

v4 <
6 + i

2|j| . (50)

Below we shall consider systematically every pair (i, j) given in (49) and analyze the
case it represents until a contradiction is reached. The starting point of such an analysis,
which is dubbed Part 4 of the proof of Proposition 11, is the following information that
we have concerning the location of the elements of the subgroup G (see the discussion
in Sections 2 and 3). To every (i, j) there corresponds a collection Li,j of equally spaced
parallel line segments in the [0, 1)2 square (for the purpose of the following description
of Li,j we are thinking of [0, 1)2 as a square rather than as a torus). The common slope
of these line segments is j/i. For j ≥ 0, one of the line segments starts at (0, 0) corner
of the square, and for j < 0 one of the line segments starts at the (0, 1) corner of the
square. There are |j| line segments intersecting any horizontal line y = y0 and there
are i line segments intersecting any vertical line x = x0. The elements of G appear
periodically on the circles in the torus formed by the line segments in Li,j. The period
is i/q when measured horizontally, or equivalently |j|/q when measured vertically. Note
that |G| = q because G is generated by ({v4}, {v1}) and we have v1 = p/q, (p, q) = 1,
and, by Lemma 17, v4 = r/q.

The generator ({v4}, {v1}) of G must itself lie on one of the line segments in Li,j. The
identity of the line segment which contains ({v4}, {v1}) determines, in a manner that we
proceed to explain, the location of the coset C = G + ({v4}/2, {v1}/2). Suppose first
that j ≥ 0. If ({v4}, {v1}) lies on the line segment starting at (0, 0), or any line segment
in Li,j that is removed an even number of lines from it, then ({v4}/2, {v1}/2) also lies
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on a line segment in Li,j. It follows that in this case the coset C also lies periodically
on the circles formed by Li,j, with the same period as G. On the other hand, if the line
segment containing ({v4}, {v1}) is removed an odd number of lines from the one starting
at (0, 0), then ({v4}/2, {v1}/2) lies halfway between two adjacent segments in Li,j. It
follows that in this case the coset C lies on a system of line segments L′

i,j, obtained from
Li,j by a parallel shift that places the line segments in L′

i,j halfway between those of Li,j.
Again, the elements of C appear periodically on the circles formed by L′

i,j with the same
period as G. We refer below to this case as the shifted case, and to the former case as
the unshifted one. The same dichotomy appears when j < 0. If ({v4}, {v1}) lies on the
line segment closest to (0, 0), or any line segment that is removed an even number of lines
from it, we are in the shifted case; otherwise, we are in the unshifted case.

For every possible pair (i, j), we try to determine on which of the line segments in
Li,j the generator ({v4}, {v1}) may lie. Such a determination, using tools that we will
describe shortly, will enable us to conclude that for certain (i, j) pairs only the shifted
or only the unshifted case is possible. In some cases, neither is possible, leading to an
immediate contradiction. In some other cases, however, we will have to consider both
the shifted and the unshifted variant. In any case, placing ({v4}, {v1}) on a certain line
segment yields a linear equation that {v4}, {v1} must satisfy, which allows us to express
v4 in terms of v1.

The tools that we use to determine where ({v4}, {v1}) may lie are the bounds on its
coordinate values given by v4 > 1, Lemma 18, Table 1 and (50) for the first coordinate
and by 0 < v1 < 1/3 for the second. An additional tool is available for pairs (i, j) where
i and j are not relatively prime. In this case the line segments in Li,j form more than
one circle on the torus, and the generator of G must not lie on the circle through the
origin, for if it did the whole subgroup G would lie there. Using these tools, we classify
the pairs (i, j) into four classes: S (shifted), U (unshifted), N (neither) and SU (shifted
or unshifted). We present the classification in Table 2, together with an indication of
the number of the case below where each pair (i, j), or shifted/unshifted variant of it, is
treated.

Since the classification in Table 2 is obtained by a straightforward and repetitive
application of the tools described above, we present the details of the argument for only
a few examples.

(i, j) = (1,−1): In this case Li,j consists of only one line segment given by x + y = 1.
Thus, we must have {v4} + {v1} = 1. Since v1 < 1/3, we must have v4 > 5/3. By
Lemma 18 and an inspection of Table 1 this is never the case.

(i, j) = (1, 3): In this case Li,j consists of three line segments of slope 3 starting at
(0, 0), (1/3, 0) and (2/3, 0), respectively. By (50) we have v4 < 7/6, which implies that
({v4}, {v1}) can only lie on the first of these line segments. Thus we are in the unshifted
case.

(i, j) = (2, 2): Here Li,j is the collection of line segments starting at (0, 0), (0, 1/2)
and (1/2, 0) having slope 1. Furthermore, 2|q. Since 2 and 2 are not relatively prime, the
generator of G cannot lie on the segment through (0, 0). Since v1 < 1/3 the generator of
G cannot lie on the second line in Li,j. The only remaining possibility is for it to lie on
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j�
i 0 1 2 3 4 5

5 S2

4 U3 S2 S7U3

3 U3 U3 S2 S3U7 S5U5

2 N S3U11 N U3 S6 S4U6

1 N U12 U10 U4 S8U4 S4U7

0 N N N S1 S1

−1 N N S7 S4 S6 S7U7

−2 N S9 S7 S3 S6 S6U4

−3 N S7 S2U2 S3U7 S5U5

−4 S3 S2 S3U7

−5 S2U2

Table 2: The classification of pairs (i, j) as shifted (S), unshifted (U), neither (N) or either
(SU). The subscript of an entry is the case in which the entry is treated.

the line v4 = 3/2 + v1. It follows from Lemma 18 and an inspection of Table 1 that this
is not the case.

(i, j) = (3, 3): In this case Li,j consists of the line segments of slope one through
(0, 2/3), (0, 1/3), (0, 0), (1/3, 0) and (2/3, 0). Since i and j are not relatively prime, the
generator of G cannot lie on the line segment containing (0, 0). The restriction v1 < 1/3
implies that it does not lie on the first two line segments listed above. The restriction
v4 < 3/2 that follows from (50) implies that it does not lie on the last of the line segments.
Thus ({v4}, {v1}) can only lie on the line segment starting at (1/3, 0), and we are in the
shifted case.

We now embark on Part 5 of the proof of Proposition 11, in which we treat all pairs
(i, j) that appear in Table 2, with the exception of the pair (1, 1). Note that some of the
pairs from (49) were actually handled in the pre-processing above (i.e. Part 4 of the proof
of Proposition 11). The pairs are grouped into cases.

Case 5.2.1. (i, 0), i = 4, 5

In these cases the generator ({v4}, {v1}) of G must lie on the line y = 1/i, which
implies that p/q = 1/i and hence q = i, contradicting (14).

Case 5.2.2. (i,±i), i = 3, 4, 5

In all of these cases, both Li,j and L′
i,j contain a line segment whose intersection with

R has full vertical length of 1/6. Thus, our assumption that C ∩ R = ∅ implies that
q < 6i. Since in these cases we must have i|q, we actually have q ≤ 5i. On the other
hand (14) implies q ≥ i2 + 2i. These two bounds are contradictory for i = 4, 5, and leave
us with only q = 15 for i = 3.

In the case of the pair (3, 3), which can only be shifted, we have {v4} = 1/3 + v1 =
(5 + p)/15. It follows from this equation and Table 1 that p = 1. However, in this case
(1, 1/6) ∈ C ∩ R.
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(1, 2)S [4, 11] q+p
2q

p, q odd

(3, 2)U [11, 11] 3p
2q

p even

(3,−2)S [11, 11] q−3p
2q

p, q odd

(1, 3)U [6, 17] p
3q

3|p
(2, 3)U [11, 17] 2p

3q
3|p

(4, 3)S ∅
(4,−3)S ∅
(3, 4)U [19, 23] 3p

4q
4|p

(3,−4)S [19, 23] q−3p
4q

q odd
p ≡ −q (mod4)

(5, 4)U ∅
(5,−4)S ∅

Table 3: Conditions on p and q for the pairs in Case 5.2.3.

In the case of (3,−3)S, we have {v4} = 1/3 − v1 = (5 − p)/15. For p = 1, 2, 4 we find
the points (14/15, 7/30), (9/10, 4/15) and (5/6, 1/3), respectively, in C ∩ R.

In the case of (3,−3)U , we have {v4} = 2/3− v1 = (10− p)/15. Table 1 indicates that
this is possible only for p = 4. But in this case (4/5, 1/5) ∈ C ∩ R.

Case 5.2.3. (1, 2)S, (3, 2)U , (3,−2)S, (1, 3)U , (2, 3)U , (4, 3)S, (4,−3)S, (3, 4)U , (3,−4)S,
(5, 4)U , (5,−4)S

In all of these cases either Li,j or L′
i,j contains a segment whose intersection with

R has full vertical length of 1/6. Thus, our assumption that C ∩ R = ∅ implies that
q < 6|j| in each case. Together with the lower bound on q given by (14), this leaves only a
certain (possibly empty) interval of possible values of q to be considered in each case. The
second column in Table 3 specifies that interval. The identification of the line segment on
which ({v4}, {v1}) lies gives, in each remaining case, an expression for {v4} in terms of v1,
and hence in terms of p and q, which is listed in the third column. This expression and
Lemma 17 imply certain restrictions on the possible values of p and q, which are listed in
the fourth column.

We now note that some of the remaining cases can be eliminated by other considera-
tions. For (1, 2)S, it follows from Table 1 that the only cases in which {v4} = (q + p)/2q
and p, q odd is a possibility are q = 5, p = 1 and q = 9, p = 1. In the cases (3,±4), we
have the upper bound v4 < 9/8 from (50). In the case of (3, 4)U this becomes 3p/4q < 1/8
(i.e. p < q/6) which is incompatible with 4|p and q ≤ 23. In the case of (3,−4)S this
bound is (q − 3p)/4q < 1/8 (i.e. p > q/6); in conjunction with the restrictions given in
Table 3 for this case, only q = 19, p = 5 and q = 23, p = 5 remain possible.

What remains is treated in Table 4. For each pair and every choice of p and q consistent
with the above restrictions, we specify an element of C that is either in R or, when no
element of C ∩R exists, in P . The instances in which an element of P \R is given satisfy
v1 > 1/6, and so the existence of an element of C ∩ P is a contradiction (to verify that
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q p (1, 2)S (3, 2)U (3,−2)S (1, 3)U (2, 3)U (3,−4)S

5 1
(

9
10

, 3
10

)
9 1

(
5
6
, 1

6

)
10 3

(
3
4
, 1

4

)
11 1

(
10
11

, 5
22

)
11 2

(
17
22

, 2
11

)
11 3

(
17
22

, 7
22

) (
17
22

, 7
22

) (
9
11

, 5
22

)
13 3

(
19
26

, 5
26

) (
11
13

, 7
26

)
14 3

(
3
4
, 1

4

) (
11
14

, 5
28

)
16 3

(
25
32

, 11
32

)∗ (
13
16

, 7
32

)
17 3

(
25
34

, 7
34

) (
15
17

, 11
34

)
19 5

(
25
38

, 11
38

)∗
23 5

(
21
23

, 13
46

)
Table 4: Elements of C that are in R or P for the remaining cases in Case 5.2.3.

(3, 1)U (3,−1)S (4, 1)U (5, 1)S (5, 2)S (5,−2)U

[6, 8] [6, 8] [8, 11] [10, 14] ∅ ∅
3p
q

q−3p
q

4p
q

5p−q
q

Table 5: Conditions on p and q for the pairs in Case 5.2.4.

these elements lie in P consider (46) and (47), taking into account the actual values of
v2 and v4 and the lower bound 1 − x5 > 1 − x4). These instances are marked with an
asterisk.

Case 5.2.4. (3, 1)U , (3,−1)S, (4, 1)U , (5, 1)S, (5, 2)S, (5,−2)U

In these cases either Li,j or L′
i,j (whichever is applicable) has a segment whose inter-

section with R has full horizontal length of 1/3. Thus, it follows from C ∩ R = ∅ that
q < 3i. Together with the lower bound on q given by (14), this leaves only a certain
(possibly empty) interval of possible values of q to be considered in each case. The second
row of Table 5 specifies that interval. The line in Li,j on which ({v4}, {v1}) lies gives a
relationship between {v4} and v1. This yields an expression for {v4} in terms of p and q
which is given in the third row of Table 5.

Note that some of the remaining cases are eliminated by a consideration of the third
row of Table 5 alone. In particular, in the case (4, 1)U we must have 4p < q and in the
case (5, 1)S we must have q < 5p. The remaining cases are treated in Table 6. Some
of these cases can be eliminated by noting that the bound on {v4} given in Table 1 is
incompatible with the expression for {v4} given in the third row of Table 5. These cases
are marked with a −− in the table. For most of the other cases we are able to specify an
element of C ∩R. In two of the cases we must resort to identifying an element of C ∩ P .
These elements are marked with an asterisk, and in these cases v1 > 1/6, and therefore
an element of C ∩ P is sufficient to give a contradiction.
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q p (3, 1)U (3,−1)S (4, 1)U (5, 1)S

6 1
(

3
4
, 1

4

) (
3
4
, 1

4

)
7 1 −− −−
7 2 −− (

9
14

, 2
7

)∗
8 1 −− −− −−
9 1

(
2
3
, 1

6

)
9 2 −−
10 1

(
1, 1

4

)
10 3 −−
11 1

(
10
11

, 5
22

)
11 2 −−
11 3

(
7
11

, 5
22

)∗
13 3

(
11
13

, 7
26

)
13 4 −−
14 3

(
3
4
, 1

4

)
Table 6: Treating the remaining cases in Case 5.2.4.

(4,−1)S (4, 2)S (4,−2)S (5, 2)U (5,−2)S
1
6

1
4

1
4

1
6

1
6

[8, 23] [14, 15] [14, 15] [17, 29] [17, 29]
q−4p

q
4p−q
2q

q−4p
2q

5p
2q

q−5p
2q

p < q
4

q even q even p even p, q odd
q ≥ 12 ⇒ p ≥ q

8
p > q

4
p < q

4
p ≤ q

5
p < q

5

Table 7: Conditions on p and q for the pairs in Case 5.2.6.

Case 5.2.5. (5,±3)U , (5,±3)S

For these pairs, both Li,j and L′
i,j have line segments whose intersection with R has

length 2/9 (measured horizontally). Thus C ∩ R = ∅ implies q < 45/2. On the other
hand, (14) implies q ≥ 23, a contradiction.

Case 5.2.6. (4,−1)S, (4, 2)S, (4,−2)S, (5, 2)U , (5,−2)S

Table 7 indicates which values of p and q need to be considered for each of these pairs.
The second row shows the length (measured horizontally) of the intersection of a suitable
line segment in Li,j or L′

i,j (whichever is applicable) with R. The third row specifies the
interval to which q must belong, based on the above intersection length and (14). The
fourth row gives the expression for {v4} in terms of p and q. The fifth row contains
conditions on p and q that are obtained from the expression for {v4} in the fourth row
and Lemmas 17 and 18.

In the case of (4, 2)S, the conditions obtained on p and q are contradictory. The
remaining pairs are treated in tables on page 33. As in previous cases, a −− indicates
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incompatibility between the expression in the fourth row of Table 7 and the upper bounds
on {v4} given in Table 1. In all other cases (that satisfy the conditions given in the fifth
row of Table 7) we present an element of C ∩ P . An asterisk indicates that this is an
element of P \R and v1 > 1/6; a double asterisk indicates that this is an element of P ′\R.

Case 5.2.7. (2,−1)S, (5, 1)U , (5,−1)S, (5,−1)U , (2,−2)S, (2,−3)S, (4, 3)U , (4,−3)U ,
(5, 4)S, (5,−4)U

In these cases, either Li,j or L′
i,j (whichever is applicable) has a segment that intersects

the x = 1 line at some point y between 1/6 and 1/3. We are going to take advantage of
the continuation of that segment that still lies in P (and P ′). Of course, the exact length
of that continuation depends on v1, v2, v4 and x5. We shall be satisfied with a lower bound
on the length of this extension, obtained by replacing the upper bound on x given in (46)
by the more restrictive upper bound (for 1/6 ≤ y ≤ 1/3)

x ≤ 1 + min

{
3

(
y − 1

6

)
,
1

3
− y

}
. (51)

To obtain (51) we used the estimates v4x5 < 1, v4 > 1, v1 < 1/3 and v2 < 1.
The second column of Table 8 contains the right endpoint of the extension of line

segment we are interested in (i.e. the largest x of a point (x, y) on the extension of
the line segment that satisfies (51). The third column contains a lower bound on the
(horizontal) length of the intersection of a circle occupied by C with P ′. In all but one
case, this lower bound is given by the union of the intersection of the given line segment
with R and its continuation to the right (as defined by (51)). In the case of (5,−1)U we
use the intersection of the line segment with R, the extension to the right of R, and an
extension to the left of R. In the (5,−1)U case, we observe that the point (5/9, 13/45) on
the line y = 2/5 − x/5 belongs to P ′. Indeed, the generator ({v4}, {v1}) lies on the same
line, and since v1 < 1/3 it follows that v4 > 4/3 and hence x5 < x4 < 3/4. This implies
that 2/3 − v4(1 − x5)/3 < 5/9. Thus the line segment in question has an extension of
length at least 1/9 to the left of R. The fourth column indicates the (possibly empty)
interval to which q must belong, based on the above intersection length and (14). The
fifth and sixth column, respectively, contain expressions for {v4} in terms of p and q and
conditions on p and q obtained thereby.

The pairs that were not eliminated in the above table are treated in the tables on
page 35, using the same conventions as in previous cases.

Case 5.2.8. (4, 1)S

In this case the generator ({v4}, {v1}) is on the line y = 1/4 + x/4. This has several
implications. First, v1 > 1/4 > 1/6, and so, by assumption, C ∩ P = ∅. Second, x1 < 4
implies that in order to cover the first 123-gap we must have

x5 <
x1

5
<

4

5
. (52)

the electronic journal of combinatorics 8 (no. 2) (2001), #R3 32



(4,−1)S

q p q p q p
8 1 −− 14 3

(
11
14

, 5
28

)
21 4

(
31
42

, 4
21

)
9 1

(
5
6
, 1

6

)
15 2 −− 21 5

(
5
6
, 1

6

)
9 2

(
11
18

, 2
9

)∗
16 3

(
5
8
, 7

32

)∗
22 3

(
15
22

, 9
44

)
10 1 −− 17 3

(
23
34

, 7
34

)
22 5

(
15
22

, 9
44

)
11 1 −− 17 4

(
27
34

, 3
17

)
23 3

(
33
46

, 9
46

)
11 2

(
17
22

, 2
11

)
19 3

(
29
38

, 7
38

)
23 4

(
37
46

, 4
23

)
13 2

(
15
26

, 3
13

)∗∗
19 4

(
25
38

, 4
19

)∗
23 5

(
33
46

, 9
46

)
13 3

(
19
26

, 5
26

)
20 3

(
4
5
, 7

40

)
(4,−2)S

q p
14 1 −−
14 3

(
3
4
, 1

4

)
(5, 2)U

q p q p q p
17 2

(
25
34

, 5
17

)
23 2

(
35
46

, 7
23

)
27 2

(
5
6
, 1

3

)
19 2

(
25
38

, 5
19

)∗∗
23 4

(
15
23

, 6
23

)∗
27 4

(
20
27

, 8
27

)
21 2

(
5
6
, 1

3

)
25 2

(
7
10

, 7
25

)
29 2

(
45
58

, 9
29

)
21 4

(
5
7
, 2

7

)
25 4

(
4
5
, 8

25

)
29 4

(
20
29

, 8
29

)
(5,−2)S

q p q p q p
17 1

(
16
17

, 11
34

)
23 1

(
35
46

, 9
46

)
27 5

(
5
6
, 1

6

)
17 3

(
25
34

, 7
34

)
23 3

(
15
23

, 11
46

)∗∗
29 1

(
20
29

, 13
58

)
19 1

(
25
38

, 9
38

)∗∗
25 1

(
4
5
, 9

50

)
29 3

(
45
58

, 11
58

)
19 3

(
15
19

, 7
38

)
25 3

(
7
10

, 11
50

)
29 5

(
20
29

, 13
58

)
21 1

(
5
7
, 3

14

)
27 1

(
5
6
, 1

6

)
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(2,−1)S
11
10

4
15

[4, 7] q−2p
q

(5, 1)U
10
9

5
18

[10, 17] 5p
q

p < q
5

q ≥ 12 ⇒ p ≤ q
10

(5,−1)S
25
24

5
24

[10, 23] q−5p
q

p < q
5

q ≥ 12 ⇒ p ≥ q
10

(5,−1)U
17
16

73
144

∅
(2,−2)S

17
16

7
48

[8, 13] q−2p
2q

q even

(2,−3)S
23
22

10
99

[11, 19] q−2p
3q

3 6 |q p ≡ −q (mod 3)

(4, 3)U
22
21

10
63

[19, 25] 4p
3q

3|p
(4,−3)U

14
13

22
117

[19, 21] 2q−4p
3q

3 6 |q p ≡ −q (mod 3) p ≥ q/8

(5, 4)S
55
54

5
27

∅
(5,−4)U

35
34

10
51

∅

Table 8: Conditions on p and q for the pairs in Case 5.2.7.

Third, v1 = 1/4 + {v4}/4 implies
v4 = 4v1. (53)

We observe (using (52), (53), and the fact that the vertical line x = 4/3 − v4/3
passes through two vertices of P ) that the portion of the line segment y = 1/8 + x/4
corresponding to

2

3
− v4

3
(1 − x5) ≤ x ≤ 4

3
− v4

3

is contained in P . Since C has period 4/q on this line segment we must have (again using
(52) and (53))

4

q
>

4

3
− v4

3
−

[
2

3
− v4

3
(1 − x5)

]

=
2

3
− v4

3
x5

>
2

3
− v4

3

x1

5

=
2

5
.

This implies that q < 10. On the other hand (14) implies q ≥ 8. However, for q = 8, 9
there is no p such that 1/4 < p/q < 1/3.

Case 5.2.9. (1,−2)S

In this case the generator ({v4}, {v1}) is on the line y = 1−2x. Hence, v4 = 3/2−v1/2,
which implies v4 > 4/3. This, in turn, implies x5 < x4 < 3/4. Based on these estimates,
we observe that the portion of the line segment y = 3/2− 2x corresponding to 1/6 ≤ y ≤
1/3 is contained in P ′.

It follows from our assumption C ∩ P ′ = ∅ that q < 12. Since {v4} = q−p
2q

, we must

have p and q odd. A look at Table 1 shows that the only cases in which {v4} = (q−p)/2q
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(2,−1)S

q p q p

5 1
(

9
10

, 3
10

)
7 1 −−

6 1 −− 7 2
(

13
14

, 2
7

)
(2,−2)S

q p q p

8 1 −− 10 3
(

9
10

, 7
20

)∗
10 1

(
1, 1

4

)
12 1

(
25
24

, 5
24

)∗∗
(5, 1)U

q p q p q p p

10 1
(

3
4
, 7

20

)∗∗
12 1

(
25
24

, 5
24

)∗∗
15 1

(
5
6
, 1

6

)
11 1

(
13
22

, 7
22

)∗∗
13 1 −− 16 1

(
35
32

, 7
32

)∗∗
11 2 −− 14 1 −− 17 1

(
35
34

, 7
34

)∗∗
(5,−1)S

q p q p q p p

10 1
(

3
4
, 7

20

)∗∗
16 3

(
25
32

, 11
32

)∗
20 3

(
7
8
, 13

40

)
11 1 −− 17 2

(
35
34

, 5
17

)∗∗
21 4

(
5
6
, 1

3

)
11 2

(
15
22

, 4
11

)∗
17 3

(
15
17

, 11
34

)
22 3

(
45
44

, 13
44

)∗∗
13 2

(
25
26

, 4
13

)
19 2

(
35
38

, 6
19

)
23 3

(
20
23

, 15
46

)
15 2

(
5
6
, 1

3

)
19 3

(
15
19

, 13
38

)∗∗
23 4

(
45
46

, 7
23

)
(2,−3)S

q p q p q p p

11 1
(

21
22

, 7
22

)
16 5

(
11
16

, 7
32

)
19 2

(
39
38

, 4
19

)∗∗
13 2

(
25
26

, 4
13

)
17 1

(
35
34

, 7
34

)∗∗
19 5

(
37
38

, 11
38

)
14 1

(
1, 1

4

)
17 4

(
33
34

, 5
17

)
(4, 3)U

q p q p q p p

19 3
(

15
19

, 13
38

)∗∗
22 3

(
1, 1

4

)
25 3

(
24
25

, 11
50

)
19 6

(
18
19

, 4
19

)
23 3

(
24
23

, 13
46

)∗∗
25 6

(
19
25

, 8
25

)
20 3

(
9
10

, 7
40

)
23 6

(
22
23

, 5
23

)
(4,−3)U

q p
19 5

(
13
19

, 9
38

)
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is possible are q = 5, p = 1; q = 9, p = 1; q = 11, p = 1; q = 11, p = 3. In these cases we
find the points

(
3
5
, 3

10

)
,
(

2
3
, 1

6

)
,
(

13
22

, 7
22

)
, and

(
7
11

, 5
22

)
, respectively, in C ∩ P ′ .

Case 5.2.10. (2, 1)U

In this case the generator ({v4}, {v1}) is on the line y = x/2, and hence v4 = 1 + 2v1.
We first prove C ∩ P 6= ∅ (P ′ will be handled below). Let l be the intersection of the

line y = x/2 with P . We claim that the left end of l is on the vertical side of P . This will
follow from the fact that the lower-left corner of P is below the line y = x/2. The latter
requires the inequality

2

3
− v4

3
(1 − x5) > 2

[
1

6
− v1

3
(1 − x5)

]
,

which is equivalent to
(v4 − 2v1)(1 − x5) < 1,

which holds because v4 − 2v1 = 1 and 1 − x5 < 1.
The right end of l is either (a) on the horizontal upper side side of P or (b) beyond

the vertical line x = 4/3 − v4/3. We handle each case separately, showing in each that
C ∩ P 6= ∅ unless q < 6.

In case (a) the (horizontal) length of l, which we denote h(l), satisfies

h(l) =
v4

3
(1 − x5) +

2v2

3
(1 − x5) =

v4 + 2v2

3
(1 − x5) = 1 − x5.

We have v4 = 1+2v1 ≥ (q +2)/q, which implies v5 ≥ (q +3)/q. Thus, 1−x5 ≥ 3/(q +3).
So, we are guaranteed that l contains a point of C if 2/q ≤ 3/(q + 3), that is, if q ≥ 6.

In case (b), we have

h(l) ≥ 4

3
− v4

3
−

[
2

3
− v4

3
(1 − x5)

]
=

2

3
− v4x5

3
> 1/3,

and again we are guaranteed that l contains a point of C if 2/q ≤ 1/3, that is, if q ≥ 6.
The only remaining case is q = 5, p = 1. In this case

(
3
5
, 3

10

) ∈ C ∩ P .
The conclusion that C ∩ P 6= ∅ is compatible with our assumption only if v1 < 1/6

and C ∩P ′ = ∅. If so, the intersection l′ of l with P ′ must be properly contained in l, and
therefore the right end of l′ is on the horizontal line y = 5/12 − v1/3. It follows that the
length of l′ satisfies

h(l′) = 2

[
5

12
− v1

3

]
−

[
2

3
− v4

3
(1 − x5)

]
=

1

6
+

v4 − 2v1 − v4x5

3

=
1

6
+

1 − v4x5

3

>
1

6
.
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Hence, C∩P ′ = ∅ implies q < 12. Since v1 < 1/6 this leaves us with the cases q = 7, . . . , 11
and p = 1. In these cases (with one exception) the points

(
5
7
, 5

14

)
,
(

5
8
, 5

16

)
,
(

5
9
, 5

18

)
,
(

7
10

, 7
20

)
,

and
(

7
11

, 7
22

)
, respectively, are in C ∩P ′. The one exception is that

(
5
9
, 5

18

)
is not in P ′ for

q = 9 and v5 = 12/9. Note that when q = 9 we have v4 = 11/9 and v5 = s/9 for some
s ≥ 12. The x–coordinate of the left side of P ′ is given by

x =
2

3
− v4

3
(1 − x5) =

2

3
− 11(s − 9)

27s
,

which is less than 5/9 for s ≥ 13. If s = 12 then the interval [39/22, 11/6] is a 012345-gap,
contradicting our initial assumption.

Case 5.2.11. (1, 2)U

In this case the generator ({v4}, {v1}) is on the line y = 2x, and hence v4 = 1 + v1/2.
This implies

v4 < 7/6. (54)

In terms of p and q we have v4 = 2q+p
2q

, which implies that p is even (and therefore q is

odd, q ≥ 7).
We first prove that C ∩ P 6= ∅. Let l be the intersection of the line y = 2x − 1 with

P . Note that the right end of l is on the horizontal upper side of P . The left end of l is
either (a) on the vertical side of P or (b) on the horizontal lower side of P . We handle
each case separately, showing that C ∩ P 6= ∅ unless q = 7.

In case (a) the (horizontal) length of l satisfies

h(l) =
v4

3
(1 − x5) +

v2

6
(1 − x5) =

2 + v1 + v2

6
(1 − x5) =

1 − x5

2
.

Now, we may write v5 = 2q+p+2i
2q

, where i ≥ 1 is an integer. In order to guarantee that l

contains a point of C, it suffices if 1−x5

2
≥ 1

q
, that is, if p + 2i ≥ 6. The only remaining

possibility is p = 2, i = 1. In this case the speeds are 2/q, (q − 2)/q, 1, (q + 1)/q, and
(q + 2)/q. Let j be an integer such that 1

6
≤ 2j+1

q
≤ 1

3
(such an integer exists whenever

q ≥ 9). The time t = j + 1/2 is in a 012345-gap, contradicting our initial assumption.
If case (b) occurs, then we must have v4

3
(1−x5) > 1

12
. Together with (54) , this implies

that 1 − x5 > 3/14. The vertical length of l, which we denote v(l), in case (b) satisfies

v(l) =
1

6
+

v1

3
(1 − x5) +

v2

3
(1 − x5) =

1

6
+

1 − x5

3
>

5

21
.

Since 2/q ≤ 5/21 for q ≥ 9, l must contain a point of C.
The only remaining case is q = 7, p = 2. In this case

(
9
14

, 2
7

) ∈ C ∩ P .
The conclusion C ∩ P 6= ∅ is compatible with our initial assumption only if v1 < 1/6

and C ∩P ′ = ∅. The right end of l′, the intersection of l with P ′, is on the horizontal line
y = 5

12
− v1

3
. As to the left end, we consider again the two cases above.
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In case (a), the (horizontal) length of l′ satisfies

h(l′) =
v4

3
(1 − x5) +

1

2

(
1

12
− v1

3

)
=

1

24
+

1

3
− v4x5

3
≥ 1

24
.

Thus l′ must contain a point of C if q ≥ 24. The remaining cases are q = 13, 15, 17, 19, 21, 23
with p = 2. In these cases the points

(
17
26

, 4
13

)
,

(
19
30

, 4
15

)
,

(
23
34

, 6
17

)
,

(
25
38

, 6
19

)
,

(
27
42

, 6
21

)
, and(

31
46

, 8
23

)
, respectively, are in C ∩ P ′.

In case (b), the (horizontal) length of l′ is more than 1/12, and since q > 12 there
must be a point of C in l′.

Case 5.2.12. (1, 1)U

This is Part 6 of the proof of Proposition 11, in which we have v4 = 1+v1 = (q +p)/q.
In this situation there does not necessarily exist a long 01234-gap; that is, C does not
usually intersect P . So, we resort to a completely different, two-part argument. We first
consider times when runner 1 is at 1/6, times of the form t = x1(k + 1/6) where k is a
nonnegative integer.

Claim 19. Assume v1 = p/q, v2 = (q − p)/q and v4 = (q + p)/q. If there exists a
nonnegative integer k satisfying[{

v4x1

(
k +

1

6

)
+ δ

}
=

2

3
and 0 ≤ δ < 1

]
⇒ δ ≤ 1

12
+

q

12p
(55)

then there exists a 01234-gap of length at least x4/6.

Proof. Let t = x1(k + 1/6), and let δ be as in (55). Furthermore, let t′ be the first time
at or after t when runner 4 is at 2/3; that is , t′ = t + δx4.

We consider the interval I := [t′, t′ + x4/6], which is clearly a subset of a 4-gap. We
first note that the position of runner 1 at time t′ + x4/6 is between 1/6 and u, where u
obeys

u =
1

6
+

(
δ +

1

6

)
x4v1 ≤ 1

6
+

(
1

4
+

q

12p

)
p

q + p
<

5

12
.

It follows that I is contained in a 0134-gap. It remains to consider runner 2. Since
v2 = v4 − 2v1, the position of runner 2 at time t′ satisfies

{v2t
′} = {{v4t

′} − {2v1t
′}}

= {2/3 − {2v1t} − {2v1δx4}}
≥ 2

3
− 1

3
− 2p

q + p

(
1

12
+

q

12p

)
=

1

6
.

Therefore, I is contained in a 01234-gap.

We conclude from Claim 19 that if there exists a nonnegative integer k for which (55)
holds then v5 < 2v4. To get a lower bound on v5 we consider times when runner 1 is at
1/3, times of the form t = x1(j + 1/3).
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Claim 20. Assume v1 = p/q, v2 = (q − p)/q, v4 = (q + p)/q and B′ = R+ . If there exists
a nonnegative integer j satisfying

{v4x1(j + 1/3)} =

{
1

3
+

q

3p
+

jq

p

}
∈ [5/6, 1) ∪ [0, 1/6] (56)

then v5 > 2v4.

Proof. Let t = x1(j + 1/3), and consider the 4-block I whose closure contains t. Since
{tv2} = {{tv4}+1/3} and {tv3} = {{tv4}−1/3}, I is a subset of a 23-gap. Since v1 < v4/4
and {v1t} = 1/3, I is in fact a subset of a 0123-gap. Therefore, runner 5 must cover both
ends of I and v5 > 2v4.

So, if there exist nonnegative integers k and j satisfying (55) and (56), respectively,
then we have a contradiction. Since the lengths of the intervals given in (55) and (56) are
at least 1/3 and in each case we are concerned with a set of p equidistant points on the
circle, we have a contradiction for p ≥ 3. It remains to consider p = 1 and p = 2.

Suppose p = 2. In this case q is odd and q ≥ 7. First note that the two points given
in (56) are of the form a

6
, a+3

6
for some integer a. One of these points lies in the specified

interval, and v5 > 2v4. On the other hand, the interval given in (55) has length at least
1/2 for q ≥ 10. Thus, we have v5 < 2v4 unless q = 7 or q = 9. However, in each of these
cases v1 > 1/6 and the time x1/2 is in a 1234-gap of length greater than x4/6. Thus, for
any q we have v5 < 2v4 and a contradiction.

The only remaining case is p = 1. First note that for q ≥ 6 there exists an integer k
satisfying (55), and, therefore, for q ≥ 6 we have v5 < 2v4. To achieve a lower bound on
v5 we use both Claim 20 and the following

Claim 21. Assume v1 = 1/q, v2 = (q − 1)/q, v4 = (q + 1)/q and B′ = R+ . If there exists
an integer m satisfying

m

q
∈

[
1

3
+

1

6q
,

5

12
− 1

6q

]
(57)

then v5 ≥ 2v4.

Proof. Consider the 3-block I := (m−1/6, m+1/6). At time t = m runner 3 is at 0 while
runners 1 and 4 are at m/q and runner 2 is at 1 − m/q. It follows that I is contained in
a 0124-gap, and runner 5 must cover both endpoints of I. Thus, v5 > 2v3 = 2.

Now, if v5 = (2q +1)/q then the position of runner 5 at time t = m is also m/q. Thus,
the time m + 1/6 remains uncovered.

It follows from Claim 20 that v5 > 2v4 if q ≡ 2(mod 3). Furthermore, it follows from
Claim 21 that v5 ≥ 2v4 if q ≥ 16 or q ∈ {10, 13, 15}. Thus, we have a contradiction unless
q ∈ {5, 6, 7, 9, 12}. We consider these cases individually. In each case we set v5 = s/q.

Case 5.2.12.1. q = 5, p = 1
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It follows from Claim 20 that v5 > 2v4. Thus, s ≥ 13. Note that since v1 ≥ 1/6 the
interval (5x1/12, 7x1/12) does not constitute a 01-block. Thus, [5/2 + x2/6, 5/2 + 1/3] is
a 01234-gap, and we can conclude that v5 < 8/3. Therefore, s = 13. However, for this
set of speeds [5/3 + x4/6, 5/3 + 1/6] is a 012345-gap.

Case 5.2.12.2. q = 6, p = 1

As in the previous case, (5x1/12, 7x1/12) does not constitute a 01-block. Therefore,
(3 − 1/6, 3 + 1/6) is a 3-block that is contained in the 0124-gap [3 − x4/3, 3 + x4/3]. It
follows that v5 > 2v3 and that v5 < 2v4; that is, s = 13. However, for this set of speeds
the interval [2 + 1/6, 2 + x2/6] is a 012345-gap.

Case 5.2.12.3. q = 7, p = 1

In this case the interval [7/6 + x2/6, 7/6 + x4/2] is a 01234-gap. It follows that v5 <
48/35. Therefore, we must have v5 = 9/7. However, for this set of speeds, the interval
[7/6 + x2/6, 7/6 + x5/3] is a 012345-gap.

Case 5.2.12.4. q = 9, p = 1

Note that the time t = 3/2 is in a 01234-gap. Since the position of runner 5 at this
time is s/6 we must have 6|s. However, when this is the case [3/2 + x5/6, 3/2 + x4/6] is
a 012345-gap.

Case 5.2.12.5. q = 12, p = 1

In this case the interval [2+x2/3, 2+2x4/3] is a 01234-gap. It follows that s ∈ {14, 15}.
If s = 14 then the interval [2 + x2/3, 2 + x5/2] is a 012345-gap. On the other hand, if
s = 15 then [2 + 2x5/3, 2 + 2x4/3] is a 012345-gap.

6 {v1t0} 6= 0, {t0} = 0, and x1 > 3

Here we have v3t0 = t0 = k for some integer k ≥ 2; in words, when runner 3 passes
runner 2 both runners are at 0. This implies k = t0 = 1

1−v2
, and therefore we have

v2 =
k − 1

k
for some integer k ≥ 2. (58)

As Lemma 4 is not applicable in this case, we begin our discussion with a lemma that
plays the role that Lemma 4 plays in Section 2.

Lemma 22. If there exists an interval I and t ∈ I such that I ∩ (B1 ∪ B2 ∪ B3) = ∅,
|I| ≥ 1/3 and {v4t} = 1/2 then B 6= R+ .

Proof. Clearly, t lies in a 1234-gap. If t + x4/3 ∈ I or t− x4/3 ∈ I then the length of this
1234-gap is at least x4/3, and the result follows (since the length of any 5-block is x5/3).
If t+x4/3, t−x4/3 6∈ I then I itself is contained in a 1234-gap. This 1234-gap has length
at least 1/3 > x5/3.

the electronic journal of combinatorics 8 (no. 2) (2001), #R3 40



It remains to show that when (58) holds there exists an interval satisfying the con-
ditions of Lemma 22. In order to do so, we consider the first 23-gap after times of the
form jt0. These are intervals of the form [jt0 + x2/6, jt0 + 5/6]. It follows from (58) that
x2 ≤ 2 and therefore Ij := [jt0 + 2/6, jt0 + 5/6] does not intersect B2 ∪ B3. It is easy to
see that if we have

1/6 − 2v1/6 ≤ {v1jt0} ≤ 5/6 − 5v1/6 (59)

then Ij ∩ B1 = ∅. It follows from x1 > 3 that (59) defines an interval in [0, 1) of length
4/6−3v1/6 > 1/2. Since {v1t0} 6= 0, there exists a j satisfying (59) and hence there exists
an Ij that is the subset of a 123-gap (this observation is simply a one dimensional version
of the observation given in (11)). Lemma 4 then implies that (3) holds if x4 ≤ 3/4. So,
we henceforth assume x4 > 3/4. Under this assumption it is easy to see that if we have

{v4jt0} 6∈
(

1

2
− v4

3
,
3

2
− 5v4

6

)
(60)

then there exists t ∈ Ij such that {v4t} = 1/2. Note that (60) excludes an interval on the
circle [0, 1) of length 1 − v4/2 < 1/2.

We are now ready to apply the main lemma. Let G be the additive subgroup of T
generated by ({v1t0}, {v4t0}) and define

R = [1/6 − v1/3, 5/6 − 5v1/6] × [9/6 − 5v4/6, 9/6− 2v4/6].

Note that R is a (4/6 − 3v1/6) × 3v4/6 rectangle on the torus T . Note further that for
any x1 > 3 and any x4 > 3/4 we have

[1/6, 5/9] × [2/3, 1] ⊆ R. (61)

Now, it follows from Lemma 22, (59) and (60) that G ∩ R 6= ∅ implies (3). Corollary 6
implies that G ∩ R 6= ∅ unless one of the following conditions holds (note that we are
using notation from Section 2).

1. n1 = 1 or n2 = 1

2. There exists v ∈ {±1/n,±2/n} such that (1/n, v) ∈ G.

As usual, we handle these situations case by case. Note that we apply (14) in the statement
of some of the cases.

Case 6.1. n1 = 1 or n2 = 1

First note that n1 = 1 is impossible because we assume {v1t0} 6= 0. If n2 = 1 then the
circle L2

0 has an intersection with R of length 2/3 − v1/2 > 1/2 while the period of G in
L2

0 is 1/n1 ≤ 1/2. Thus it follows from (11) that G ∩ R 6= ∅.
Case 6.2. (1/n, 1/n) ∈ G and n ≥ 2.
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In this case it is possible to have G ∩ R = ∅. So, we are forced to use a different ad
hoc argument here.

It follows from n ≥ 2 that there exists (u, u) ∈ G such that 1/3 ≤ u ≤ 1/2. In other
words, there exists an integer j satisfying

γ := {v1jt0} = {v4jt0} ∈ [1/3, 1/2].

Our goal here will be to show that for such a j runner 5 cannot do all the things asked of
it around the time jt0. In order to do this we consider two subcases.

Case 6.2.1. v2 = 1/2

We begin with a simple lemma.

Lemma 23. [7/6, 10/6] 6⊆ B4 ∪ B5.

Proof. Assume for the sake of contradiction that [7/6, 10/6] ⊆ B4 ∪ B5. By Lemma 4
we have x4 > 3/4. It follows that 11x4 > 33/4, [7/6, 33/24] ⊆ B5 and x5 > 1/2. Since
x5 > 1/2 the 45-block containing [7/6, 10/6] consists of exactly one 4-block and exactly
one 5-block. Thus, 11x5 < 7, 11x4 < 13x5 and 10 < 13x4. These three inequalities yield

10

13
< x4 <

13

11
x5 <

91

121
.

This is an obvious contradiction.

Since [7/6, 10/6] is a 23-gap in this case, it follows from Lemma 23 that B1 must
intersect [7/6, 10/6], and we must have x1 > 7. Consider the time jt0 defined above.
Since {v1jt0} = γ ∈ [1/3, 1/2] the following define 123-gaps:

I1 = [jt0 − 5/6, jt0 − 2/6],

I2 = [jt0 + 2/6, jt0 + 5/6],

I3 = [jt0 + 7/6, jt0 + 10/6].

Since {v1t0} = {v4t0}, there exists a positive integer m for which we have

v4 − v1 = m/t0 = m(1 − v2) = m/2.

It follows from v4 < 4/3 and v1 < 1/7 that m = 2, v4 = 1 + v1 and v4 < 8/7.
Now, the 2-block separating I1 from I2 cannot contain a 4-block, because at its mid-

point, jt0, runner 4 is in [1/3, 1/2] and has speed v4 < 8/7. It follows that the 4-blocks
meeting I1 and I2 are consecutive ones, which implies the inequality 8x4 + 4x5 > 10, and
in particular x5 > 1/2.

Since {v4jt0} ∈ [1/3, 1/2] and v4 < 8/7, runner 4 covers neither jt0+5/6 nor jt0+7/6.
However, since x5 > 1/2, runner 5 cannot cover both these points.

Case 6.2.2. v2 ≥ 2/3
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In this case we know the interval

I = [jt0 + 1/4, jt0 + 5/6]

is contained in a 123-gap. It follows immediately from Lemma 4 that x4 > 7/8. Since
the endpoints of I cannot be covered by runner 4, the 45-block covering I consists of a
4-block flanked by a 5-block on either side, and x5 < x4/2.

On the other hand, if n > 2 then there exists a k such that {v1kt0} = {v4kt0} ∈
[1/6, 1/3]. Then the interval [kt0 +1/4, kt0 +(5/6−{v4kt0})x4] is contained in a 1234-gap
of length at least x4/6. This interval cannot be covered by runner 5 because x5 < x4/2.
This leaves n = 2, but in this case, {v1t0} = 1/2 and the interval [t0 + 2x4/3, t0 + 5/6] is
a 1234-gap of length at least 1/6. Again, this interval cannot be covered by runner 5.

Case 6.3. (1/n,−1/n) ∈ G and n ≥ 2

It follows from (61) that if 1/6 ≤ 1/n ≤ 1/3 then (1/n,−1/n) ∈ G ∩ R and that if
1/n < 1/6 then some multiple of (1/n,−1/n) lies in G ∩ R. This leaves us with the case
n = 2. However, when n = 2 we have 1/n = −1/n. So this case was handled above in
Case 6.2.

Case 6.4. (1/n, 2/n) ∈ G and n ≥ 4

Here it follows from (61) that if there exists an integer j such that j/n ∈ [1/3, 1/2]
then j(1/n, 2/n) ∈ G ∩ R. Such a j exists for all n.

Case 6.5. (1/n,−2/n) ∈ G and n ≥ 4

Once again, we apply (61). In this case we conclude that if there exists j such that
j/n ∈ [1/2, 5/9] then j(1/n,−2/n) ∈ G ∩ R. Such a j exists unless n ∈ {5, 7}.
Case 6.5.1. n = 5

In this case (1/5, 3/5) ∈ G ∩ R unless 3/5 < 9/6 − 5v4/6. So, we may assume

x4 > 25/27. (62)

Similarly (3/5, 4/5) ∈ G ∩ R unless 3/5 > 5/6 − 5v1/6, and we may assume

x1 < 25/7. (63)

It follows that [x1/6, 5x4/6] is a 1234-gap. Thus, there exists j > 0 such that (6j−1)x5 <
x1 and 5x4 < (6j + 1)x5. It then follows from (62) and (63) that j = 1. We obtain

125

189
<

5x4

7
< x5 <

x1

5
<

5

7
. (64)

It follows that t = 7/6 lies in a 2-block, and so we must have x2 < 7/5. Next, the point
7x2/6 must be covered by a 5-block, namely (11x5/6, 13x5/6). It is then the case that no
block covers t = 13x5/6.

Case 6.5.2. n = 7

Here we have (1/7, 5/7), (4/7, 6/7) ∈ G. It follows from (61) and the fact that the
width of R is more than 1/2 that either (1/7, 5/7) ∈ R or (4/7, 6/7) ∈ R.
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(3, 0) (4, 0) (3, 1) (3,−1) (4, 1) (4,−1) (3, 2) (3,−2) (4, 2) (4,−2)
1/2 2/3 2/3 2/3 2/3 1/2 1/2 7/18 2/3 8/15
6 8 6 6 8 8 11 11 14 14

Table 9: Exceptional pairs in Section 7 for which (11) alone suffices to finish the proof.

7 {v1t0} 6= 0,{t0} 6= 0, and 3 ≤ x1 < 4

Here we extend the argument given in Section 2, where we assumed x1 ≥ 4. Again,
we consider the subgroup G of T generated by ({t0}, {v1t0}). By assumption, G is not
contained in one of the axes of T . As in Section 2, it suffices to show G∩P 6= ∅, where P
is the parallelogram defined by (8) and (9). Since P shrinks as x1 gets smaller, we focus
on the worst case in our domain, namely x1 = 3. In this case P is defined by

1

6
≤ x ≤ 5

6
,

1

9
+

1

3
x ≤ y ≤ 5

9
+

1

3
x.

Thus, P contains the rectangle R = [1/6, 5/6] × [7/18, 11/18] which has width α = 2/3
and height β = 2/9.

By Corollary 6, G ∩ R 6= ∅ unless G contains a minimal nonzero element of the form
(i/n, j/n) where i and j satisfy

i ∈ {0, 1, 2, 3, 4} and |j| <
3

2
+

1

3
i.

We take advantage of the full P to show that, with two exceptions, G ∩ P 6= ∅ even in
these cases. First note that (i, j) ∈ {(0,±1), (1, 0)} is ruled out by our assumption that
G is not contained in an axis of T . The cases where (i, j) ∈ {(2, 0), (1,±1), (2,±2)} were
treated in Section 2, and the arguments used there apply here as well. This leaves us with
12 possible cases for the pair (i, j).

In 10 of these cases there exists a circle L (parallel to L(i/n,j/n)) such that the length
of L ∩ P exceeds or equals the period of G in L. These cases are considered in Table 9.
In each column we consider a particular (i, j). The second row contains the length of the
intersection L∩P , measured horizontally, and the third row contains the lower bound on
n given by (14). Since the period of G in L is i/n, we see that G ∩ P 6= ∅ in each case.

We are left with the cases (i, j) = (2, 1) and (i, j) = (2,−1). In each of these cases,
it follows from (14) that we may assume n ≥ 4. The second column in Table 10 gives
the length of the longest intersection of L(i/n,j/n) with P . The values of n for which this
intersection length does not imply G∩P 6= ∅ are considered in the other columns. In these
columns we specify an element of G ∩ P if it exists. This leaves us with two exceptional
groups which are considered below.

Consider the case G = G4, the group generated by (1/2, 1/4). There exists a positive
integer k such that {kt0} = 1/2 and {kt0v1} = 1/4. The interval

I = [kt0 − x1/12, kt0 + 1/3]
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(i, j) n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11
(2, 1) 1

6
G4

(
4
5
, 2

5

) (
2
3
, 1

3

)
G7

(
3
4
, 3

8

) (
2
3
, 1

3

) (
4
5
, 2

5

) (
8
11

, 4
11

)
(2,−1) 3

10
G4

(
4
5
, 3

5

) (
2
3
, 2

3

)
Table 10: Treating the remaining exceptional pairs in Section 7.

is a 123-gap. Since I ∩B4 has total length at most 1/3, I ∩B5 must have total length at
least x1/12. Note that in order to cover the point t = x1/6 (the beginning of the first 123-
gap), we must have x5 < x1/5. Hence the length of a 5-block is less than x1/15. Thus, the
45-block covering I must consist of a 4-block flanked by two 5-blocks. Furthermore, these
two 5-blocks must be consecutive (otherwise x5 < x4/5 < 1/5 and 2x5/3 < 2/15 < x1/12).
This gives the conditions

4x5/3 > 1/3 + x1/12 ≥ 7/12 and x4 > 2x5,

which imply the bounds

7/16 < x5 < 1/2 and 7/8 < x4 < 1.

Under these conditions, however, the interval [2/3, 35/48] remains uncovered.
The case G = G7, the group generated by (2/7, 1/7), is treated similarly. Let k be a

positive integer such that {kt0} = 4/7 and {v1kt0} = 2/7. Then the interval

J = [kt0 − 5/14, kt0 + 11/42]

is contained in a 123-gap (here we use x1 ≥ 3). Out of the total length of J , which is
13/21, runner 5 must cover more than 2/7. As x5 < x1/5 < 4/5, one 5-block does not
suffice for this, and so J must be covered by a 4-block flanked by two 5-blocks. As above,
these two 5-blocks must be consecutive, yielding the bounds

13/28 < x5 < 1/2 and 13/14 < x4 < 1.

Given these bounds, the interval [2/3, 65/84] remains uncovered.

8 x1 ≤ 3

Here we assume for the sake of contradiction that x1 ≤ 3 and B = ∪5
i=1Bi = R+ . We will

make a series of observations concerning the way in which B covers small t ∈ R+ . This
series of observations will progressively restrict the possible values of x1, . . . , x5 until we
finally reach a contradiction. We begin by dividing the argument in cases.

Case 8.1. x4 > 5/7
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We begin with

(x1, x2, x3, x4, x5) ∈ [1, 3] × [1, x1] × {1} ×
[
5

7
, 1

]
× [0, x4].

It follows immediately that [x1/6, 5x4/6] is a 1234-gap, so there exists an integer j > 0
satisfying

(6j − 1)x5 < x1 and 5x4 < (6j + 1)x5,

which implies
25(6j − 1)

7(6j + 1)
< x1.

Since we are assuming x1 ≤ 3 this implies that j = 1. Thus, we have

5x5 < x1 and 5x4 < 7x5. (65)

With this observation in hand, we now have

(x1, x2, x3, x4, x5) ∈
[
125

49
, 3

]
× [1, x1] × {1} ×

[
5

7
,
21

25

]
×

[
25

49
,
3

5

]
.

We now consider the 13-gap [7/6,11/6]. It is easy to see that [max{7, 13x5}/6, 11x4/6]
is now a 1345-gap. This implies

5x2 < max{7, 13x5} ≤ 39/5 ⇒ x2 < 39/25 (66)

and
11x4 < 7x2. (67)

It now follows from (66) that [max{13x4, 7x2}/6, 11/6] is a 1234-gap, and therefore we
have

17x5 < max{13x4, 7x2} and 11 < 19x5. (68)

This leaves us with

(x1, x2, x3, x4, x5) ∈
[
55

19
, 3

]
×

[
1,

39

25

]
× {1} ×

[
5

7
,
21

25

]
×

[
11

19
,
3

5

]
.

We now consider two subcases.

Case 8.1.1. 13x4 ≤ 7x2

Here we have
17x5 < 7x2, (69)

which leaves us with

(x1, x2, x3, x4, x5) ∈
[
55

19
, 3

]
×

[
187

133
,
39

25

]
× {1} ×

[
5

7
,
21

25

]
×

[
11

19
,
3

5

]
.
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We now move on to consideration of the interval [13/6, 5x1/6], which is obviously a
123-gap. It follows from (65) that 25x5 < 5x1 and from (68) that 13 < 23x5. Therefore,
we must have

17x4 < 13 and 5x1 < 19x4 (70)

and

(x1, x2, x3, x4, x5) ∈
[
55

19
,
247

85

]
×

[
187

133
,
39

25

]
× {1} ×

[
5

7
,
13

17

]
×

[
11

19
,
3

5

]
.

Finally, we consider time close to t = 23/6. It turns out that [37x5/6, 23/6] is a
1235-gap, which implies

29x4 < 37x5 and 23 < 31x4. (71)

This contradicts (65) and (70) (i.e. we cannot simultaneously have 5x5 < x1, 5x1 < 19x4

and 29x4 < 37x5).

Case 8.1.2. 7x2 < 13x4

Here we have
17x5 < 13x4. (72)

Appealing to (67) and (72) we have

(x1, x2, x3, x4, x5) ∈
[
55

19
, 3

]
×

[
2057

1729
,
39

25

]
× {1} ×

[
187

247
,
21

25

]
×

[
11

19
,
3

5

]
.

We now consider the interval [13/6, 5x1/6]. As in Case 8.1.1, we have that 13 < 23x5 and
25x5 < 5x1. Moreover, 13 < 11x2. Therefore, for t = 13/6 to be covered we must have

17x4 < 13. (73)

This now implies (note that we use (72))

(x1, x2, x3, x4, x5) ∈
[
55

19
, 3

]
×

[
2057

1729
,
39

25

]
× {1} ×

[
187

247
,
13

17

]
×

[
11

19
,
169

289

]
.

Next, we consider the points t = 109/30 and t = 26/6. It can be checked that both
points lie in 1345-gaps. Hence, runner 2 covers both. This, however, is impossible, as they
are too far apart to be covered by the same 2-block (having length at most 13/25) and
too close to be covered by distinct 2-blocks (the length of a 2-gap is at least 4114/5187).

Case 8.2. x4 ≤ 5/7

As in case 8.1 we first consider the 123-gap [x1/6, 5/6]. This gap is covered by B4∪B5

in one of two ways. Either 5x4 < x1 in which case we have [7x4/6, 5/6] ⊆ B5 or x1 ≤ 5x4

and [x1/6, 5x4/6] ∪ [7x4/6, 5/6] ⊆ B5. We consider these two possibilities separately.

Case 8.2.1. 5x4 < x1
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Here there exists j > 1 satisfying

(6j − 1)x5 < 7x4 and 5 < (6j + 1)x5.

This implies

x1 >
25(6j − 1)

7(6j + 1)
≥ 275

91
,

a contradiction.

Case 8.2.2. x1 ≤ 5x4

In this case there exist 1 < j < k satisfying

(6j − 1)x5 < x1 , 5x4 < (6j + 1)x5 , (6k − 1)x5 < 7x4 and 5 < (6k + 1)x5. (74)

If j + 2 ≤ k then 5x4 < (6j + 1)x5 and (6k − 1)x5 < 7x4 imply 10x5 < 2x4. If this is the
case, then all 45-blocks have length less than 1/3 while the 123-gap [x1/6, 5/6] has length
at least 1/3. So, we have k = j + 1, and

(6j − 1)x5 < x1 , 5x4 < (6j + 1)x5 , (6j + 5)x5 < 7x4 and 5 < (6j + 7)x5. (75)

This implies
5(6j − 1)

6j + 7
< x1,

which implies j = 2. So, we actually have

11x5 < x1 , 5x4 < 13x5 , 17x5 < 7x4 and 5 < 19x5,

and

(x1, x2, x3, x4, x5) ∈
[
55

19
, 3

]
× [1, x1] × {1} ×

[
85

133
,
39

55

]
×

[
5

19
,

3

11

]
.

It now follows that 7/6, 21/12 6∈ B4 ∪ B5, and therefore we have

5x2 < 7 and 7x2 > 21/2.

This is a contradiction.
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