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Abstract

Musical patterns that recur in approximate, rather than identical, form within
the body of a musical work are considered to be of considerable importance in music
analysis. Here we consider the “evolutionary chain problem”: this is the problem of
computing a chain of all “motif” recurrences, each of which is a transformation of
(“similar” to) the original motif, but each of which may be progressively further from
the original. Here we consider several variants of the evolutionary chain problem
and we present efficient algorithms and implementations for solving them.

Keywords: String algorithms, approximate string matching, dynamic programming, computer-
assisted music analysis.

1 Introduction

This paper is focused on string-matching problems which arise in computer-assisted music
analysis and musical information retrieval. In a recent article ([4]), a number of string-
matching problems as they apply to musical situations were reviewed, and in particular
the problem of “Evolution Detection” was introduced and discussed. It was pointed
out that no specific algorithms for this problem, either in music or in string-matching
in general, exist in the literature. However, it seems that musical patterns, or “motifs”
actually ‘evolve’ in this manner in certain types of composition; an actual case is shown
by the successive thematic entries shown in the appended Music Example. A more recent
example, from Messiaen’s piano work, Vingt Regards sur L’Enfant Jésus, is given in [3].

A musical score can be viewed as a string: at a very rudimentary level, the alphabet
(denoted by Σ) could simply be the set of notes in the chromatic or diatonic notation, or
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at a more complex level, we could use the GPIR representation of Cambouropoulos [2] as
the basis of an alphabet. Although a musical pattern-detection algorithm using approxi-
mate matching (allowing the normal edit operations, insertion, deletion and replacement)
will detect the occurrence of an evolving pattern in the early stages of its history, once
it becomes too different from the original form (past whatever threshold is set by the
algorithm or its parameters) it will naturally be rejected. To detect a musical motif which
undergoes continuing “evolutionary” change is a more challenging proposition, and is the
object of this paper. Musical patterns that recur in approximate, rather than identical,
form within a composition (or body of musical work) are considered to be of considerable
importance in music analysis. Simple examples are the familiar cases of the standard
“tonal” answer in a conventional fugue, or the increasingly elaborated varied reprises of
an 18th-century rondo theme; on a more subtle level, the idée fixe in Berlioz’s Symphonie
Fantastique recurs in a wide variety of different forms throughout the four movements of
the symphony. In all these cases, each recurrence can be seen as a transformation of the
original motif, and each is roughly equivalently “similar” to the original; a measure of
this “similarity” will be preset in an algorithm intended to detect the recurrence of the
pattern:

A · · ·A′ · · ·A′′ · · ·A′′′ · · · (a)

where each of the strings A′, A′′, A′′′, . . . is similar to A within the maximum edit distance
preset in the algorithm.

In this paper we are considering the case where each new recurrence of the pattern is
based on the previous one rather than on the original form, somewhat in the manner of
a “chain”:

A · · · (A)′ · · · ((A)′)′ · · · (((A)′)′)′ · · · (b)

(See Figure 1), where (X)′ denotes a string similar to a given string X within the maxi-
mum edit distance preset in the algorithm. These two types of pattern-repetition may in
practice, of course, be indistinguishable in certain circumstances; in case (b), a variant of
the pattern may actually cancel out the effect of a previous variant, so the overall distance
from the original may remain within the bounds allowed by an algorithm for detecting
patterns in case (a).

This class of musical pattern-repetition is not extremely common, but it does exist, as
the musical examples given above demonstrate. As well as the obvious musical-analytical
interest in detecting such evolutionary pattern-chains, they have importance in any appli-
cation where they might be missed in detecting approximate repetitions of a pattern (case
(a)). These would include automated music-indexing systems for data-retrieval, in which
each variant of a motif needs to be detected for efficient indexing; for obvious reasons,
it would be desirable for the original pattern, rather than arbitrarily-selected successive
variants, to appear as a term in the index table.

Approximate repetitions in musical entities play a crucial role in finding musical sim-
ilarities amongst different musical entities. The problem of finding a new type of repeti-
tions in a musical score, called evolutionary chains is formally defined as follows: given a
string t (the “text”) and a pattern p (the “motif”), find whether there exists a sequence
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u1 = p, u2, . . . , u` occurring in the text t such that, for all i ∈ {1, . . . , `− 1}, ui+1 occurs
to the right of ui in t and ui and ui+1 are “similar” (i.e. they differ by a certain number
of symbols).

There was no specific algorithm for the evolution chain problem in the literature.
Landau and Vishkin [12] gave an algorithm (LV Algorithm) for the string searching with k-
differences problem: given a text of length n over an alphabet Σ, an integer k and a pattern
of length m, find all occurrences of the pattern in the text with at most k-differences;
the LV algorithm requires O(n2(log m + log |Σ|)) running time. The LV method uses
a complicated data structure (the suffix tree) that makes their algorithm unsuitable for
practical use. Furthermore algorithms for exact repetitions are in [1, 6, 15], approximate
repeats treated in [8, 13] and quasiperiodicities in [9, 10]

Here we present an O(n2m/w) algorithm for several variants of the problem of com-
puting overlapping evolutionary chains with k differences, where n is the length of the
input string, m is the length of the motif and w the length of the computer word. Our
methods are practical as well as theoretically optimal. Here we have also studied and
implemented the computation of the longest evolutionary chain as well as the chain with
least number of errors in total; both algorithms also require O(n2m/w) operations.

Several variants to the evolutionary problem are still open. The choice of suitable
similarity criteria in music is still under investigation. The use of penalty tables may be
more suitable than the k-differences criterion in certain applications. Additionally, further
investigation whether methods such as [12] can be adapted to solve the above problems
is needed.

2 Basic definitions

Consider the sequences t1, t2, . . . , tr and p1, p2, . . . , pr with ti, pi ∈ Σ ∪ {ε}, i ∈ {1 . . . r},
where Σ is an alphabet, i.e. a set of symbols and ε is the empty string. If ti 6= pi, then
we say that ti differs to pi. We distinguish among the following three types of differences:

1. A symbol of the first sequence corresponds to a different symbol of the second one,
then we say that we have a mismatch between the two characters, i.e., ti 6= pi.

2. A symbol of the first sequence corresponds to “no symbol” of the second sequence,
that is ti 6= ε and pi = ε. This type of difference is called a deletion.

3. A symbol of the second sequence corresponds to “no symbol” of the first sequence,
that is ti = ε and pi 6= ε. This type of difference is called an insertion.

As an example, see Figure 1; in positions 1 and 3 of t and p we have no differences
(the symbols “match”) but in position 2 we have a mismatch. In position 4 we have a
“deletion” and in position 5 we have a “match”. In position 6 we have an “insertion”, and
in positions 7 and 8 we have “matches”. Another way of seeing this difference is that one
can transform the t sequence to p by performing insertions, deletions and replacements of
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1 2 3 4 5 6 7 8

String t: B A D F E ε C A
| | | | |

String p: B C D ε E F C A

Figure 1: Types of differences: mismatch, deletion, insertion

mismatched symbols. (Without loss of generality, in the sequel we omit the empty string
ε from the sequence of symbols in a string).

Let t = t1t2 . . . tn and p = p1p2 . . . pm with m < n. We say that p occurs at position q of
t with at most k-differences (or equivalently, a local alignment of p and t at position q with
at most k differences), if tq . . . tr, for some r > q, can be transformed into p by performing
at most k of the following operations: inserting a symbol, deleting a symbol and replacing
a symbol. Furthermore we will use the function δ(x, y) to denote the minimum number
operations (deletions, insertions, replacements) required to transform x into y.

1 2 3 4 5 6 7 8 9 10 11 12 13

String t: A B C B B A D F E ε F E A
| | | Alignment 1

String p: B C ε D ε E F A F

1 2 3 4 5 6 7 8 9 10 11 12 13

String t: A B C B B A D F E ε F E A
| | | | Alignment 2

String p: B C ε ε ε D ε E F A F

1 2 3 4 5 6 7 8 9 10 11 12 13

String t: A B C B B A D F E ε F E A
| | | Alignment 3

String p: B C D ε E F A F

1 2 3 4 5 6 7 8 9 10 11 12 13

String t: A B C B B A D ε F E F E A
| | | | Alignment 4

String p: B C D E F A F

Figure 2: String searching with k-differences.

Let the text t = ABCBBADFEFEA and the pattern p = BCDEFAF (see Figure
2). The pattern p occurs at position 4 of t with at most 6 differences. The pattern p
also occurs at position 2 with 7 differences and position 5 with 5 or 4. The alignment (or
alignments) with the minimum number of differences is called an optimal alignment.

In the sequel we also make use of the following graph-theoretic notions: A directed
graph G = (V, E) consist of a set V of vertices (nodes) and a set E of edges (arcs). Let
u, v ∈ V , then (u, v) denotes the edge between node u and v. A path P from v1 to vk is a
sequence of nodes P =< v1, v2, . . . , vk >. P is said to be simple iff the nodes are unique.
A cycle in G is a path such that v1 = vk. A directed acyclic graph (DAG) is a directed
graph without cycles. The in-degree din

i of node i is the number of incoming edges to i.
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0 1 2 3 4 5 6 7

ε G G G T C T A

0 ε 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 2 1 0 0 1 2 2 2
3 G 3 2 1 0 1 2 3 3
4 T 3 2 1 1 0 1 2 3
5 C 3 2 2 2 1 0 1 2
6 T 3 3 3 3 2 1 0 1
7 A 3 3 3 3 2 2 1 0

Table 1: The evolutionary matrix D for t = GGGTCTA and m = 3.

The out-degree dout
i of node i is the number of outgoing edges from i. Let vs ∈ V be the

source node and vt ∈ V be the target node.
Let c : E → Z be a cost function on the edges of G. We will also say weight instead

of cost. We will write c(v, u) to denote the cost of the edge (v, u). The cost of a path
P =< v1, v2, . . . , vk > is defined to be c(P ) = c(v1, v2) + . . . + c(vk−1, vk). The shortest
path from a node vs to a node vt is said to be the minimum c(P ) over all possible paths
from vs to vt.

3 The Evolutionary Matrix

In this section we present a new efficient algorithm for computing the n× n evolutionary
matrix D: for a given text t of length n and a given integer m, we define D(i, j) to be
the minimum number of differences between tmax(1,i−m+1), . . . , ti and any substring of the
text ending at position j of t. Informally, the matrix D contains the best scores of the
alignments of all substrings of t of length m and any substring of the text. Table 1 shows
the evolutionary matrix for t = GGGTCTA and m=3.

One can obtain a straightforward O(n2m) algorithm for computing the evolutionary
matrix D by constructing matrices D(s)[1..m, 1..n], 1 ≤ s ≤ n−m, where D(s)(i, j) is the
minimum number of differences between the prefix of the pattern tmax(1,s−m+1), . . . , ts and
any contiguous substring of the text ending at tj ; its computation can be based on the
Dynamic-Programming procedure presented in [14]. We can obtain D by collating D(1)

and the last row of the D(s), 2 ≤ s ≤ n−m.
Here we will make use of word-level parallelism in order to compute the matrix D more

efficiently, similar to the manner used by Myers in [16] and Iliopoulos-Pinzon in [11]. But
first we need to compute the n × n tick-matrix M : if there is an optimal alignment of
tmax(1,i−m+1), . . . , ti and any contiguous substring of the text ending at tj with the property
that there is a difference (i.e. insertion, deletion or mismatch) for tmax(1,i−m+1), then we
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Evolutionary-DP(t, m, M) B n = |t|, × = 1, X = 0

1 begin

2 D(0..n, 0)← min(i, m); D(0, 0..n)← 0 B initialization

3 for i← 1 until n do

4 for j ← 1 until n do

5 if i < m then

6 D(i, j)← min{D(i− 1, j) + 1, D(i, j − 1) + 1,

7 D(i− 1, j − 1) + δ(ti, tj)}
8 else

9 D(i, j)← min{D(i− 1, j) + 1−M(i, j − 1), D(i, j − 1) + 1,
D(i− 1, j − 1) + δ(ti, tj)−M(i− 1, j − 1)}

10 end

Figure 3: Evolutionary-DP algorithm

set
M(i, j)← ×

otherwise we set
M(i, j)← X.

0 1 2 3 4 5 6 7

ε G G G T C T A

0 ε × × × × × × × ×
1 G × X X X × × × ×
2 G × × X X X × × ×
3 G × × × X X X × ×
4 T × × X X X X × ×
5 C × X X X X X X ×
6 T × × × × × X X X

7 A × × × × × × X X

Table 2: The tick-matrix M for t = GGGTCTA and m = 3.

Assume that the tick-matrix M [0..n, 0..n] is given. We can use M as an input for
the Evolutionary-DP algorithm (see Fig. 3) to compute the evolutionary matrix
D[0..n, 0..n] as follows:

Theorem 3.1 Given the text t, the motif length m and the tick-matrix M, the Evolutionary-
DP algorithm correctly computes the matrix D in O(n2) units of time.
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Proof. The computation of D(i, j) for all 1 ≤ i, j ≤ m, in line 7, is done using straight-
forward dynamic programing (see [14]) and thus their values are correct.

Let’s consider the computation of D(i, j) for some i, j > m. The value of D(i, j)
denotes the minimum number of differences in an optimal alignment of a contiguous
substring of the text tq . . . tj (for some 1 ≤ q < j) and ti−m+1 . . . ti; in that alignment ti
can be either to the right of tj or to the left of tj or aligned with tj. It is clear that for
q < j:

D(i, j) = δ(ti−m+1 . . . ti, tq . . . tj) (1)

Now, we will consider all three cases. In the case that the symbol ti is aligned to the right
of tj , for some q′ < j, we have

δ(ti−m+1 . . . ti, tq . . . tj) = δ(ti−m+1 . . . ti−1, tq′ . . . tj) + 1 (2)

Let’s consider, for some q̂ < j

D(i− 1, j) = δ(ti−mti−m+1 . . . ti−1, tq̂ . . . tj) (3)

δ(ti−mti−m+1 . . . ti−1, tq̂ . . . tj) = δ(ti−m, tq̂) + δ(ti−m+1 . . . ti−1, tq′ . . . tj) (4)

Note that
δ(ti−m, tq̂) = M(i, j − 1) (5)

From equations 1-5 follows that

D(i, j) = D(i− 1, j) + 1−M(i, j − 1) (6)

If q̂ ≤ q′, then ti−m is either aligned with tq̂ or with ε in an optimal alignment of score
δ(ti−mti−m+1 . . . ti−1, tq̂ . . . tj). Thus we have either

δ(ti−mti−m+1 . . . ti−1, tq̂ . . . tj) = δ(ti−m, tq̂) + δ(ti−m+1 . . . ti−1, tq̂−1 . . . tj) (7)

or
δ(ti−mti−m+1 . . . ti−1, tq̂ . . . tj) = δ(ti−m, ε) + δ(ti−m+1 . . . ti−1, tq̂ . . . tj) (8)

It is not difficult to see that

δ(ti−m+1 . . . ti−1, tq′ . . . tj) = δ(ti−m+1 . . . ti−1, tq̂−1 . . . tj)
= δ(ti−m+1 . . . ti−1, tq̂ . . . tj)

(9)

From 1-3, 5, 7 or 8 and 9, we also derive 6 in this subcase.
In the case that the symbol ti is aligned to the left of tj (as above), we have

δ(ti−m+1 . . . ti, tq . . . tj) = δ(ti−m+1 . . . ti, tq′ . . . tj−1) + 1 = D(i, j − 1) + 1

which implies that
D(i, j) = D(i, j − 1) + 1 (10)
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In the case that the symbol ti is aligned with tj (as above), we have

δ(ti−m+1 . . . ti, tq . . . tj) = δ(ti−m+1 . . . ti−1, tq′ . . . tj−1) + δ(ti, tj) (11)

In a similar manner as in 2-5 we can show that

δ(ti−m+1 . . . ti−1, tq′ . . . tj−1) = D(i− 1, j − 1)−M(i− 1, j − 1) (12)

and from 11-12 follows that

D(i, j) = D(i− 1, j − 1) + δ(ti, tj)−M(i− 1, j − 1) (13)

Equations 6, 10 and 13 show that line 9 of the algorithm correctly compute D(i, j) and
the algorithm’s correctness follows.

The running time of the Evolutionary-DP algorithm can easily be shown to be
O(n2). ut

The key idea behind the computation of M is the use of bit-vector operations that
gives us a theoretical speed up factor of w in comparison to the method presented in [14],
where w is the compiler word length; thus on a “64-bit computer word” machine one can
obtain a speed up of 64. We maintain the bit-vector

B(i, j) = b`...b1

where br = 1, r ∈ {1 . . . `}, ` < 2m, if and only if there is an alignment of a contiguous
substring of the text tq . . . tj (for some 1 ≤ q < j) and ti−m+1 . . . ti with D(i, j) differences
such that

• The leftmost r − 1 pairs of the alignment have Σ`−r−2
` bj differences in total.

• the r-th pair of the alignment (from left to right) is a difference: a deletion in the
pattern, an insertion in the text or a replacement.

Otherwise we set br = 0. In other words B(i, j) holds the binary encoding of the path
in D to obtain the optimal alignment at i, j with the differences occurring as leftmost as
possible.

Given the restraint that the length m of the pattern is less than the length of the
computer word, then the “bit-vector” operations allow to update each entry of the matrix
M in constant time (using “shift”-type of operation on the bit-vector). The maintenance
of the bit-vector is done via operations defined as follows.

• The shift operation moves the bits one position to the left and enter zeros from the
right, i.e. shift(b`...b1) = b`−1...b10

• The shiftc operation shifts and truncates the leftmost bit, i.e.
shift(b`...b1) = b`...b10
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• Given the integers x, y, z, the function bitmin(x, y, z) returns r one of the integers
{x, y, z} with the property that r has the least number of 1’s (bits set on), and if
there is a draw then it returns the one with the leftmost bits (i.e. the maximum of
the two when they are viewed as a decimal integer).

• The lastbit operation returns the leftmost bit, i.e. b`

• The or operation correspond to the bitwise-or operator

The shift, shiftc(x), bitmin, lastbit and or operations can be done in O(m/w) time
with {|x|, |y|, |z|} < 2m.

The algorithm in Fig. 4 computes the matrix M [0..n, 0..n].

Tick-Matrix(t, m) B n = |t|
1 begin

2 B[0..n, 0]← max(i, m) 1’s; B[0, 0..n]← ε B initialization

3 for i← 1 until n do

4 for j ← 1 until n do

5 if i < m then

6 B(i, j)← bitmin{shift(B(i − 1, j)) or 1, shift(B(i, j − 1)) or 1,
shift(B(i− 1, j − 1)) or δ(ti, tj)}

7 else

8 B(i, j)← bitmin{shiftc(B(i − 1, j)) or 1, shift(B(i, j − 1)) or 1,
shiftc(B(i− 1, j − 1)) or δ(ti, tj)}

9 if lastbit(B(i, j))=1 then M(i, j)← × else M(i, j)← X
10 return M

11 end

Figure 4: Tick-Matrix algorithm

Example. Let the text t be GGGTCTA and m=3, the matrix B (Table 3) is computed
to generate the tick-matrix M (Table 2). Notice that M(i, j) ← × if and only if the
lastbit(B(i, j)) = 1 and M(i, j)← X otherwise.

Theorem 3.2 The procedure Tick-Matrix correctly computes the tick-matrix M in
O(n2m/w) units of time.

Proof. Lines 6 and 8 of the Tick-Matrix are binary encodings of lines 6 and 8
respectively of the Evolutionary-DP procedure. The correctness follows from Theorem
1. ut

Theorem 3.3 The Evolutionary-DP matrix D can be computed in O(n2m/w) units
of time .
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0 1 2 3 4 5 6 7

ε G G G T C T A

0 ε
1 G 1 0 0 0 1 1 1 1
2 G 11 10 00 00 01 11 11 11
3 G 111 110 100 000 001 011 111 111
4 T 111 101 001 001 000 0001 110 111
5 C 111 011 011 011 001 000 0001 101
6 T 111 111 111 111 110 001 000 0001
7 A 111 111 111 111 101 101 001 000

Table 3: The Bit-Vector Matrix B for t = GGGTCTA and m = 3.

Proof. The computation of the evolutionary matrix D can be done concurrently with
the computation of the matrices M and B. ut

Hence, this algorithm runs in O(n2) under the assumption that m ≤ w, where w is the
number of bits in a machine word, i.e., in practical terms the running time is O(n2). Also,
the space complexity can be reduced to O(n) by noting that each row of B, M and D
depends only on the one immediately preceding row of B, M and D respectively.

4 Computing the Longest Non-Overlapping Evolu-

tionary Chain

The problem of the longest non-overlapping evolutionary chain (LNOEC) is as follows:
given a text t of length n, a pattern p of length m and an integer k < m/2, find whether
the strings of the sequence u1 = p, u2, . . . , ul occur in t and satisfy the following conditions:

1. δ(ui, ui+1) ≤ k for all i ∈ {1, . . . , `− 1}
2. Let si be the starting position of ui in t. Then si+1−si ≥ m for all i ∈ {1, . . . , `−1}
3. Maximizes `

The method for finding the LNOEC is based on the construction of the evolutionary
matrix D presented in the previous section and the graph G defined as follows

Let G = (V, E) be a directed graph where

V = {vm, . . . vn} ∪ {vs, vt}
E = {(vi, vj) : D(i, j) ≤ k, i ≥ m, j − i ≥ m}

∪ {(vs, vi) : din
i = 0, dout

i > 0 for each vi ∈ V }
∪ {(vi, vt) : din

i > 0, dout
i = 0 for each vi ∈ V }
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LNOEC(t, m, k) B n = |t|, G(V, E), V = {vm, . . . , vn} ∪ {vs, vt}
1 begin

2 D[0..n, 0..n]← Evolutionary-DP(t, m, M)

3 for i← m until n−m do

4 for j ← i + m until n do

5 if D(i, j) < k then G.add edge(vi, vj ,−1)

6 for i← m until n do

7 if din
i = 0 and dout

i > 0 then G.add edge(vs, vi, 0)

8 if din
i > 0 and dout

i = 0 then G.add edge(vi, vt, 0)

9 P= Shortest-Path-DAG(G)

10 return P − {vs, vt}
11 end

Figure 5: LNOEC algorithm

To complete the construction, we define the cost of an edge as follows

c(vi, vj) =

{
0 , if vi, vj ∈ {vs, vt}
−1, otherwise

(14)

The problem of finding the LNOEC is equivalent to the problem of finding a shortest
(i.e., least-cost) source-to-sink path in G. Let us denote the shortest path of G (s  t)
by P =< vs, u1, . . . , u`, vt >. Then we say that the length of the LNOEC is `.

The time complexity for finding the shortest path of a graph G is known to be O(|V |×
|E|) in the general case. However, our graph G does not have cycles and all the edges are
forward (i.e. for each edge (u, v) ∈ V , u appears before v), so G is a topologically sorted
DAG. Hence, we can compute the shortest path of G in O(|V |+ |E|) time.

Fig. 8 shows the algorithm to compute the LNOEC. Note that the function G.add edge(vi, vj , k)
adds the edge (vi, vj) to the graph G, assigning c(vi, vj) = k.
Example. Let the text t be ABCDADCBAD, m=3 and k=1. Table 4 shows the evo-
lutionary matrix for the given input. Fig. 6 contains the resulting topologically sorted
DAG, the shortest path P =< vs, 3, 7, 10, vt > (shaded edges), spell out the longest non-
overlapping evolutionary chain, which is {ABC, ADC, AD}.

4.1 Running time

Assuming that m ≤ w, the time complexity of the algorithm LNOEC is easily seen to be
dominated by the complexity of the Evolutionary-DP algorithm (see Fig. 5 line 2).
Hence, the overall complexity for the LNOEC problem will be O(n2). Fig. 7 shows the
timing1 for different values of m and n. This algorithm can be generalized for any value

1Using a SUN Ultra Enterprise 300MHz running Solaris Unix.
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1 2 3 4 5 6 7 8 9 10

A B C D A D C B A D

1 A 0 1 1 1 0 1 1 1 0 1
2 B 0 1 2 1 1 2 1 1 1
3 C 0 1 2 2 1 2 2 2
4 D 0 1 2 2 2 2 1
5 A 0 1 2 2 1 2
6 D 0 1 2 2 1
7 C 0 1 2 1
8 B 0 1 2
9 A 0 1
10 D 0

Table 4: The Evolutionary Matrix D for t = ABCDADCBAD and m = 3.

vs
vt3 4 5

-1

-1
-1

0

0

0

0

0

0

-1

-1

6 7 8 9 10

Figure 6: Graph G for t = ABCDADCBAD and m = 3.

of m in which case the overall complexity will be O(n2/m). The space complexity will be
O(n + |V |+ |E|).

5 Computing the Longest Nearest-Neighbor Non-Overlapping

Evolutionary Chain

The problem of the longest nearest-neighbor non-overlapping evolutionary chain (LNN-
NOEC) is as follows: given a text t of length n, a pattern p of length m and an integer
k < m/2, find whether the strings of the sequence u1 = p, u2, . . . , u` occur in t and satisfy
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Figure 7: Timing curves for the LNOEC Procedure.

the conditions for LNOEC and minimizes

d =

`−1∑
i=1

γi

where γi is usually the length of the substring (gap) between motif occurrences in the
evolutionary chain, i.e. γi = f(si+1 − si −m), where f is a penalty table.

The computation of the LNNNOEC can be accomplished by redefining equation 14 as
follows

c(vi, vj) =

{
0 , if vi, vj ∈ {vs, vt}
−n + f(si+1 − si −m), otherwise

(15)

For simplicity, let us assume f(x) = x. Fig. 8 shows the algorithm to compute the
LNNNOEC.

6 Computing the Longest Minimum-Weight Non-Overlapping

Evolutionary Chain

The problem of the longest minimum-weight non-overlapping evolutionary chain (LMWNOEC)
is as follows: given a text t of length n, a pattern p of length m and an integer k < m/2,
find whether the strings of the sequence u1 = p, u2, . . . , u` occur in t and satisfy the
conditions for LNOEC and minimizes

e =
`−1∑
i=1

δ(ui, ui+1)
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LNNNOEC(t, m, k) B n = |t|, G(V, E), V = {vm, . . . , vn} ∪ {vs, vt}
1 begin

2 D[0..n, 0..n]← Evolutionary-DP(t, m, M)

3 for i← m until n−m do

4 for j ← i + m until n do

5 if D(i, j) < k then G.add edge(vi, vj ,−n + j − i−m)

6 for i← m until n do

7 if din
i = 0 and dout

i > 0 then G.add edge(vs, vi, 0)

8 if din
i > 0 and dout

i = 0 then G.add edge(vi, vt, 0)

9 P= Shortest-Path-DAG(G)

10 return P − {vs, vt}
11 end

Figure 8: LNNNOEC algorithm

A slightly modification of the LNOEC cost function (Equation 14) will solve the
problem

c(vi, vj) =

{
0 , if vi, vj ∈ {vs, vt}
−n + δ(ui, ui+1), otherwise

(16)

Fig. 9 shows the algorithm for the LMWNOEC problem.
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LMWNOEC(t, m, k) B n = |t|, G(V, E), V = {vm, . . . , vn} ∪ {vs, vt}
1 begin

2 D[0..n, 0..n]← Evolutionary-DP(t, m, M)

3 for i← m until n−m do

4 for j ← i + m until n do

5 if D(i, j) < k then G.add edge(vi, vj ,−n + D(i, j))

6 for i← m until n do

7 if din
i = 0 and dout

i > 0 then G.add edge(vs, vi, 0)

8 if din
i > 0 and dout

i = 0 then G.add edge(vi, vt, 0)

9 P= Shortest-Path-DAG(G)

10 return P − {vs, vt}
11 end

Figure 9: LMWNOEC algorithm

7 Conclusion and Open problems

Here we presented practical algorithms for the computation of several variants of the evolu-
tionary chain problem. The the Longest Non-Overlapping Evolutionary Chain, Comput-
ing the Longest Nearest-Neighbor Non-Overlapping Evolutionary Chain and Computing
the Longest Minimum-Weight Non-Overlapping Evolutionary Chain, which are of practi-
cal importance.

The problems presented here need to be further investigated under a variety of simi-
larity or distance rules (see [5]). For example, Hamming distance of two strings u and v
is defined to be the number of substitutions necessary to get u from v (u and v have the
same length).

Finally comparisons of the empirical results obtained and to those that can be obtained
from software library of string algorithms (see [7]) should be drawn.
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