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Abstract

With every linear code is associated a permutation group whose cycle index is the
weight enumerator of the code (up to a trivial normalisation).

There is a class of permutation groups (theIBIS groups) which includes the groups
obtained from codes as above. With every IBIS group is associated a matroid; in the case
of a group from a code, the matroid differs only trivially from that which arises directly
from the code. In this case, the Tutte polynomial of the code specialises to the weight
enumerator (by Greene’s Theorem), and hence also to the cycle index. However, in another
subclass of IBIS groups, thebase-transitive groups, the Tutte polynomial can be derived
from the cycle index but notvice versa.

I propose a polynomial for IBIS groups which generalises both Tutte polynomial and
cycle index.

1 Cycle index

This note contains some remarks on the relations between the cycle index of a permutation
group, the weight enumerator of a linear code, and the Tutte polynomial of a matroid. For more
information on permutation groups, codes, and matroids, see [6, 10, 14] respectively.

Let G be a permutation group on a setΩ, where|Ω|= n. For each elementg∈G, let ci(g)
be the number ofi-cycles occurring in the cycle decomposition ofg. Now thecycle indexof G
is the polynomialZ(G) in indeterminatess1, . . . ,sn given by

Z(G) =
1
|G| ∑g∈G

sc1(g)
1 · · ·scn(g)

n .

This can be regarded as a multivariate probability generating function for the cycle structure of
a random element ofG (chosen from the uniform distribution). In particular,

PG(x) = Z(G)(s1← x,si ← 1 for i > 1)

the electronic journal of combinatorics 9 (2002), #N2 1



is the probability generating function for the number of fixed points of a random element ofG,
so that substitutingx← 0 gives the proportion of derangements inG. (Here and subsequently,
Z(G)(si← ui) denotes the result of substitutingui for si in Z(G).)

Many counting problems related toG are solved by specialisations of the cycle index: most
notably, the enumeration ofG-orbits on functions fromΩ to a weighted set is given by the
Redfield–P´olya Cycle Index Theorem. Other examples:

• Z(G)(s1← x+1,si ← 1 for i > 1) is the exponential generating function for the number
of G-orbits onk-tuples of distinct points (note that this function isPG(x+ 1), compare
Bostonet al. [1]);

• Z(G)(si ← xi + 1) is the ordinary generating function for the number of orbits ofG on
k-element subsets ofΩ;

• k[(∂/∂sk)Z(G)](si ← 1) is thekth component of theParker vectorof G, the number of
orbits ofG on the set ofk-cycles occurring in its elements (Gewurz [7]).

2 A group from a linear code

Let C be an[n,k] code over GF(q) (a k-dimensional subspace of GF(q)n). Theweight enumer-
ator of C is the polynomial

WC(X,Y) = ∑
v∈C

Xn−wt(v)Ywt(v),

where theweightwt(v) of v is the number of non-zero coordinates ofv.
We construct a permutation groupG from C as follows: the permutation domainΩ is the

disjoint union ofn copies of GF(q), and a codeword acts by translating theith copy by itsith
coordinate. More formally,Ω = GF(q)×{1, . . . ,n}, and the codewordv = (v1, . . . ,vn) acts as
the permutation

(x, i) 7→ (x+vi , i).

Now G is isomorphic to the additive group ofC (so |G| = |C|), and all the cycles ofG
have length 1 orp, wherep is the characteristic of GF(q), soZ(G) involvess1 andsp only.
Furthermore, we have:

1
|C|WC(X,Y) = Z(G;s1← X1/q,sp←Yp/q),

For a zero coordinate inv gives rise toq fixed points, and a non-zero coordinate toq/p cycles
of lengthp.
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3 Symmetrised weight enumerator

There has been a lot of interest recently (arising from [9]) in codes overZ4 (the integers mod 4);
that is, additive subgroups ofZn

4. In place of the weight enumerator, one usually considers the
symmetrised weight enumerator SC(X,Y,Z) defined by

SC(X,Y,Z) = ∑
v∈C

Xn0(v)Yn2(v)Zn13(v),

wheren0(v), n2(v) andn13(v) are respectively the numbers of coordinates ofv which are 0, 2,
or (1 or 3) mod 4.

We can construct a group from aZ4-code just as in the linear case, replacing GF(q) by Z4.
Arguing as above we see that

1
|C|SC(X,Y,Z) = Z(G;s1← X1/4,s2←Y1/2,s4← Z).

More generally, letA1, . . . ,An be groups of the same order. We can regard a group code over
the alphabetsA1, . . . ,An as a subgroupG of A1×·· ·×An. Then the cycle index ofG, suitably
normalised, is a kind of symmetrised weight enumerator of the form

∑
g∈G

∏
m

Xom(g)
m ,

whereom(g) is the number of coordinates ofg which have orderm (in the appropriate group).

4 Tutte polynomial

With a linear [n,k] codeC we may associate in a canonical way a matroidMC on the set
{1, . . . ,n} whose independent sets are the setsI for which the columns(ci : i ∈ I) of a gen-
erator matrix forC are linearly independent. Any matroidM on the ground setE has aTutte
polynomial, a two-variable polynomial of the form

T(M;x,y) = ∑
A⊆E

(x−1)ρ(E)−ρ(A)(y−1)|A|−ρ(A),

whereρ is the rank function ofM.
Greene [8] showed the following theorem:

Theorem 4.1 Let M be the matroid associated with a linear[n,k] code C overGF(q). Then the
weight enumerator of C is a specialisation of the Tutte polynomial of M:

WC(X,Y) = Yn−k(X−Y)kT

(
MC;x← X +(q−1)Y

X−Y
,y← X

Y

)
.
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We might ask whether it is possible to associate an analogue of the Tutte polynomial with
any permutation group, and if so, what is its relation to the cycle index. Recent results of
Rutherford [13] show that in general this will be very difficult.

Rutherford associated a three-variable analogue of the Tutte polynomial with anyZ4-code
C. This polynomial behaves in the expected way with respect to the analogues of restriction and
contraction, and it specialises to the weight enumerators of each of the “elementary divisors”
of C (the two binary codesC mod 2 and(C∩ 2Zn

4)/2). However, it does not specialise to
the symmetrised weight enumerator ofC; indeed, Rutherford showed that, under reasonable
assumptions, there is no analogue of the Tutte polynomial which does so specialise.

In the next section we describe a class of permutation groups which give rise to matroids
(and hence Tutte polynomials) in a natural way.

5 IBIS groups

Let G be a permutation group onΩ. A basefor G is a sequence of points ofΩ whose stabiliser
is the identity. It isirredundant if no point in the sequence is fixed by the stabiliser of its
predecessors.

Cameron and Fon-Der-Flaass [3] showed:

Theorem 5.1 The following three conditions on a permutation group are equivalent:

(a) all irredundant bases have the same number of points;

(b) re-ordering any irredundant base gives an irredundant base;

(c) the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is called anIBIS group(short for Irredun-
dant Bases of Invariant Size).

For example, any Frobenius group is an IBIS group of rank 2, associated with the uniform
matroid; the general linear and symplectic groups, acting on their natural vector spaces, are IBIS
groups, associated with the vector matroid (defined by all vectors in the space); the Mathieu
groupM24 in its natural action is an IBIS group of rank 7.

The permutation group constructed from an[n,k] linear code over GF(q) in Section 2 is an
IBIS group of degreenqand rankk; a base is a set of sizek containing one point from each copy
of GF(q) corresponding to a set ofk linearly independent columns of a generator matrix. The
associated matroid is obtained from the matroid of the code simply by replacing each element
by a set ofq parallel elements. It is straightforward to obtain the Tutte polynomial of the group
matroid from that of the code matroid andvice versa, using the following elementary result:

Proposition 5.2 If Mq is obtained from M by replacing each element by q parallel elements,
then

T(Mq;x,y) =
(

yq−1
y−1

)ρ(E)

T

(
M;x← xy−x−y+yq

yq−1
,y← yq

)
.
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Any semiregular permutation group of degreen is an IBIS group. The corresponding ma-
troid consists simply ofn parallel elements. The cycle index conveys much more information,
for example, the number of orbits ofG and the number of elements of each order inG. (This
case is a “generalised repetition code” of lengthn overG.)

The authors of [3] asked for a classification of the matroids associated with IBIS groups.
In view of the observation that the group associated with any linear code is an IBIS group,
this seems hopelessly optimistic. Note, however, that the IBIS groups associated with uniform
matroids of rank greater than 2 are explicitly known.

In the rest of the paper, I will use “base” (of a permutation group) to mean “irredundant
base”.

6 Perfect matroid designs

A perfect matroid design, or PMD, is a matroid having the property that the cardinality of a flat
depends only on its rank. Not very many PMDs are known: among the geometric matroids,
only uniform matroids, truncations of projective and affine spaces, Steiner systems, and Hall
triple systems. See Deza [5] for a survey.

The following theorem is due to Mphako [12]: I outline the proof.

Theorem 6.1 Let M be a PMD of rank k whose i-flats have cardinality ni for i ≤ k. The Tutte
polynomial of M is determined by the numbers n0, . . . ,nk.

Proof It is enough to determine the numbera(m, i) of subsets of the domain which have car-
dinality m and ranki for all m andi: for

T(M;x,y) =
k

∑
i=0

n

∑
m=i

a(m, i)(x−1)k−i(y−1)m−i.

Let s(i, j) be the number ofi-flats containing a givenj-flat for j ≤ i. Then

s(i, j) =
i−1

∏
h= j

n−nh

ni−nh
,

s(i,0)
(

ni

m

)
=

i

∑
j=0

a(m, j)s(i, j).

The first equation determines the numberss(i, j). The second is a a triangular system of equa-
tions fora(m, j) with diagonal coefficientss(i, i) = 1. We see that thea(m, j) are indeed deter-
mined.

The next result is not immmediately related to the topic of this paper, but we will see an
application in the next section. We say that the action of a groupG on a matroidM is flat if the
fixed points of any element ofG form a flat of the matroid. Any group has a flat action on the
free matroid; and any linear group has a flat action on the vector matroid of its vector space.
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An IBIS group has a flat action on its associated matroid. (This is easily proved by induction,
on noting that the loops of the matroid are the global fixed points of the group, since any non-
fixed point is the first point in some irredundant base.) The converse is far from true: as we
noted, every permutation group has a flat action on the free matroid.

Theorem 6.2 Let M be a PMD of rank k on n elements, in which an i-flat has cardinality ni

for i = 0. . . ,k (with nk = n). Then there are numbers b(m, i), for 0≤ m≤ n and0≤ i ≤ k,
depending only on n0, . . . ,nk, such that the following is true: If a group G has a flat action on
M and has xi orbits on independent i-tuples and ym orbits on m-tuples of distinct elements, then

ym =
k

∑
i=0

b(m, i)xi

for m= 0, . . . ,n.

Remarks: 1. In the case of the free matroid, the matrix(b(m, i)) is the identity. For the vector
matroid, it is the composition of the matrix of Gaussian coefficients with the matrix of Stirling
numbers of the second kind (Cameron and Taylor [4]).

2. The exponential generating function for the numbersy0, . . . ,yn is PG(x+ 1) (Boston
et al. [1]); so the numbersx0, . . . ,xk determinePG(x).

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear relation holds be-
tween the number of linearly independenti-tuples fixed by an arbitrary elementg∈ G and the
total number ofm-tuples of distinct elements fixed byg. Since the fixed points ofG form a flat,
it suffices to establish such a relation between the numbers of tuples in any flat ofM.

So letF be anr-flat. Then

xi =
i−1

∏
j=0

(nr−nj) = Xi(nr),

ym =
m−1

∏
s=0

(nr −s) = Ym(nr),

whereXi andYi are polynomials of degreei. It follows immediately that the theorem holds for
m≤ k, with (b(m, i)) the transition matrix between the two sequences of polynomials.

For m> k, let Fm(x) be the unique monic polynomial of degreem having rootsn0, . . . ,nk

and no term inxl for k+1≤ l ≤m−1. UsingFm, we can expressnm
i (and henceYm(ni)) as a

linear combination of 1,ni, . . . ,nk
i (and hence ofX0(ni), . . . ,Xk(ni)). This concludes the proof.

7 Base-transitive groups

If G is a permutation group which permutes its (irredundant) bases transitively, thenG is clearly
an IBIS group, and the associated matroid is a PMD. Such groups have been given the some-
what unfortunate name of “geometric groups”; I will simply call thembase-transitive groups.

the electronic journal of combinatorics 9 (2002), #N2 6



The base-transitive groups of rank greater than 1 were determined by Maund [11], using the
Classification of Finite Simple Groups; those of sufficiently large rank by Zil’ber [15] by geo-
metric methods not requiring the Classification. Base-transitive groups of rank 1 are just regular
permutation groups (possibly with some global fixed points).

Theorem 7.1 For a base-transitive group G, the p.g.f. PG(x) and the Tutte polynomial of the
associated matroid determine each other, and each is determined by knowledge of the numbers
of fixed points of elements of G.

Proof A permutation groupG is base-transitive if and only if the stabiliser of any sequence of
points acts transitively on the points that it doesn’t fix (if any). Thus the fixed points of every
element form a flat. Also, by Jordan’s theorem (asserting that a transitive permutation group
of degree greater than 1 contains a fixed-point-free element), every flat is the fixed point set of
some element. So the numbers of fixed points of the elements ofG determine the cardinalities
of flats, and hence the Tutte polynomial of the matroid, by Theorem 6.1.

Theorem 6.2 shows that the numbersn0, . . . ,nk of fixed points of elements in a base-transitive
group determine the functionPG(x), since the numbersx0, . . . ,xk are all equal to 1.

To obtainPG(x) directly from the Tutte polynomial, we show the following:

PG(x+1) =
n

∑
m=0

(
k

∑
i=0

a(m, i)
r(i)

)
xm,

wheren = nk is the number of points, andr(i) is the number of independenti-tuples in the
matroid; as in Theorem 6.1,a(m, i) is the number ofm-sets of ranki.

To prove this, we note that eachm-set can be ordered inm! different ways. If the rank of the
m-set isi, the resulting sequence has stabiliser of order∏k−1

j=i (n−nj), and so lies in an orbit of

size∏i−1
j=0(n−nj) = r(i). Thus, the number of orbits on such tuples isa(m, i)m!/r(i). We obtain

the total number of orbits onm-tuples by summing overi, and so we find that the exponential
generating function is the right-hand side of the displayed equation. But this e.g.f. isPG(x+1),
by the result of Bostonet al. [1].

As noted, even for a regular permutation group, knowledge of the fixed point numbers does
not determine the cycle index. A regular permutation group is base-transitive; we have seen that
the cycle index contains more information than the Tutte polynomial in this case.

8 An example

Unfortunately, the cycle index does not in general tell us whether a permutation group is base-
transitive. The simplest counterexample consists of the two permutation groups of degree 6,

G1 = 〈(1,2)(3,4),(1,3)(2,4)〉, G2 = 〈(1,2)(3,4),(1,2)(5,6)〉.
The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is the group arising
from the binary even-weight code of length 3), but not base-transitive. A simple modification
of this example shows that the cycle index does not determine whether the IBIS property holds.
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Suppose we are given the cycle index of one of these groups, namelyZ(G) = 1
4(s6

1+3s2
1s2

2),
or simply the p.g.f. for fixed points, namelyPG(x) = 1

4(x6 +3x2).

• If we are told that the group is base-transitive, then we know that its matroid is a PMD
with n0 = 2,n1 = 6, and so we can compute that its Tutte polynomial isy2(y3+y2+y+x).

• If we are told that the group arises from a linear codeC, then we can deduce that
WC(X,Y) = X3 + 3XY2. In general the Tutte polynomial is not computable from the
weight enumerator, but in this case the code must be the even-weight code and so the
Tutte polynomial of the code matroid isx2 + x+ y. Now Proposition 5.2 shows that the
Tutte polynomial of the group matroid isy4 +2y3 +3y2+y+3xy+x2 +x.

• This matroid on 6 elements arises from two different base-transitive groups of order 24.
Using any of several methods we’ve seen, it follows that, for any such groupG, we have
PG(x) = 1

24(x
6 +9x2 +14). However, the stabiliser of a point is cyclic of order 4 in one

case and is a Klein group in the other, so the two groups have different cycle index.

9 Ingredient X?

In some IBIS groups, the Tutte polynomial of the matroid determines the cycle index, while in
others, it is the other way about. Is there a more general gadget including both polynomials?

Following the definition of the Tutte polynomial, we try for a sum, over subsets, of “local”
terms. First, some terminology and observations. LetG be a permutation group onΩ. For
any subsetA of Ω, GA and G(A) are the setwise and pointwise stabilisers ofA, andGA

A the
permutation group induced onA by its setwise stabiliser (so thatGA

A
∼= GA/G(A)). Let b(G)

denote the minimum size of a base forG. (This is the rank of the associated matroid ifG is an
IBIS group.)

Now we have

(a) ∑
A∈P Ω/G

Z(GA
A) = Z(G;si← si +1 for i = 1, . . . ,n),

whereP Ω/G denotes a set of orbit representatives forG on the power set ofΩ. This
is proved in [2], where it is exploited to extend the definition of cycle index to certain
infinite permutation groups.

(b) If G is an IBIS group, then the fixed point set ofG(A) is the flat spanned byA; soG(A) is
an IBIS group, andρ(A) = b(G)−b(G(A)). In fact,GA

A is also an IBIS group, but its base
size may be smaller thanρ(A).

Now we define theTutte cycle indexof G to be the polynomial inu,v,s1, . . . ,sn given by

ZT(G) =
1
|G| ∑

A⊆Ω
u|GA|vb(G(A))Z(GA

A).

One obvious flaw in this definition is that the factorsu|GA| andvb(G(A)) are not really “local”.
Nevertheless, we have the properties we are looking for:
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Proposition 9.1 Let G be an IBIS permutation group, with associated matroid M.

(a)

(
∂

∂u
ZT(G)

)
(u← 1,v← 1) = Z(G;si ← si +1 for i = 1, . . . ,n).

(b) |G|ZT(G;u← 1,si ← t i for i = 1, . . . ,n) = tb(G)T(M;x← vt−1+1,y← t +1).

Proof (a) TheG-orbit of the subsetA has cardinality|G|/|GA|. Dividing by this number has
the same effect as choosing one representative set from each orbit. Now apply point (a) before
the Proposition.

(b) Point (b) before the Proposition shows thatρ(A) = b(G)−b(G(A)). Also, substituting
t i for si in Z(H) givestn, wheren is the degree of the permutation groupH. The rest is just
manipulation.

Part (a) does not require thatG is an IBIS group. The indeterminatev is irrelevant for this
part; we could substitutev← 1 and delete all reference to matroid rank.

As a final speculation, the (irredundant) bases in an arbitrary permutation group form a
combinatorial structure more general than a matroid; perhaps there is an analogue of Tutte
polynomial or some generalisation for such structures, which would be related to the cycle
index in the group case.
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