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Abstract

With every linear code is associated a permutation group whose cycle index is the
weight enumerator of the code (up to a trivial normalisation).

There is a class of permutation groups (tBéS group$ which includes the groups
obtained from codes as above. With every IBIS group is associated a matroid; in the case
of a group from a code, the matroid differs only trivially from that which arises directly
from the code. In this case, the Tutte polynomial of the code specialises to the weight
enumerator (by Greene’s Theorem), and hence also to the cycle index. However, in another
subclass of IBIS groups, tHease-transitive groupghe Tutte polynomial can be derived
from the cycle index but notice versa

| propose a polynomial for IBIS groups which generalises both Tutte polynomial and
cycle index.

1 Cycle index

This note contains some remarks on the relations between the cycle index of a permutation
group, the weight enumerator of a linear code, and the Tutte polynomial of a matroid. For more
information on permutation groups, codes, and matroids, see [6, 10, 14] respectively.

Let G be a permutation group on a €2t where|Q| = n. For each elemerg € G, letci(g)
be the number ofcycles occurring in the cycle decompositiongofNow thecycle indexof G
is the polynomiak(G) in indeterminates;, ..., S, given by

_ 1 c @O @
A PR S

This can be regarded as a multivariate probability generating function for the cycle structure of
a random element @& (chosen from the uniform distribution). In particular,

Ps(X) = Z(G)(s1 < X,§ « 1 fori > 1)
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is the probability generating function for the number of fixed points of a random elem@ént of
so that substituting < O gives the proportion of derangementsdn(Here and subsequently,
Z(G)(s < u;) denotes the result of substitutiogfor 5 in Z(G).)

Many counting problems related @are solved by specialisations of the cycle index: most
notably, the enumeration @-orbits on functions fronQQ to a weighted set is given by the
Redfield—Blya Cycle Index Theorem. Other examples:

o Z(G)(sy — x+1,5 < 1fori > 1) is the exponential generating function for the number
of G-orbits onk-tuples of distinct points (note that this functionRs(x+ 1), compare
Bostonet al. [1]);

e Z(G)(s < X +1) is the ordinary generating function for the number of orbitsSodn
k-element subsets @1;

e k[(0/0%)Z(G)](s < 1) is thekth component of th&arker vectorof G, the number of
orbits of G on the set ok-cycles occurring in its elements (Gewurz [7]).

2 A group from alinear code

Let C be an[n, k] code over GFq) (ak-dimensional subspace of GF"). Theweight enumer-
ator of C is the polynomial

VVc(X,Y) = ;Xn—wt(V)th(v)’

ve

where theweightwt(v) of v is the number of non-zero coordinates/of
We construct a permutation gro@pfrom C as follows: the permutation domafd is the
disjoint union ofn copies of GFq), and a codeword acts by translating ttiecopy by itsith
coordinate. More formallyQd = GF(q) x {1,...,n}, and the codeword = (vy,...,V,) acts as
the permutation
(X,i) — (X—i—Vi,i).

Now G is isomorphic to the additive group & (so |G| = |C|), and all the cycles o6
have length 1 op, wherep is the characteristic of GF), soZ(G) involvess; andsy only.
Furthermore, we have:

1

gUeXY) =2(Gis XY, 5p — YP/9),
For a zero coordinate mgives rise tag fixed points, and a non-zero coordinatejip cycles
of lengthp.
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3 Symmetrised weight enumerator

There has been a lot of interest recently (arising from [9]) in codesfvéhe integers mod 4);
that is, additive subgroups @,. In place of the weight enumerator, one usually considers the
symmetrised weight enumeratas(X,Y, Z) defined by

<(X,Y,Z2) = zc)(”O(V)YHZ(V)Zﬂla(V)7

ve

whereng(v), na(v) andnyz(v) are respectively the numbers of coordinates which are 0, 2,
or (1 or 3) mod 4.

We can construct a group fromZa-code just as in the linear case, replacing Gy Z4.
Arguing as above we see that

% (X,Y,Z) = Z(G;s1 « XY 55 — Y2 54— 7).

More generally, lef\s,. .., A, be groups of the same order. We can regard a group code over
the alphabets\, ..., A, as a subgrouf of A; x --- x A,. Then the cycle index dB, suitably
normalised, is a kind of symmetrised weight enumerator of the form

Xr%m(g)’
PN

whereom(g) is the number of coordinates gfwhich have ordem (in the appropriate group).

4 Tutte polynomial

With a linear [n,k] codeC we may associate in a canonical way a matrigd on the set
{1,...,n} whose independent sets are the $efisr which the columnggc; ;i € |) of a gen-
erator matrix forC are linearly independent. Any matroM on the ground seE has aTutte
polynomial a two-variable polynomial of the form

T(M;x,y) = ZE(X— 1)PE)-—P(A) (y _ 1)IAI-P(A)
AC

wherep is the rank function oM.
Greene [8] showed the following theorem:

Theorem 4.1 Let M be the matroid associated with a lindark| code C ovelGF(q). Then the
weight enumerator of C is a specialisation of the Tutte polynomial of M:

X+(q—-1)Y X).

WeOLY) =YK (Mg XYy D
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We might ask whether it is possible to associate an analogue of the Tutte polynomial with
any permutation group, and if so, what is its relation to the cycle index. Recent results of
Rutherford [13] show that in general this will be very difficult.

Rutherford associated a three-variable analogue of the Tutte polynomial wittyaoode
C. This polynomial behaves in the expected way with respect to the analogues of restriction and
contraction, and it specialises to the weight enumerators of each of the “elementary divisors”
of C (the two binary code€ mod 2 and(Cn2z})/2). However, it does not specialise to
the symmetrised weight enumerator@f indeed, Rutherford showed that, under reasonable
assumptions, there is no analogue of the Tutte polynomial which does so specialise.

In the next section we describe a class of permutation groups which give rise to matroids
(and hence Tutte polynomials) in a natural way.

5 IBIS groups

Let G be a permutation group d@. A basefor G is a sequence of points &f whose stabiliser
is the identity. It isirredundantif no point in the sequence is fixed by the stabiliser of its
predecessors.

Cameron and Fon-Der-Flaass [3] showed:

Theorem 5.1 The following three conditions on a permutation group are equivalent:
(a) all irredundant bases have the same number of points;
(b) re-ordering any irredundant base gives an irredundant base;

(c) the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is calledBi® group(short for Irredun-
dant Bases of Invariant Size).

For example, any Frobenius group is an IBIS group of rank 2, associated with the uniform
matroid; the general linear and symplectic groups, acting on their natural vector spaces, are IBIS
groups, associated with the vector matroid (defined by all vectors in the space); the Mathieu
groupMoyg4 in its natural action is an IBIS group of rank 7.

The permutation group constructed from[ark] linear code over Gff) in Section 2 is an
IBIS group of degre@gand rankk; a base is a set of sixecontaining one point from each copy
of GF(q) corresponding to a set &flinearly independent columns of a generator matrix. The
associated matroid is obtained from the matroid of the code simply by replacing each element
by a set ofg parallel elements. It is straightforward to obtain the Tutte polynomial of the group
matroid from that of the code matroid amte versausing the following elementary result:

Proposition 5.2 If Mg is obtained from M by replacing each element by g parallel elements,

then )
o (Y-1\P L Xy—X—y+yA
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Any semiregular permutation group of degrees an IBIS group. The corresponding ma-
troid consists simply oh parallel elements. The cycle index conveys much more information,
for example, the number of orbits & and the number of elements of each ordeGin(This
case is a “generalised repetition code” of lengthverG.)

The authors of [3] asked for a classification of the matroids associated with IBIS groups.
In view of the observation that the group associated with any linear code is an IBIS group,
this seems hopelessly optimistic. Note, however, that the IBIS groups associated with uniform
matroids of rank greater than 2 are explicitly known.

In the rest of the paper, | will use “base” (of a permutation group) to mean “irredundant
base”.

6 Perfect matroid designs

A perfect matroid desigror PMD, is a matroid having the property that the cardinality of a flat
depends only on its rank. Not very many PMDs are known: among the geometric matroids,
only uniform matroids, truncations of projective and affine spaces, Steiner systems, and Hall
triple systems. See Deza [5] for a survey.

The following theorem is due to Mphako [12]: | outline the proof.

Theorem 6.1 Let M be a PMD of rank k whose i-flats have cardinalityfor i < k. The Tutte
polynomial of M is determined by the numbegs.n. , n.

Proof It is enough to determine the numbsim,i) of subsets of the domain which have car-
dinality mand rank for all mandi: for

k n

T(M;x,y) = Z) S ami)(x—1)* " (y-1™".

Lets(i, j) be the number offlats containing a givelfj-flat for j <i. Then

i1ln_p,

i) = [a—m.

h=j

si0)(p) = 3 am s
2

The first equation determines the numb&isj). The second is a a triangular system of equa-
tions fora(m, j) with diagonal coefficients(i,i) = 1. We see that tha(m, j) are indeed deter-
mined.

The next result is not immmediately related to the topic of this paper, but we will see an
application in the next section. We say that the action of a g®@op a matroidM is flat if the
fixed points of any element & form a flat of the matroid. Any group has a flat action on the
free matroid; and any linear group has a flat action on the vector matroid of its vector space.
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An IBIS group has a flat action on its associated matroid. (This is easily proved by induction,
on noting that the loops of the matroid are the global fixed points of the group, since any non-
fixed point is the first point in some irredundant base.) The converse is far from true: as we
noted, every permutation group has a flat action on the free matroid.

Theorem 6.2 Let M be a PMD of rank k on n elements, in which an i-flat has cardinality n
fori =0...,k (with nc =n). Then there are numbergr,i), for0 < m<nand0 <i <Kk,

depending only ond). .., ng, such that the following is true: If a group G has a flat action on
M and has xorbits on independent i-tuples ang prbits on m-tuples of distinct elements, then

k
Ym= Y b(m,i)x
m i;j |
form=0,...,n.

Remarks: 1. Inthe case of the free matroid, the matftixm,i)) is the identity. For the vector
matroid, it is the composition of the matrix of Gaussian coefficients with the matrix of Stirling
numbers of the second kind (Cameron and Taylor [4]).

2. The exponential generating function for the numbeys. ..y, is Ps(x+ 1) (Boston
et al.[1]); so the numberso, ..., % determinePg(X).

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear relation holds be-
tween the number of linearly independentiples fixed by an arbitrary elemegt& G and the
total number ofm-tuples of distinct elements fixed lgy Since the fixed points d& form a flat,
it suffices to establish such a relation between the numbers of tuples in anyMat of
So letF be anr-flat. Then

i—1

X = [](r—nj)=X(n),
J]:L j
m—1

Ym = [L(nr —8) = Ym(nr),

whereX; andY; are polynomials of degree It follows immediately that the theorem holds for
m < k, with (b(m,i)) the transition matrix between the two sequences of polynomials.

For m > k, let Fy(X) be the unique monic polynomial of degreehaving rootsno, . .., Nk
and no term ik fork+1 <1 <m-1. UsingFn, we can express™ (and hencé/m(n;)) as a
linear combination of In;, .. .,n}‘ (and hence 0Kp(nj), ..., Xk(n;)). This concludes the proof.

7 Base-transitive groups
If Gis a permutation group which permutes its (irredundant) bases transitively;tisartearly

an IBIS group, and the associated matroid is a PMD. Such groups have been given the some-
what unfortunate name of “geometric groups”; | will simply call thease-transitive groups
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The base-transitive groups of rank greater than 1 were determined by Maund [11], using the
Classification of Finite Simple Groups; those of sufficiently large rank by Zil'ber [15] by geo-
metric methods not requiring the Classification. Base-transitive groups of rank 1 are just regular
permutation groups (possibly with some global fixed points).

Theorem 7.1 For a base-transitive group G, the p.g.fc) and the Tutte polynomial of the
associated matroid determine each other, and each is determined by knowledge of the numbers
of fixed points of elements of G.

Proof A permutation grous is base-transitive if and only if the stabiliser of any sequence of
points acts transitively on the points that it doesn't fix (if any). Thus the fixed points of every
element form a flat. Also, by Jordan’s theorem (asserting that a transitive permutation group
of degree greater than 1 contains a fixed-point-free element), every flat is the fixed point set of
some element. So the numbers of fixed points of the elemer@sdetermine the cardinalities
of flats, and hence the Tutte polynomial of the matroid, by Theorem 6.1.

Theorem 6.2 shows that the numbugs. . ., ny of fixed points of elements in a base-transitive
group determine the functidPs(x), since the numbers, ..., x are all equal to 1.

To obtainPg(x) directly from the Tutte polynomial, we show the following:

n k :
Pol+1)= 3 (;%) .

wheren = ny is the number of points, andi) is the number of independentuples in the
matroid; as in Theorem 6.8(m,i) is the number ofm-sets of rank.

To prove this, we note that eaokset can be ordered m! different ways. If the rank of the
m-set isi, the resulting sequence has stabiliser of on[qﬁil(n— nj), and so lies in an orbit of
sizeﬂij;%(n— nj) =r(i). Thus, the number of orbits on such tuplea(is,i)m! /r(i). We obtain
the total number of orbits om-tuples by summing over and so we find that the exponential
generating function is the right-hand side of the displayed equation. But this e Rs{xis- 1),
by the result of Bostoet al.[1].

As noted, even for a regular permutation group, knowledge of the fixed point numbers does
not determine the cycle index. A regular permutation group is base-transitive; we have seen that
the cycle index contains more information than the Tutte polynomial in this case.

8 Anexample

Unfortunately, the cycle index does not in general tell us whether a permutation group is base-
transitive. The simplest counterexample consists of the two permutation groups of degree 6,

G1= <(17 2)(37 4)? (17 3)(274)>7 G = <(17 2)(374)7 (17 2)(57 6>>

The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is the group arising
from the binary even-weight code of length 3), but not base-transitive. A simple modification
of this example shows that the cycle index does not determine whether the IBIS property holds.
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Suppose we are given the cycle index of one of these groups, nZif@&)y= (s + 3s?s3),
or simply the p.g.f. for fixed points, nameBs(X) = %(x6+3x2).

o If we are told that the group is base-transitive, then we know that its matroid is a PMD
with ng = 2, n; = 6, and so we can compute that its Tutte polynomigfig® +y? +y+x).

o If we are told that the group arises from a linear cdilethen we can deduce that
We(X,Y) = X34 3XY2. In general the Tutte polynomial is not computable from the
weight enumerator, but in this case the code must be the even-weight code and so the
Tutte polynomial of the code matroid i€ + x+y. Now Proposition 5.2 shows that the
Tutte polynomial of the group matroid y& + 2y 4 3y? 4+ y + 3xy+ X2 4 X.

e This matroid on 6 elements arises from two different base-transitive groups of order 24.
Using any of several methods we've seen, it follows that, for any such geowe have
Po(X) = 5 (X8 +9x2 + 14). However, the stabiliser of a point is cyclic of order 4 in one
case and is a Klein group in the other, so the two groups have different cycle index.

9 Ingredient X?

In some IBIS groups, the Tutte polynomial of the matroid determines the cycle index, while in
others, it is the other way about. Is there a more general gadget including both polynomials?
Following the definition of the Tutte polynomial, we try for a sum, over subsets, of “local”
terms. First, some terminology and observations. Gdie a permutation group of2. For
any subsef of Q, Ga and G, are the setwise and pointwise stabilisersApfand Gﬁ the
permutation group induced oh by its setwise stabiliser (so th&y = Ga/Ga)- Letb(G)
denote the minimum size of a base r (This is the rank of the associated matroiifs an
IBIS group.)
Now we have

(a) Z(Gh) =Z(G;s s +1fori=1,....n),
AcPQ/G
whereP Q/G denotes a set of orbit representatives ®on the power set of). This
is proved in [2], where it is exploited to extend the definition of cycle index to certain

infinite permutation groups.

(b) If Gis an IBIS group, then the fixed point set@fy, is the flat spanned b&; so G, is
an IBIS group, ang(A) = b(G) —b(Ga)). In fact,Gj is also an IBIS group, but its base
size may be smaller thas(A).

Now we define th@utte cycle indexf G to be the polynomial i, v, s1,. .., S, given by

1
- IGal\p(G(a)) A
ZT(G) ‘ G‘Azg ulCAPCRIZ(GR).

One obvious flaw in this definition is that the factaf§4 andv?(®») are not really “local”.
Nevertheless, we have the properties we are looking for:
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Proposition 9.1 Let G be an IBIS permutation group, with associated matroid M.
(@) (%ZT(G)) (U—1v—1)=Z(G;5«—s+1fori=1,...,n).

(b) [G|IZT(Gu—1,5 —t fori=1,....n) =tPCTM;x—wvt 1+1y—t+1).

Proof (a) TheG-orbit of the subsef has cardinalityG|/|Ga|. Dividing by this number has
the same effect as choosing one representative set from each orbit. Now apply point (a) before
the Proposition.

(b) Point (b) before the Proposition shows tha#) = b(G) — b(Ga)). Also, substituting
t' for 5 in Z(H) givest", wheren is the degree of the permutation grodp The rest is just
manipulation.

Part (a) does not require th@tis an IBIS group. The indeterminatds irrelevant for this
part; we could substitute< 1 and delete all reference to matroid rank.

As a final speculation, the (irredundant) bases in an arbitrary permutation group form a
combinatorial structure more general than a matroid; perhaps there is an analogue of Tutte
polynomial or some generalisation for such structures, which would be related to the cycle
index in the group case.
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