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Abstract
Let G be a connected graph that is the edge-disjoint union of two paths of length

n, where n ≥ 2. Using a result of Thomason on decompositions of 4-regular graphs
into pairs of Hamiltonian cycles, we prove that G has a third path of length n.
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The “two-path conjecture” states that if a graph G is the edge-disjoint union of two
paths of length n with at least one common vertex, then the graph has a third subgraph
that is also a path of length n. For example, the complete graph K4 is an edge-disjoint
union of two paths of length 3, each path meeting the other in four vertices. The cycle C6

is the edge-disjoint union of two paths of length 3 with common endpoints. In the first
case, the graph has twelve paths of length 3; in the second there are six such paths.

The two-path conjecture arose in a problem on randomly decomposable graphs. An
H-decomposition of a graph G is a family of edge disjoint H–subgraphs of G whose union
is G. An H-decomposable graph G is randomly H–decomposable if any edge disjoint
family of H–subgraphs of G can be extended to an H–decomposition of G. (This concept
was introduced by Ruiz in [7].)

Randomly Pn-decomposable graphs were studied in [1, 5, 6, 4]. In attempting to
classify randomly Pn-decomposable graphs, in [5] and [6] it was necessary to know whether
the edge-disjoint union of two copies of Pn could have a unique Pn-decomposition. The
two-path conjecture is stated as an unproved lemma in [3].

Our notation follows [2]. A path of length n is a trail with distinct vertices x0, . . . , xn,
([2], p. 5). We say that G decomposes into subgraphs X and Y when G is the edge-disjoint
union of X and Y .

Theorem. If G decomposes into two paths X and Y , each of length n with n ≥ 2, and
X and Y have least one common vertex, then G has a path of length n distinct from X
and Y .

Proof. Label the vertices of X as x0, x1, . . . , xn, with xi−1 adjacent to xi for 1 ≤ i ≤ n.
Similarly, label the vertices of Y as y0, y1, . . . , yn. Let s be the number of common vertices;
thus G has 2n + 2 − s vertices.

If s = 1, then we may assume by symmetry that xi = yj with i ≥ j and i ≥ 1 and
j < n. In this case, the vertices x0, . . . , xi, yj+1, . . . yn form a path of length at least n
having a subpath of length n different from X and Y .

Similarly, if s = 2, then we may let the common vertices be xi1 , xi2 and yi1 , yi2 with
xi1 = yj1 and xi2 = yj2. Using symmetry again, we may assume that i1 < i2, j1 < j2, and
i1 ≥ j1. With this labeling, again the vertices x0, . . . , xi1 , yj1+1, . . . yn form a path with a
subpath of length n different from X and Y .

Hence we may assume that s ≥ 3. The approach above no longer works, since now the
points of intersection need not occur in the same order on X and Y . Suppose first that
the intersection contains an endpoint of one of the paths. We may assume that x0 = yk

for some k with k < n. Now we consider two cases. If yk+1 is not a vertex of X, then
we replace the edge xn−1xn with the edge yk+1x0 to create a third path of length n. If
yk+1 = xi for some i, then we replace the edge xixi−1 with the edge yk+1x0 to create a
new path of length n.

Therefore, we may assume that s ≥ 3 and that none of {x0, xn, y0, yn} is among the s
shared vertices. We apply a result of Thomason ([8], Theorem 2.1, pages 263-4): If H is
a regular multigraph of degree 4 with at least 3 vertices, then for any two edges e and f
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there are an even number of decompositions of H into two Hamiltonian cycles C1 and C2

with e in C1 and f in C2.
From the given graph G, we construct a 4-regular multigraph H . We first add the

edges e0 = x0xn and f0 = y0yn. We then “smooth out” all vertices of degree 2; that is, we
iteratively contract edges incident to vertices of degree 2 until no such vertices remain.
Since every vertex of G ∪ {e0, f0} has degree 2 or degree 4, the resulting multigraph H is
regular of degree 4. Since s ≥ 3, H has at least three vertices.

In H , the edge e0 is absorbed into an edge e, and f0 is absorbed into an edge f . The
cycles X ∪ {e0} and Y ∪ {f0} have been contracted to become Hamiltonian cycles in H .
Together they decompose H . By the theorem of Thomason, there is another Hamiltonian
decomposition C1, C2 of H with e in C1 and f in C2.

Now we reverse our steps. Restore the vertices of degree 2 and remove the edges e0

and f0. The cycle C1 becomes a path from x0 to xn, and C2 becomes a path from y0

to yn. Neither of these paths is the original X or Y . Since G has 2n edges and is the
edge-disjoint union of these two paths, one of the paths has length at least n. It contains
a new path of length n.

References

[1] L.W. Beineke, W. Goddard, and P. Hamburger, Random packings of graphs, Discrete
Mathematics 125 (1994) 45–54.

[2] B. Bollobás, Modern Graph Theory, Springer-Verlag (1998).

[3] P. Carolin, R. Chaffer, J. Kabell, and K.W. Smith, On packed randomly decompos-
able graphs, preprint, 1990.

[4] J. Kabell and K.W Smith, On randomly decomposable graphs, preprint, 1989.

[5] M. McNally, R. Molina, and K.W. Smith, Pk decomposable graphs, a census,
preprint, 2002.

[6] R. Molina, On randomly Pk decomposable graphs, preprint, 2001.

[7] S. Ruiz, Randomly decomposable graphs, Discrete Mathematics 57 (1985), 123–128.

[8] A. G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Annals
of Discrete Mathematics 3 (1978), 259–268.

the electronic journal of combinatorics 9 (2002), #N4 3


