A Proof of the Two-path Conjecture

Herbert Fleischner
Institute of Discrete Mathematics
Austrian Academy of Sciences
Sonnenfelsgasse 19
A-1010 Vienna
Austria, EU
herbert.fleischner@oeaw.ac.at
Robert R. Molina
Department of Mathematics and Computer Science
Alma College
614 W. Superior St.
Alma MI, 48801
molina@alma.edu
Ken W. Smith
Department of Mathematics
Central Michigan University
Mt. Pleasant, MI 48859
ken.w.smith@cmich.edu
Douglas B. West
Department of Mathematics
University of Illinois
1409 W. Green St.
Urbana, IL 61801-2975
west@math.uiuc.edu

AMS Subject Classification: 05C38
Submitted: January 24, 2002; Accepted: March 13, 2002

Abstract

Let G be a connected graph that is the edge-disjoint union of two paths of length n, where $n \geq 2$. Using a result of Thomason on decompositions of 4-regular graphs into pairs of Hamiltonian cycles, we prove that G has a third path of length n.

The "two-path conjecture" states that if a graph G is the edge-disjoint union of two paths of length n with at least one common vertex, then the graph has a third subgraph that is also a path of length n. For example, the complete graph K_{4} is an edge-disjoint union of two paths of length 3 , each path meeting the other in four vertices. The cycle C_{6} is the edge-disjoint union of two paths of length 3 with common endpoints. In the first case, the graph has twelve paths of length 3 ; in the second there are six such paths.

The two-path conjecture arose in a problem on randomly decomposable graphs. An H-decomposition of a graph G is a family of edge disjoint H-subgraphs of G whose union is G. An H-decomposable graph G is randomly H-decomposable if any edge disjoint family of H-subgraphs of G can be extended to an H-decomposition of G. (This concept was introduced by Ruiz in [7].)

Randomly P_{n}-decomposable graphs were studied in $[1,5,6,4]$. In attempting to classify randomly P_{n}-decomposable graphs, in [5] and [6] it was necessary to know whether the edge-disjoint union of two copies of P_{n} could have a unique P_{n}-decomposition. The two-path conjecture is stated as an unproved lemma in [3].

Our notation follows [2]. A path of length n is a trail with distinct vertices x_{0}, \ldots, x_{n}, ([2], p. 5). We say that G decomposes into subgraphs X and Y when G is the edge-disjoint union of X and Y.

Theorem. If G decomposes into two paths X and Y, each of length n with $n \geq 2$, and X and Y have least one common vertex, then G has a path of length n distinct from X and Y.

Proof. Label the vertices of X as $x_{0}, x_{1}, \ldots, x_{n}$, with x_{i-1} adjacent to x_{i} for $1 \leq i \leq n$. Similarly, label the vertices of Y as $y_{0}, y_{1}, \ldots, y_{n}$. Let s be the number of common vertices; thus G has $2 n+2-s$ vertices.

If $s=1$, then we may assume by symmetry that $x_{i}=y_{j}$ with $i \geq j$ and $i \geq 1$ and $j<n$. In this case, the vertices $x_{0}, \ldots, x_{i}, y_{j+1}, \ldots y_{n}$ form a path of length at least n having a subpath of length n different from X and Y.

Similarly, if $s=2$, then we may let the common vertices be $x_{i_{1}}, x_{i_{2}}$ and $y_{i_{1}}, y_{i_{2}}$ with $x_{i_{1}}=y_{j_{1}}$ and $x_{i_{2}}=y_{j_{2}}$. Using symmetry again, we may assume that $i_{1}<i_{2}, j_{1}<j_{2}$, and $i_{1} \geq j_{1}$. With this labeling, again the vertices $x_{0}, \ldots, x_{i_{1}}, y_{j_{1}+1}, \ldots y_{n}$ form a path with a subpath of length n different from X and Y.

Hence we may assume that $s \geq 3$. The approach above no longer works, since now the points of intersection need not occur in the same order on X and Y. Suppose first that the intersection contains an endpoint of one of the paths. We may assume that $x_{0}=y_{k}$ for some k with $k<n$. Now we consider two cases. If y_{k+1} is not a vertex of X, then we replace the edge $x_{n-1} x_{n}$ with the edge $y_{k+1} x_{0}$ to create a third path of length n. If $y_{k+1}=x_{i}$ for some i, then we replace the edge $x_{i} x_{i-1}$ with the edge $y_{k+1} x_{0}$ to create a new path of length n.

Therefore, we may assume that $s \geq 3$ and that none of $\left\{x_{0}, x_{n}, y_{0}, y_{n}\right\}$ is among the s shared vertices. We apply a result of Thomason ([8], Theorem 2.1, pages 263-4): If H is a regular multigraph of degree 4 with at least 3 vertices, then for any two edges e and f
there are an even number of decompositions of H into two Hamiltonian cycles C_{1} and C_{2} with e in C_{1} and f in C_{2}.

From the given graph G, we construct a 4-regular multigraph H. We first add the edges $e_{0}=x_{0} x_{n}$ and $f_{0}=y_{0} y_{n}$. We then "smooth out" all vertices of degree 2 ; that is, we iteratively contract edges incident to vertices of degree 2 until no such vertices remain. Since every vertex of $G \cup\left\{e_{0}, f_{0}\right\}$ has degree 2 or degree 4 , the resulting multigraph H is regular of degree 4 . Since $s \geq 3, H$ has at least three vertices.

In H, the edge e_{0} is absorbed into an edge e, and f_{0} is absorbed into an edge f. The cycles $X \cup\left\{e_{0}\right\}$ and $Y \cup\left\{f_{0}\right\}$ have been contracted to become Hamiltonian cycles in H. Together they decompose H. By the theorem of Thomason, there is another Hamiltonian decomposition C_{1}, C_{2} of H with e in C_{1} and f in C_{2}.

Now we reverse our steps. Restore the vertices of degree 2 and remove the edges e_{0} and f_{0}. The cycle C_{1} becomes a path from x_{0} to x_{n}, and C_{2} becomes a path from y_{0} to y_{n}. Neither of these paths is the original X or Y. Since G has $2 n$ edges and is the edge-disjoint union of these two paths, one of the paths has length at least n. It contains a new path of length n.

References

[1] L.W. Beineke, W. Goddard, and P. Hamburger, Random packings of graphs, Discrete Mathematics 125 (1994) 45-54.
[2] B. Bollobás, Modern Graph Theory, Springer-Verlag (1998).
[3] P. Carolin, R. Chaffer, J. Kabell, and K.W. Smith, On packed randomly decomposable graphs, preprint, 1990.
[4] J. Kabell and K.W Smith, On randomly decomposable graphs, preprint, 1989.
[5] M. McNally, R. Molina, and K.W. Smith, P_{k} decomposable graphs, a census, preprint, 2002.
[6] R. Molina, On randomly P_{k} decomposable graphs, preprint, 2001.
[7] S. Ruiz, Randomly decomposable graphs, Discrete Mathematics 57 (1985), 123-128.
[8] A. G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Annals of Discrete Mathematics 3 (1978), 259-268.

