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Abstract

Let G be an Eulerian bipartite digraph with vertex partition sizes m,n. We
prove the following Turán-type result: If e(G) > 2mn/3 then G contains a directed
cycle of length at most 4. The result is sharp. We also show that if e(G) = 2mn/3
and no directed cycle of length at most 4 exists, then G must be biregular. We
apply this result in order to obtain an improved upper bound for the diameter of
interchange graphs.

1 Introduction

All graphs considered here are finite, directed, and contain no parallel edges. For standard
graph-theoretic terminology the reader is referred to [1]. In this paper we consider the
most basic Turán-type problem in bipartite digraphs, namely, specifying conditions on the
cardinality of the edge-set of the digraph that guarantee the existence of a directed simple
cycle of length at most four. As usual in Turán type problems in directed graphs, one
must impose constraints relating the indegree and outdegree of a vertex in order to avoid
trivialities (if no such constraints exist then one may not have short directed cycles at all
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even if the graph is very dense, the extreme case being an acyclic orientation of a complete
bipartite graph). The most interesting and natural constraint is the requirement that the
digraph be Eulerian, namely, the indegree of a vertex must be equal to its outdegree.

Let b(m, n) denote the maximum integer, such that there exists an Eulerian bipartite
digraph with vertex partition sizes m, n having b(m, n) edges and no directed cycle of
length at most 4. A biregular bipartite digraph is an Eulerian bipartite digraph having
the property that any two vertices in the same vertex class have the same indegree and
outdegree.

The parameter b(m, n) has been studied by Brualdi and Shen in [3], who proved
b(m, n) <

(√
17 − 1

)
mn/4. They conjectured (the case k = 2 of Conjecture 2 in [3]) that

b(m, n) ≤ 2mn/3. In this paper we prove this conjecture, and together with a well-known
construction obtain that it is sharp. Furthermore, we obtain that the extremal graphs
must be biregular. Our main theorem is the following:

Theorem 1.1 b(m, n) ≤ 2mn/3. Equality holds if and only if both m and n are divisible
by 3. Any graph demonstrating an equality must be biregular.

Brualdi and Shen have shown in [3] how an upper bound for b(m, n) corresponds to
an upper bound for the diameter of interchange graphs. These graphs are defined as
follows: Let R = (r1, . . . , rm) and S = (s1, . . . , sn) be non-negative integral vectors with∑

ri =
∑

sj . Let A(R, S) denote the set of all {0, 1}-matrices with row sum vector R
and column sum vector S, and assume that A(R, S) 6= ∅. This set has been studied
extensively (see [2] for a survey). The interchange graph G(R, S) of A(R, S), defined
by Brualdi in 1980, is the graph with all matrices in A(R, S) as its vertices, where two
matrices are adjacent provided they differ in an interchange matrix. Brualdi conjectured
that the diameter of G(R, S), denoted d(R, S), cannot exceed mn/4. Using a result of
Walkup [4] that relates the distance between two vertices A and B in G(R, S) to the
maximum number of cycles in a cycle decomposition of an Eulerian bipartite digraph
that corresponds to A − B, together with the upper bound for b(m, n), it is shown in
[3] that d(R, S) ≤ (mn + b(m, n))/4. Thus, the result in Theorem 1.1 also improves this
upper bound for d(R, S) giving

d(R, S) ≤ 5

12
mn.

It is worth mentioning that in Theorem 1.1, if v is any vertex with maximum normalized
degree (by “normalized degree” we mean the ratio between its outdegree and the cardi-
nality of the opposite vertex class), then there exists a directed cycle of length at most
four that contains v. Thus, there is also a linear O(mn) time algorithm for detecting such
a cycle in these graphs; merely perform a breadth first search whose root is any vertex
with maximum normalized degree.

2 Proof of the main result

Let G = (V, E) be an Eulerian bipartite digraph. We may assume that G does not contain
antiparallel edges, since otherwise G has a directed cycle of length 2 and we are done.
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Let V = A ∪ B where A and B are the two (disjoint) vertex classes of G where |A| = m
and |B| = n. Let 0 ≤ α ≤ 1 satisfy |E| = αmn. In order to prove the upper bound in
Theorem 1.1 we need to show that if α > 2/3 then G has a directed C4.

For v ∈ V let dv denote the indegree and outdegree of v (it is the same by assumption).
For v ∈ A, let ρv = dv/n and for v ∈ B, let ρv = dv/m. Let ρ = maxv∈V ρv. Notice that
G is biregular if and only if ρv = ρ = α/2 for each v ∈ V , or, more compactly, if and only
if ρ = α/2.

Fix v∗ ∈ V satisfying ρv∗ = ρ. Without loss of generality, assume v∗ ∈ A (since
otherwise we can interchange the roles of m and n, as we did not impose any cardinality
constraints upon them). It clearly suffices to prove the following:

Lemma 2.1 If no directed C4 contains v∗ as a vertex then α ≤ 2/3.

Proof: We assume that no directed C4 contains v∗ as a vertex. Let

A+ = {w ∈ A : (v∗, x) ∈ E =⇒ (x, w) /∈ E}

A− = {w ∈ A : (x, v∗) ∈ E =⇒ (w, x) /∈ E}.
Since no directed C4 contains v∗ as a vertex, we must have that every w ∈ A appears in at
least one of A− or A+ (it may appear in both; in particular, v∗ appears in both A− and A+

as there are no antiparallel edges). Hence, A− ∪ A+ = A. Thus, at least one of them has
cardinality at least m/2. Assume, without loss of generality, that |A+| ≥ m/2 (otherwise
we can reverse the directions of all edges and the result remains intact). Order the vertices
of A such that A = {v1, . . . , vm} and v1 = v∗, vi ∈ A+ for i = 1, . . . , |A+|, and vi ∈ A− for
i = |A+|+1, . . . , m. Order the vertices of B such that B = {u1, . . . , un} where (v∗, ui) ∈ E
for i = 1, . . . , ρn, (ui, v

∗) ∈ E for i = ρn + 1, . . . , 2ρn. Consider the adjacency matrix of
G, denoted by M , where M has m rows and n columns, and M(i, j) = 1 if (vi, uj) ∈ E,
M(i, j) = −1 if (uj, vi) ∈ E and otherwise M(i, j) = 0. Notice that by our ordering of
the vertices, the upper left block of M does not contain −1. Namely M(i, j) 6= −1 for
i = 1, . . . , |A+| and j = 1, . . . , ρn. Denote this upper left block by M1. Also note that,
similarly, M(i, j) 6= 1 for i = |A+| + 1, . . . , m and j = ρn + 1, . . . , 2ρn. Denote this block
M2. Denote by M3 the block consisting of the rows i = |A+| + 1, . . . , m and the columns
j = 1, . . . , ρn. Denote by M4 the block consisting of the rows i = |A+|+1, . . . , m and the
columns j = 2ρn+1, . . . , n. Denote by M5 the block consisting of the rows i = 1, . . . , |A+|
and the columns j = 2ρn + 1, . . . , n. Define β = |A+|/m. Figure 1 visualizes these terms.

Let c(s, k) denote the number of entries of M equal to k in the block Ms for s =
1, 2, 3, 4, 5 and k = −1, 0, 1. For normalization purposes, define f(s, k) = c(s, k)/mn.
Consider the following equalities:

f(3,−1) + f(3, 0) + f(3, 1) = ρ(1 − β). (1)

f(1,−1) = 0 f(1, 1) = f(3,−1) − f(3, 1) f(1, 0) = ρβ − f(3,−1) + f(3, 1). (2)

f(2, 1) = 0 f(2,−1) + f(2, 0) = ρ(1 − β). (3)
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Figure 1: The adjacency matrix M and its blocks

Equality (1) follows from the fact that M3 contains ρ(1 − β)mn cells. The equalities in
(2) follow from the fact that M1 does not contain −1 entries, has ρβmn cells, and the
fact that M1 ∪M3 has the same number of +1 entries as −1 entries (since the graph G is
Eulerian). The equalities in (3) follow from the fact that M2 does not contain +1 entries,
and has ρ(1 − β)mn cells.

We now show that

(a) 4ρ2 − 3ρ + α ≤ 2f(3,−1) − f(2, 0),
(b) 2ρ2 − ρ ≤ f(2, 0) − 2f(3,−1) − f(3, 0).

By the definition of ρ, each column of M contains at least (1 − 2ρ)m entries equal to
0. Thus (f(4, 0) + f(5, 0))mn ≥ (1 − 2ρ)2mn as M4 and M5 together occupy (1 − 2ρ)n
columns of M . Since M has exactly (1 − α)mn entries equal to 0, we have

(1 − α)mn ≥ mn
5∑

i=1

f(i, 0) ≥ (f(1, 0) + f(2, 0) + f(3, 0))mn + (1 − 2ρ)2mn;

that is,
1 − α ≥ f(1, 0) + f(2, 0) + f(3, 0) + (1 − 2ρ)2. (4)

By equality (2) we know that f(1, 0) = ρβ − f(3,−1) + f(3, 1) and by equality (1) we
have f(3,−1) + f(3, 0) + f(3, 1) = ρ(1 − β). Using these equalities and inequality (4) we
have

1 − α ≥ ρβ − f(3,−1) + f(3, 1) + f(2, 0) + f(3, 0) + (1 − 2ρ)2

= ρβ − 2f(3,−1) + f(2, 0) + ρ(1 − β) + (1 − 2ρ)2

= −2f(3,−1) + f(2, 0) + 4ρ2 − 3ρ + 1,
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giving inequality (a).
To prove inequality (b), let M ′ be the submatrix of M consisting of rows βm+1, . . . , m

and all columns of M . Since each column of M contains at most ρm entries equal to 1,
we have

(f(4, 1) + f(5, 1))mn ≤ ρm(1 − 2ρ)n.

Since G is bipartite Eulerian, the number of −1’s in M ′ equals the number of 1’s in M ′.
Thus,

(f(2,−1) + f(3,−1) + f(4,−1))mn = (f(2, 1) + f(3, 1) + f(4, 1))mn
= (f(3, 1) + f(4, 1))mn
≤ f(3, 1)mn + (f(4, 1) + f(5, 1))mn
≤ f(3, 1)mn + ρ(1 − 2ρ)mn,

which implies,
f(2,−1) + f(3,−1) ≤ f(3, 1) + ρ(1 − 2ρ).

Since f(3, 1) + f(3,−1) + f(3, 0) = ρ(1 − β) = f(2, 0) + f(2,−1), we have

ρ(2ρ − 1) ≤ f(3, 1) − f(2,−1) − f(3,−1)
= f(2, 0) − 2f(3,−1) − f(3, 0),

proving inequality (b).
Adding inequalities (a) and (b) we have 6ρ2 − 4ρ + α ≤ −f(3, 0) ≤ 0. Thus

α ≤ −6ρ2 + 4ρ = −6

(
ρ − 1

3

)2

+
2

3
≤ 2

3
. �

Proof of Theorem 1.1: The last inequality shows that b(m, n) ≤ 2mn/3. Now, suppose
G is an Eulerian bipartite digraph with edge density exactly 2/3 and no directed cycle of
length at most 4. The last inequality shows that in this case we must have ρ = 1/3 = α/2.
Hence, G must be biregular and the cardinality of each vertex class of G must be divisible
by 3. For any pair m and n both divisible by 3 it is easy to construct a biregular Eulerian
bipartite digraph with edge density 2/3 and no directed C4 nor antiparallel edges. We use
a construction from [3]. Let |M0| = |M1| = |M2| = m/3 and let |N0| = |N1| = |N2| = n/3.
Construct a bipartite graph with vertex classes M = M0∪M1∪M2 and N = N0∪N1∪N2.
Create all possible directed edges from Mi to Ni, i = 0, 1, 2 and from Ni to Mi+1 i = 0, 1, 2
(modulo 3). Clearly this graph has no antiparallel edges and no directed C4. It is biregular
and has 2mn/3 edges. This completes the proof of Theorem 1.1. �
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