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rucinski@amu.edu.pl

Submitted: November 7, 2000; Accepted: October 14, 2001.
MR Subject Classifications: 05C35

Abstract

The celebrated Regularity Lemma of Szemerédi asserts that every sufficiently
large graph G can be partitioned in such a way that most pairs of the partition sets
span ε-regular subgraphs. In applications, however, the graph G has to be dense
and the partition sets are typically very small. If only one ε-regular pair is needed,
a much bigger one can be found, even if the original graph is sparse. In this paper
we show that every graph with density d contains a large, relatively dense ε-regular
pair. We mainly focus on a related concept of an (ε, σ)-dense pair, for which our
bound is, up to a constant, best possible.

1 Introduction

Szemerédi’s Regularity Lemma is one of the most powerful tools in extremal graph theory.
It guarantees an ε-regular partition of every graph G with n vertices, but the size of each
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ε-regular pair is at most n/T , where T is the tower of 2’s of height (1/ε)
1
16 ([4]). However,

in some applications, only one pair is needed. That was already observed and explored
by Komlós (see [8]) and Haxell [6]. The goal of this paper is to estimate the size of the
largest such pair that can be found in any graph of given size and density. The density
may decay to 0 with n → ∞.

The density of a bipartite graph G = (V1, V2, E) is defined as

d(G) =
|E|

|V1||V2| ,

and the density of a pair (U1, U2), where U1 ⊆ V1 and U2 ⊆ V2, is defined as

d(U1, U2) =
e(U1, U2)

|U1||U2| ,

where e(U1, U2) is the number of edges of G with one endpoint in U1 and the other in U2.

Definition 1.1 Let G = (V1, V2, E) be a bipartite graph and 0 < ε < 1. A pair (U1, U2),

where U1 ⊆ V1 and U2 ⊆ V2, is called ε-regular if for every W1 ⊆ U1 and W2 ⊆ U2 with

|W1| ≥ ε|U1| and |W2| ≥ ε|U2|, we have

(1 − ε)d(U1, U2) ≤ d(W1, W2) ≤ (1 + ε)d(U1, U2).

Our first result states that in every bipartite graph one can find a reasonably large
and relatively dense ε-regular pair.

Theorem 1.1 Let 0 < ε, d < 1. Then every bipartite graph G = (V1, V2, E) with |V1| =

|V2| = n and d(G) = d contains an ε-regular pair (U1, U2) with density not smaller than

(1 − ε
3
)d and |U1| = |U2| ≥ n

2
dc/ε2, where c is an absolute constant.

The constant c in Theorem 1.1 is determined by inequality (40). For instance, one can
take c = 50.

In most applications the whole strength of ε-regular pairs is not used. Instead, it is
only required that d(W1, W2) is not much smaller than d(U1, U2) whenever W1 ⊆ U1 and
W2 ⊆ U2 are large enough. This observation leads to the following definition.

Definition 1.2 Let G = (V1, V2, E) be a bipartite graph and 0 < ε, σ < 1 . A pair

(U1, U2), where U1 ⊆ V1 and U2 ⊆ V2, is called (ε, σ)-dense if for every W1 ⊆ U1 and

W2 ⊆ U2 with |W1| ≥ ε|U1| and |W2| ≥ ε|U2|, we have e (W1, W2) ≥ σ|W1||W2|. The

graph G itself is called (ε, σ)-dense if (V1, V2) is an (ε, σ)-dense pair.

Now, let us consider the following problem. For a bipartite graph G with n vertices in
each color class and density d, we want to find an (ε, d/2)-dense pair as large as possible.
(The choice of σ = d/2 is not essential here.)
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Definition 1.3 For any given 0 < ε, d < 1 and a positive integer n, f(ε, d, n) is the

largest integer f such that every bipartite graph G with n vertices in each color class and

density at least d contains an (ε, d/2)-dense subgraph with f vertices in each color class.

As for ε ≤ 2 − √
2.5, every ε-regular pair with density at least (1 − ε/3)d is (ε, d/2)-

dense, Theorem 1.1 immediately implies that f(ε, d, n) ≥ n
2
dc/ε2.

In 1991, Komlós stated the following lower bound for f(ε, d, n).

Theorem 1.2 [8] For all 0 < ε ≤ ε0, 0 < d < 1 and for all integers n,

f(ε, d, n) ≥ nd(3/ε) ln(1/ε).

In Section 2 of this paper we prove a different bound which is better for small values
of ε.

Theorem 1.3 For all 0 < ε < 1, 0 < d < 1, and for all integers n,

f(ε, d, n) ≥ 1

2
nd12/ε.

We also prove the following upper bound on f(ε, d, n), which shows that, up to a
constant, Theorem 1.3 is best possible.

Theorem 1.4 For all 0 < ε ≤ ε0 and 0 < d ≤ d0, there exists n0 < (1/d)1/(12ε) such that

for all n ≥ n0,

f(ε, d, n) < 4ndc/ε,

where c is an absolute constant.

In fact, we prove a stronger result than Theorem 1.4.

Definition 1.4 Let G = (V1, V2, E) be a bipartite graph and 0 < ε < 1. A pair (U1, U2),

where U1 ⊆ V1, U2 ⊆ V2, is said to contain an ε-hole if there exist W1 ⊆ U1 and W2 ⊆ U2

with |W1| ≥ ε|U1| and |W2| ≥ ε|U2| such that e(W1, W2) = 0.

By definition, if a pair contains an ε-hole, then it cannot be (ε, σ)-dense for any σ > 0.

Definition 1.5 For any given 0 < ε, d < 1 and a positive integer n, let h(ε, d, n) be the

largest integer h such that, every bipartite graph G with n vertices in each color class

and density at least d contains a subgraph with h vertices in each color class and with no

ε-hole.
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Clearly, f(ε, d, n) ≤ h(ε, d, n).

Theorem 1.5 For all 0 < ε ≤ ε0 and 0 < d ≤ d0 there exists n0 < (1/d)1/(12ε) such that

for all n ≥ n0,

h(ε, d, n) < 4ndc/ε,

where c is an absolute constant.

With no effort to optimize, it follows from the proofs of Theorems 1.4 and 1.5 that
the constant c appearing in them can be equal to 1/2000.

2 Lower bound

In this section we prove the lower bound given in Theorem 1.3. That is, we show that any
bipartite graph G = (V1, V2, E) with n vertices in each color class and density d contains
an (ε, d/2)-dense bipartite subgraph with at least 1

2
ndc1/ε vertices in each color class. We

then show that Theorem 1.1 the proof of which is a refinement of the proof of Theorem
1.3.

Before giving the proof of Theorem 1.3, we prove the following claim which plays a
crucial role.

Claim 2.1 Every bipartite graph H = (V H
1 , V H

2 , E) with |V H
1 | = |V H

2 | = m contains a

pair (U1, U2) satisfying one of the following conditions:

1. (U1, U2) is an (ε, d(H)/2)-dense pair and |U1| = |U2| ≥ m/2,

2. |U1| = |U2| ≥ m/4 and d(U1, U2) ≥ (1 + ε/8)d(H).

Proof: Assuming that H contains no pair satisfying condition 1, we are going to prove
that H contains a pair satisfying condition 2. For simplicity, we assume that 1/ε is an
integer.

Since, in particular, H itself is not (ε, d(H)/2)-dense, there exist A′
1 ⊂ V H

1 , B′
1 ⊂ V H

2

with |A′
1| = |B′

1| ≥ εm and e (A′
1, B

′
1) < d(H)

2
|A′

1||B′
1|. By an averaging argument, we can

take A1 ⊂ A′
1, B1 ⊂ B′

1 satisfying |A1| = |B1| = ε
2
m and e (A1, B1) < d(H)

2
|A1||B1|. (For

simplification, we assume that ε
2
m is an integer. Later we will make similar assumption

which are not essential but simplify our presentation.) Let F1 be the graph obtained by
removing A1 from V H

1 and B1 from V H
2 .

By the assumption, F1 is not an (ε, d(H)/2)-dense graph, and we apply the same
argument as above to F1.

In general, after l steps, l < 1/ε, we define l disjoint pairs (A1, B1) , · · · , (Al, Bl) of size
|Ai| = |Bi| = ε

2
m for 1 ≤ i ≤ l. Assume that Fl is obtained by removing

⋃l
j=1 Aj from V H

1

and
⋃l

j=1 Bj from V H
2 . By assumption, Fl is not (ε, d(H)/2)-dense, therefore there exists

the electronic journal of combinatorics 9 (2002), #R1 4



A′
l+1 ⊂ V H

1 \⋃l
j=1 Aj , B

′
l+1 ⊂ V H

2 \⋃l
j=1 Bj of size |A′

l+1| = |B′
l+1| ≥ ε (1 − lε/2) m ≥ ε

2
m

and e
(
A′

l+1, B
′
l+1

)
< d(H)

2
|A′

l+1||B′
l+1|. Take Al+1 ⊂ A′

l+1, Bl+1 ⊂ B′
l+1, |Al+1| = |Bl+1| =

ε
2
m and e (Al+1, Bl+1) < d(H)

2
|Al+1||Bl+1|.

After 1/ε steps the sets
⋃1/ε

j=1 Aj cover a half of V H
1 , and the sets

⋃1/ε
j=1 Bj cover

a half of V H
2 . Denote V̄1 =

⋃1/ε
j=1 Aj and V̄2 =

⋃1/ε
j=1 Bj . Set e0 = e

(
V̄1, V̄2

)
, e1 =

e
(
V̄1, V

H
2 \ V̄2

)
, e2 = e

(
V H

1 \ V̄1, V̄2

)
, e3 = e

(
V H

1 \ V̄1, V
H
2 \ V̄2

)
.

Now we claim that there exists a pair satisfying condition 2. Indeed, if

e0 ≤ (1 − 3ε/8) d(H)m2/4,

then

e1 + e2 + e3 = d(H)m2 − e0 ≥ 3
(

1 +
ε

8

)
d(H)

m2

4
.

Therefore, there exists i ∈ {1, 2, 3} satisfying

ei ≥
(

1 +
ε

8

)
d(H)

m2

4

and we find a pair satisfying condition 2.
If e0 > (1 − 3ε/8) d(H)m2/4, we define eij = e (Ai, Bj) . Then

∑
i

∑
j 6=i

eij = e0−
1/ε∑
i=1

e (Ai, Bi) >

(
1 − 3ε

8

)
d(H)

m2

4
−1

ε

d(H)

2

(εm

2

)2

=

(
1 − 7

8
ε

)
d(H)

m2

4
.

For any I ⊂ {1, . . . , 1/ε} of size |I| = 1/(2ε), we define

e (I) =
∑
i∈I

∑
j∈{1,...,1/ε}\I

eij.

Then
∑

I e (I) counts each eij exactly
(

1/ε−2
1/(2ε)−1

)
times, where i 6= j. Thus, there exists I0

such that

e(I0) ≥
∑

I e (I)(
1/ε

1/(2ε)

) =

(
1/ε−2

1/(2ε)−1

)
(

1/ε
1/(2ε)

) ∑
i

∑
j 6=i

eij >
(1 − 7ε/8) d(H)m2/4

4 (1 − ε)
≥
(

1 +
ε

8

)
d(H)

m2

16
,

and consequently the pair (
⋃

i∈I0
Ai,
⋃

j∈{1,...,1/ε}\I0 Bj) satisfies condition 2.

Proof of Theorem 1.3. Let G = (V1, V2, E) be any bipartite graph with n vertices in
each color class and density d. If G contains a pair satisfying condition 1 in Claim 2.1,
then we are done. Otherwise, by Claim 2.1, there exists an induced subgraph G1 ⊂ G
with at least n/4 vertices in each color class and d(G1) ≥ (1 + ε/8)d. Applying Claim
2.1 to G1, if G1 contains a pair satisfying condition 1 in Claim 2.1, then we have an
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(ε, d(G1)/2)-dense pair, which is also an (ε, d/2)-dense pair, with at least n/8 vertices in
each color class, and we are done again. Otherwise we find an induced subgraph G2 ⊂ G1

with at least n/16 vertices in each color class and d(G2) ≥ (1 + ε/8)2d.
Suppose we have iterated this process s times, obtaining a subgraph Gs of G with at

least n/4s vertices in each color class and density at least (1 + ε/8)s d. If the (s + 1)-th
iteration cannot be completed, it means that Gs contains an (ε, d/2)-dense subgraph with
at least n/(2 · 4s) vertices in each color class. Because the density of any graph is not
larger than 1, we can only iterate this process at most t times, where t is the smallest
integer such that (

1 +
ε

8

)t+1

d > 1.

Hence, at some point an (ε, d/2)-dense subgraph with at least n/(2 · 4t) vertices in each
color class must be found. It remains to estimate t from above. By the choice of t, we
have (1 + ε/8)t d ≤ 1, or, equivalently,

t ≤ log2 (1/d)

log2 (1 + ε/8)
,

and so
4t = 22t ≤ (1/d)

2
log2(1+ε/8) .

Notice that log2 (1 + ε/8) ≥ ε/6 for 0 < ε < 1. Indeed, it follows from the facts that
g(x) = log2 (1 + ε/8) − ε/6 is concave in [0, 1], g(0) = 0 and g(1) > 0. Therefore

1

2

n

4t
≥ 1

2
nd12/ε,

and consequently we have proved the existence of an (ε, d/2)-dense subgraph of G with
at least 1

2
nd12/ε vertices in each color class. This completes the proof of Theorem 1.3.

Proof of Theorem 1.1 (Sketch). The proof of Theorem 1.1 is similar to the proof of
Theorem 1.3; the only modification is to replace Claim 2.1 by Claim 2.3 below.

The first alternative of Claim 2.3, rather than asking for a large ε-regular pair, demands
a stronger property which is however easier to analyze.

Definition 2.1 Let G = (V1, V2, E) be a bipartite graph, 0 < ε < 1. A pair (U1, U2),

where U1 ⊆ V1 and U2 ⊆ V2, is called (ε, G)-regular if for every W1 ⊆ U1 and W2 ⊆ U2

with |W1| ≥ ε|U1| and |W2| ≥ ε|U2|, we have

(1 − ε/3)d(G) ≤ d(W1, W2) ≤ (1 + ε/3)d(G). (1)

Fact 2.2 Every (ε, G)-regular pair (U1, U2) is ε-regular.
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Claim 2.3 Every bipartite graph H = (V H
1 , V H

2 , E) with |V H
1 | = |V H

2 | = m contains a

pair (U1, U2) satisfying one of the following conditions:

1. |U1|, |U2| ≥ m/2 and (U1, U2) is (ε, H)-regular,

2. |U1|, |U2| ≥ mε/2 and d(U1, U2) ≥ (1 + ε/3)d(H),

3. |U1|, |U2| ≥ m/4 and d(U1, U2) ≥ (1 + ε2/12)d(H).

Assuming that H contains no pair satisfying conditions 1 or 2, and using the same
technique as in the proof of Claim 2.1, we can prove that H must contain a pair satisfying
condition 3.

Applying Claim 2.3, one can prove Theorem 1.1 in the same way as we derived Theorem
1.3 from Claim 2.1 (see the Appendix for details). Note that the obtained ε-regular pair
(U1, U2) has density at least (1 − ε/3)d.

3 Upper bound

In this section we prove the upper bound for h(ε, d, n) given in Theorem 1.5. To prove
that h(ε, d, n) < u, we need to find a bipartite graph G with n vertices in each color class
and density at least d such that every subgraph of G with u vertices in each color class
contains an ε-hole. The following construction will be central for the proof.

Let k and t be positive integers, and [t] denote {1, 2, . . . , t}. Let G (k, t) = (V1, V2, E)
be the bipartite graph with

V1 = {x = (x1, x2, . . . , xt) : 1 ≤ xs ≤ k, 1 ≤ s ≤ t.},

V2 = {y = (y1, y2, . . . , yt) : 1 ≤ ys ≤ k, 1 ≤ s ≤ t.},
and xy ∈ E if and only if xs 6= ys for each s ∈ [t], where x = (x1, x2, . . . , xt) ∈ V1 and
y = (y1, y2, . . . , yt) ∈ V2.

Observe that G(k, t) is a bipartite graph with kt vertices in each color class and density(
k−1

k

)t
. For G (k, t) we prove the following property. From now on we set n1 = kt .

Lemma 3.1 Let k and t be positive integers and let 0 < ε ≤ 1/4k. For every U1 ⊆ V1,

U2 ⊆ V2 such that

min{|U1|, |U2|} ≥ n1

( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

,

there exists an ε-hole in the subgraph of G (k, t) induced by the sets U1 and U2.
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Proof: Suppose that there is no ε-hole in the subgraph of G(k, t) induced by the sets
U1, U2. We will estimate min{|U1|, |U2|} from above.

For each s = 1, 2, . . . , t, the integer i ∈ [k] is called rare with respect to s in U1 if

|{x ∈ U1 : xs = i}| < ε|U1|.
Otherwise i is called frequent with respect to s. Let R1

s be the set of all rare values i ∈ [k]
with respect to s in U1 and F 1

s be the set of all frequent values i ∈ [k] with respect to s
in U1. Similarly, let F 2

s be the set of all frequent values i ∈ [k] with respect to s in U2.
Note that F 1

s ∩ F 2
s = ∅ for each s ∈ [t], since otherwise the vertices x ∈ U1 and y ∈ U2

with xs = ys = i ∈ F 1
s ∩ F 2

s would form an ε-hole between U1 and U2.
Next we are going to prove that more than half of the vertices in U1 have each less

than 2εk rare coordinates. At the same time we give an upper bound on the number of
such vertices which enables us to estimate |U1|.

For every x = (x1, . . . , xs, . . . , xt) ∈ V1, define Sx = {s : xs ∈ R1
s}. Let V ′

1 = {x ∈ V1 :
|Sx| < 2εkt} and U ′

1 = U1 ∩ V ′
1 .

Claim 3.2

|U ′
1| >

1

2
|U1|, (2)

|U ′
1| ≤ |V ′

1 | ≤ 2εkt
( e

2εk

)2εkt
(

2εk2t +
∑t

s=1 |F 1
s |

t

)t

. (3)

Proof of Claim 3.2: To prove (2), we use a standard double counting argument. Con-
sider an auxiliary bipartite graph M = (U1, [t], E(M)) in which a pair {x, s} ∈ E(M) if
and only if xs ∈ R1

s, where x = (x1, x2, . . . , xt) ∈ U1 and s ∈ [t]. By the definition of R1
s ,

it is easy to see that degM (s) < εk|U1| for any s ∈ [t]. Therefore there are fewer than
1
2
|U1| vertices x ∈ U1 which satisfy |Sx| = degM (x) ≥ 2εkt.

Now we prove (3). Let L ⊂ [t] with |L| < 2εkt. Then by the definition of Sx,

|{x ∈ V1 : Sx = L}| ≤
∏
q∈L

|R1
q |
∏

s∈[t]\L
|F 1

s |.

Hence
|V ′

1 | ≤
∑

L⊂[t],|L|<2εkt

k|L| ∏
s∈[t]\L

|F 1
s |. (4)

Since the geometric mean is not larger than the arithmetic mean, we obtain

|U ′
1| ≤ |V ′

1 | ≤
∑

l<2εkt

(
t

l

)(
kl +

∑t
s=1 |F 1

s |
t

)t

. (5)

Since l < 2εkt ≤ t/2, we have
(

t
l

) ≤ ( t
2εkt

) ≤ ( e
2εk

)2εkt
, and

|V ′
1 | ≤ 2εkt

( e

2εk

)2εkt
(

2εk2t +
∑t

s=1 |F 1
s |

t

)t

, (6)
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which completes the proof of the claim.

Now we continue the proof of Lemma 3.1. By Claim 3.2

|U1| < 2|U ′
1| ≤ 2|V ′

1 | ≤ 4εkt
( e

2εk

)2εkt
(

2εk2t +
∑t

s=1 |F 1
s |

t

)t

. (7)

Similarly,

|U2| < 4εkt
( e

2εk

)2εkt
(

2εk2t +
∑t

s=1 |F 2
s |

t

)t

. (8)

Since F 1
s ∩ F 2

s = ∅ for each s ∈ [t], we have
∑t

s=1 |F 1
s | ≤ tk

2
or
∑t

s=1 |F 2
s | ≤ tk

2
. Therefore,

min{|U1|, |U2|} < 4εkt
( e

2εk

)2εkt
(

2εk2t + kt
2

t

)t

(9)

= 4εkt
( e

2εk

)2εkt

(1 + 4εk)t

(
k

2

)t

. (10)

Applying the inequality 4εkt < (1 + 4εk)t, we finally obtain that

min{|U1|, |U2|} <
( e

2εk

)2εkt

(1 + 4εk)2t

(
k

2

)t

(11)

= n1

( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

, (12)

which completes the proof.
Now for any n ≥ n1, let r and q, where 0 ≤ q < n1, be the positive integers such that

n = rn1 + q. We “blow up” the graph G(k, t) in the following sense: fix any q vertices
in each color class, and replace each of them by r + 1 new vertices. At the same time
replace every other vertex by r new vertices. Finally, replace every edge of G(k, t) by
the corresponding complete bipartite graph (Kr,r, Kr+1,r, or Kr+1,r+1). Denote this new
graph by Gn(k, t) = (V n

1 , V n
2 , E). It is easy to see that

r

r + 1

(
k − 1

k

)t

≤ d(Gn(k, t)) ≤ r + 1

r

(
k − 1

k

)t

. (13)

For this graph we now prove the following lemma which is very similar to Lemma 3.1.
Recall that n1 = kt.

Lemma 3.3 Let k and t be positive integers and let 0 < ε ≤ 1/4k. For every n ≥ n1,

and for all U1 ⊆ V n
1 , U2 ⊆ V n

2 such that

min{|U1|, |U2|} ≥ 2n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

,

there exists an ε-hole in the subgraph of Gn(k, t) induced by the sets U1 and U2.
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Proof: Assume that there is no ε-hole in the subgraph of Gn(k, t) induced by the sets
U1, U2. For each s ∈ [t] , define rare and frequent values i ∈ [k] with respect to s, for U1

and U2, in the same way as in the proof of Lemma 3.1. We follow the lines of the proof
of Lemma 3.1. The only novelty is to multiply the right hand side of equations (4) – (11)
by r + 1. Therefore, we have

min{|U1|, |U2|} < (r + 1)n1

( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

.

Since (r + 1)/r ≤ 2, and thus (r + 1)n1 ≤ 2rn1 ≤ 2(rn1 + q) = 2n, we obtain

min{|U1|, |U2|} < 2n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

. (14)

The goal of blowing up G(k, t) was to obtain graphs with more vertices than n1 and
still having ε-holes in large subgraphs. Next we consider a random “contraction” of G(k, t)
to obtain graphs with fewer than n1 vertices and with the same property.

From now on, to make our description simpler, we set

α = logk

k

k − 1
, δ = logk 2−2εk logk

e

2εk
−2 logk(1+4εk), n0 = max{n3α/2

1 , n
3δ/2
1 }.

Note that n0 ≤ n1 when k ≥ 3, and under this notation,

n−α
1 = d(G(k, t)) =

(
k − 1

k

)t

and

n−δ
1 =

( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

.

Lemma 3.4 Let k ≥ 3 be a positive integer, 0 < ε ≤ 1/4k, and t > t0 = t0(k, ε). Then,

for every n0 ≤ n < n1, there exists a graph Gn = (V n
1 , V n

2 , En) with n vertices in each

color class such that
k − 1

k
n−α

1 ≤ d(Gn) ≤ k

k − 1
n−α

1 , (15)

and for all U1 ⊆ V n
1 , U2 ⊆ V n

2 with

min{|U1|, |U2|} ≥ 4n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

,

there exists an ε-hole in the subgraph of Gn induced by the sets U1 and U2 .
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Proof: We define a random subgraph G∗(k, t) = (V ∗
1 , V ∗

2 , E∗) of G(k, t) by choosing
uniformly an n-element subset V ∗

1 of V1, and independently, an n-element subset V ∗
2 of

V2, and including to E∗ all edges of G(k, t) with one endpoint in V ∗
1 and the other in V ∗

2 .
For each v ∈ V1, let N(v) denote the neighborhood of v in G(k, t). Then |N(v)∩V ∗

2 | is a
random variable with hypergeometric distribution of expectation E (|N(v)∩V ∗

2 |) = nn−α
1 .

Applying Chernoff’s inequality ([7], page 27, formula (2.9)),

Prob

(
∃v ∈ V1 :

∣∣|N(v) ∩ V ∗
2 | − nn−α

1

∣∣ > 1

k
nn−α

1

)
≤ 2n1e

−nn−α
1 /3k2

. (16)

Define
F = {π = (F1, . . . , Ft) where Fi ⊂ [k], i = 1, . . . , t}.

Clearly, |F| = 2kt = n
k ln 2/ ln k
1 . For every π ∈ F and x = (x1, . . . , xs, . . . , xt) ∈ Vi, i = 1, 2,

define Sπ
x = {s : xs ∈ [k] \ Fs} and Vi(π) = {x : |Sπ

x | < 2εkt}.
For each π ∈ F , and i = 1, 2, |Vi(π) ∩ V ∗

i | is a random variable with hypergeometric
distribution. If |Vi(π)| < n1−δ

1 , then

E (|Vi(π) ∩ V ∗
i |) =

n

n1
|Vi(π)| < nn−δ

1 (17)

Therefore, by Chernoff’s inequality (([7], page 28, formula (2.10)),

Prob
(∃π ∈ F and ∃i ∈ {1, 2} : |Vi(π)| < n1−δ

1 but |Vi(π) ∩ V ∗
i | > 2nn−δ

1

) ≤ 2n
k ln 2/ ln k
1

ec′nn−δ
1

,

(18)
where c′ = ln 2 − 1/2.

Since nn−δ
1 ≥ max{nδ/2, nα/2} and δ, α do not depend on t, for sufficiently large t the

right hand side of (16) and (18) are each smaller than 1/2, yielding the existence of an
induced subgraph Gn = G(k, t)[V n

1 , V n
2 ] of G(k, t) with |V n

1 | = |V n
2 | = n, which satisfies

(15) and such that

∀π ∈ F , i = 1, 2 : |Vi(π)| ≥ n1−δ
1 or |Vi(π) ∩ V n

i | ≤ 2nn−δ
1 . (19)

Now take any U1 ⊂ V n
1 , U2 ⊂ V n

2 with no ε-hole between U1 and U2. These two sets
determine, as in the proof of Lemma 3.1, two sequences π1 and π2 of sets of frequent
values F 1

s and F 2
s such that F 1

s ∩ F 2
s = ∅, s = 1, . . . t. Let U ′

i = |Vi(π
i) ∩ V n

i | be defined
as in the proof of Lemma 3.1. Then, as it was shown in that proof, |Ui| < 2|U ′

i |, and

min{|V1(π
1)|, |V2(π

2)|} < n1−δ
1 .

Hence, by (19),

|Ui| < 2|U ′
i | = 2|Vi(π

i) ∩ V n
i | ≤ 4nn−δ

1

= 4n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t
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for i = 1 or i = 2, a contradiction.
Now we are ready to prove Theorem 1.5.
Proof of Theorem 1.5: Fix any 0 < ε ≤ ε0, and let k ≥ 3 be the integer such that

1

25(k + 1)
< ε ≤ 1

25k
. (20)

Fix any 0 < d ≤ d0 ≤ 1/8, and let t be the integer such that

1

2

(
k − 1

k

)t+1

< d ≤ 1

2

(
k − 1

k

)t

. (21)

Observe that k ≤ t, since otherwise

1

2

(
k − 1

k

)t+1

≥ 1

2

(
k − 1

k

)k

≥ 1

8
≥ d,

a contradiction.
Now recall that n0 = max{n3δ/2

1 , n
3α/2
1 } and consider two separate cases.

Case 1. n ≥ n1 = kt

Take the blown-up graph Gn(k, t). By (13), we have

d(Gn(k, t)) ≥ r

r + 1

(
k − 1

k

)t

≥ 1

2

(
k − 1

k

)t

≥ d.

Thus, by Lemma 3.3

h(ε, d, n) < 2n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

. (22)

Case 2. n0 ≤ n < n1

Take the graph Gn satisfying Lemma 3.4. By (15), we have, again,

d(Gn) >
k − 1

k
n−α

1 ≥ d.

Thus, by Lemma 3.3

h(ε, d, n) < 4n
( e

2εk

)2εkt
(

1 + 4εk√
2

)2t

. (23)

Combining these two cases, we conclude that (23) holds for every n ≥ n0. By reshaping
the right hand side of (23), we arrive at

h(ε, d, n) < 4n

(
1

2

(
k − 1

k

)t+1
)φ

(24)

< 4ndφ, (25)
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where

φ =
t
(
ln 2 − 2εk ln e

2εk
− 2 ln (1 + 4εk)

)
ln 2 + (t + 1) ln k

k−1

. (26)

In what follows we will be relying on (20) and the well-known inequalities

x/2 ≤ ln(1 + x) ≤ x (27)

valid for 0 ≤ x ≤ 1. First notice that

ln
k

k − 1
≤ 1

k − 1
≤ 3

k + 1
< 75ε (28)

and

ln 2 + (t + 1) ln
k

k − 1
≤ 1 + 75(t + 1)ε < 100(t + 1)ε. (29)

Also

ln 2 − 2εk ln
e

2εk
− 2 ln (1 + 4εk) >

1

10
(30)

when ε ≤ 1/25k. Indeed, q(x) = ln 2 − x ln e
x
− 2 ln(1 + 2x) is decreasing when x < 1 and

q(2/25) > 1/10.
Combining (25), (26), (29), (30) and the fact that t/(t + 1) ≥ 1/2, we have

h(ε, d, n) < 4nd1/2000ε. (31)

It remains to estimate n0 = max{n3δ/2
1 , n

3α/2
1 }. Observe that nδ

1 =
(

2εk
e

)2εkt
( √

2
1+4εk

)2t

and

nα
1 =

(
k

k−1

)t
. We have

n
3δ/2
1 =

(
2εk

e

)3εkt
( √

2

1 + 4εk

)3t

(32)

=

[
2

(
k

k − 1

)t
]η

(33)

≤ (1/d)η , (34)

where

η =
3t
[
ln 2 − 2εk ln e

2εk
− 2 ln(1 + 4εk)

]
2t ln k

k−1
+ 2 ln 2

.

Applying (27) and (20), we have

η <
3 ln 2

2 ln(k/k − 1)
< 3k ln 2 ≤ 1

12ε
.
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So, by (34), we obtain

n
3δ/2
1 < (1/d)1/(12ε) . (35)

We also have

n
3α/2
1 =

(
k

k − 1

)3t/2

<

[
2

(
k

k − 1

)t
]3/2

≤ (1/d)3/2. (36)

Comparing (35) and (36), it is easy to see that n
3δ/2
1 ≥ n

3α/2
1 , since 1/(12ε) ≥ 3/2 when

ε ≤ 1/50. Hence, n0 < (1/d)1/(12ε).

4 Applications

As an immediate application of our Theorem 1.3, we improve slightly an upper bound on
the cycle partition number of an r-edge-colored Kn,n discussed in [6]. The cycle partition
number of an r-edge-colored graph G is defined to be the minimum k such that whenever
the edges of G are colored with r colors, the vertices of G can be covered by at most k
vertex-disjoint monochromatic cycles. Erdös, Gyárfás, and Pyber ([3]) proved that the
cycle partition number of r-colored complete graphs Kn is O(r2 ln r). They also raised
the question whether the cycle partition number for the complete bipartite graph Kn,n

is independent of n. In [6], Haxell proved that the upper bound on the cycle partition
number for an r-edge-colored Kn,n is O((r ln r)2) ([6]). Replacing Lemma 2 from [6] by
our Theorem 1.3, this can be improved to O(r2 ln r). We omit the details.

We conclude the paper with another application leading to what we believe is an
interesting problem. Let B(m, ∆) be the family of all bipartite graphs with m vertices
in each color class and maximum degree at most ∆. We say that a graph G is (m, ∆)-
universal if G contains a copy of H for every H ∈ B(m, ∆). In [1] and [2] the problem
of finding minimum M = M(m) for which there exists an (m, ∆)-universal graph with M
edges is investigated. Here we apply Theorems 1.3 and 1.4 to a related problem.

Given ∆ ≥ 1, 0 < d < 1 and n, let g(∆, d, n) be the largest integer m such that
every bipartite graph G with n vertices in each color class and at least dn2 edges is
(m, ∆)-universal.

Proposition 4.1 For all ∆ ≥ ∆0 and d ≤ d0, there is n0 such that for all n ≥ n0,

1

2
ndc1(d/2)−∆ ≤ g(∆, d, n) ≤ 4ndc2∆/ ln ∆,

where c1 and c2 are absolute constants.

Proof: For the proof of the upper bound we need to find, for every n ≥ n0, a bipartite
graph G with n vertices in each color class and d(G) ≥ d, as well as a graph H0 ∈ B(m, ∆)
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such that H0 6⊆ G. As G we will use the graph considered in the proof of Theorem 1.5
which is known to contain an ε-hole in every m by m subgraph, where m = 4ndc/ε.

With this approach, a natural candidate for H0 is then a graph with no large holes.
By considering a random bipartite graph with 2m vertices in each color class and with
edge probability ∆/(4m), a standard application of the first moment method yields the
existence of a graph H0 ∈ B(m, ∆) which contains no 9 ln ∆/∆-hole. Setting ε = 9 ln ∆/∆,
this proves the upper bound with c2 = c/9, where c is the constant appearing in Theorem
1.5.

For the lower bound, in addition to Theorem 1.3, we use the following embedding
result.

Lemma 4.2 ([5], Lemma 2) Every bipartite, (σ∆, σ)-dense graph F with at least σ−∆m

vertices in each color class is (m, ∆)-universal.

Given ∆, d and n, set ε = (d/2)∆ and

m =
1

2
n(d/2)∆d12/ε ≥ 1

2
nd14/ε.

By Theorem 1.3, every bipartite graph G with n vertices in each color class and at least
dn2 edges contains an (ε, d/2)-dense subgraph F with at least 1

2
nd12/ε = (d/2)−∆m vertices

in each color class. By Lemma 4.2 with σ = d/2, F is (m, ∆)-universal and so is G. This
proves the lower bound with c1 = 14.

It seems to be a challenging problem to narrow the gap between the lower and upper
bound in Proposition 4.1. We believe that the upper bound is closer to the true value
of g(∆, d, n). The proof of this fact, however, would require an essential strengthening of
the current graph embedding methods.

It is interesting to note that the nonbipartite version of graph G(k, t) which serves as
a basis for constructing a counterexample in Theorem 1.5, and consequently in the right
hand side of Proposition 4.1, was proved in [1] to be (kt, ∆)-universal if only k = k(∆) is
sufficiently large.

Acknowledgment. We thank Andrzej Dudek and an anonymous referee for careful
reading of the manuscript.
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5 Appendix

At the end of Section 2, we sketched how to prove Theorem 1.1. Here we give all the
details of that proof.

Proof of Claim 2.3. Assuming that H contains no pair satisfying conditions 1 or 2,
we will prove that H must contain a pair satisfying condition 3.

Since, in particular, the pair (V H
1 , V H

2 ) is not (ε, H)-regular, there exist A′
1 ⊂ V H

1 , B′
1 ⊂

V H
2 with |A′

1| = |B′
1| ≥ εm satisfying either

d(A′
1, B

′
1) > (1 + ε/3)d(H), (37)

or
d(A′

1, B
′
1) < (1 − ε/3)d(H). (38)

If (37) holds, then we have a pair satisfying condition 2. So (38) holds, and by an
averaging argument, we can take A1 ⊂ A′

1, B1 ⊂ B′
1 satisfying |A1| = |B1| = ε

2
m and

d(A1, B1) ≤ d(A′
1, B

′
1) < (1 − ε/3)d(H). Let F1 be the graph obtained by removing A1

from V H
1 and B1 from V H

2 .
We apply the same argument to F1, and in general, after l steps, l < 1/ε, we define

l disjoint pairs (A1, B1) , · · · , (Al, Bl) of size |Ai| = |Bi| = ε
2
m such that d(Ai, Bi) <

(1 − ε/3)d(H), 1 ≤ i ≤ l. Assume that Fl is obtained by removing
⋃l

j=1 Aj from V H
1
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and
⋃l

j=1 Bj from V H
2 . By our assumption that H does not contain a pair satisfying

conditions 1 or 2, there exist A′
l+1 ⊂ V H

1 \⋃l
j=1 Aj , B

′
l+1 ⊂ V H

2 \⋃l
j=1 Bj of size |A′

l+1| =
|B′

l+1| ≥ ε (1 − lε/2) m ≥ ε
2
m satisfying d(A′

l+1, B
′
l+1) < (1 − ε/3)d(H), and again we

can find Al+1 ⊂ A′
l+1 such that Bl+1 ⊂ B′

l+1, |Al+1| = |Bl+1| = ε
2
m and d(Al+1, Bl+1) <

(1 − ε/3)d(H).

After 1/ε steps the sets
⋃1/ε

j=1 Aj cover a half of V H
1 , and the sets

⋃1/ε
j=1 Bj cover a

half of V H
2 . Set V̄1 =

⋃1/ε
j=1 Aj , V̄2 =

⋃1/ε
j=1 Bj , e0 = e

(
V̄1, V̄2

)
, e1 = e

(
V̄1, V

H
2 \ V̄2

)
, e2 =

e
(
V H

1 \ V̄1, V̄2

)
, and e3 = e

(
V H

1 \ V̄1, V
H
2 \ V̄2

)
.

We claim that there exists a pair (U1, U2) satisfying condition 3. Indeed, if

e0 ≤
(
1 − ε2/4

)
d(H)m2/4,

then

e1 + e2 + e3 = d(H)m2 − e0 ≥ 3

(
1 +

ε2

12

)
d(H)

m2

4
,

and therefore, there exists i ∈ {1, 2, 3} such that

ei ≥
(

1 +
ε2

12

)
d(H)

m2

4
.

Let (U1, U2) be the pair defining ei. It is easy to see that (U1, U2) satisfies condition 3.
If e0 > (1 − ε2/4) d(H)m2/4, we define eij = e (Ai, Bj). By the choice of pairs (Ai, Bi),

we have eii < (1 − ε
3
)d(H)

(
εm
2

)2
for every i ≤ 1/ε. Therefore

∑
i

∑
j 6=i

eij = e0 −
1/ε∑
i=1

e (Ai, Bi) >

(
1 − ε2

4

)
d(H)

m2

4
− 1

ε

(
1 − ε

3

)
d(H)

(εm

2

)2

>

(
1 − ε +

ε2

12

)
d(H)

m2

4
.

For any I ⊂ {1, . . . , 1/ε}, |I| = 1/(2ε), we define

e (I) =
∑
i∈I

∑
j∈{1,...,1/ε}\I

eij.

Then
∑

I e (I) counts each eij

(
1/ε−2

1/(2ε)−1

)
times, where i 6= j. Therefore, there exists I such

that

e (I) ≥
∑

I e (I)(
1/ε

1/(2ε)

) =

(
1/ε−2

1/(2ε)−1

)
(

1/ε
1/(2ε)

) ∑
i

∑
j 6=i

eij >

(
1 − ε + ε2

12

)
dm2/4

4 (1 − ε)
≥
(

1 +
ε2

12

)
d(H)

m2

16
.

Set U1 =
⋃

i∈I Ai, U2 =
⋃

j 6∈I Bj . Then (U1, U2) is a pair satisfying condition 3.
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Proof of Theorem 1.1. Let G = (V1, V2, E) be a bipartite graph with |V1| = |V2| = n
and density d. If G contains a pair (U1, U2) satisfying condition 1 in Claim 2.3, then, due
to Fact 2.2, (U1, U2) is an ε-regular pair with |U1| = |U2| ≥ n/2 .

Assuming that G contains no pair satisfying condition 1 in Claim 2.3, and applying
Claim 2.3 to G, we can find either a subgraph G(1,0) ⊂ G with at least εn/2 vertices in
each color class and density at least (1 + ε/3)d, or a subgraph G(0,1) ⊂ G with at least
n/4 vertices in each color class and density at least (1 + ε2/12) d.

Without loss of generality, we may assume that the former is true. If G(1,0) contains
a pair satisfying condition 1 in Claim 2.3, then this pair is ε-regular. So, again, assuming
that G(1,0) contains no pair satisfying condition 1 in Claim 2.3, and applying Claim 2.3
to G(1,0) , we can find either a subgraph G(2,0) of G(1,0) with at least n(ε/2)2 vertices in
each color class and density at least (1 + ε/3)2d , or a subgraph G(1,1) of G(1,0) with at
least nε/8 vertices in each color class and density at least (1 + ε/3)(1 + ε2/12)d.

Suppose we have iterated this process (s1, s2) times, where s1 is the number of times of
obtaining pairs satisfying condition 2 in Claim 2.3, and s2 is the number of times obtaining
pairs satisfying condition 3 in Claim 2.3. Then we obtain a subgraph G(s1,s2) of G with
at least n(ε/2)s1(1/4)s2 vertices in each color class and density at least (1 + ε/4)s1 (1 +
ε2/12)s2d. Because the density of no graph is larger than 1, this process has to stop in
finite times. Let (t1, t2) be the number of times we iterate before the process stops, then
(1 + ε/3)t1 (1 + ε2/12)t2d ≤ 1.

At this point, we obtain an ε-regular pair with at least n
2
(ε/2)t1(1/4)t2 vertices in each

color class. It remains to estimate t1 and t2 from above. By the choice of t1, t2, we have
(1 + ε/3)t1 d ≤ 1, and (1 + ε2/12)

t2 d ≤ 1, thus

t1 ≤ ln(1/d)

ln(1 + ε/3)

and

t2 ≤ ln(1/d)

ln(1 + ε2/12)
.

Hence,
n

2
(ε/2)t1(1/4)t2 ≥ n

2
dφ. (39)

where

φ =
ln(2/ε)

ln(1 + ε/3)
+

ln 4

ln(1 + ε2/12)
.

Notice that ln(1 + x) ≥ x/2 holds for 0 ≤ x ≤ 1. Therefore

φ ≤ 6 ln(2/ε)

ε
+

48 ln 2

ε2
≤ c

ε2
, (40)

where c is an absolute constant. Applying (40) to (39), we have

n

2
(ε/2)t1(1/4)t2 ≥ n

2
dc/ε2,

and consequently we have proved the existence of an ε-regular pair in G with at least
1
2
ndc/ε2 vertices in each color class. This completes the proof of Theorem 1.1.
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