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We define a k-plex to be a partial latin square of order n containing kn entries such
that exactly k entries lie in each row and column and each of n symbols occurs exactly
k times. A transversal of a latin square corresponds to the case k = 1. For k > n/4
we prove that not all k-plexes are completable to latin squares. Certain latin squares,
including the Cayley tables of many groups, are shown to contain no (2c + 1)-plex for
any integer c. However, Cayley tables of soluble groups have a 2c-plex for each possible
c. We conjecture that this is true for all latin squares and confirm this for orders n ≤ 8.
Finally, we demonstrate the existence of indivisible k-plexes, meaning that they contain
no c-plex for 1 ≤ c < k.
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§1. Introduction

A partial latin square of order n is a matrix of order n in which each cell is either
blank or contains one of {1, 2, . . . , n} (or some other fixed set of cardinality n), and
which has the property that no symbol occurs twice within any row or column. A cell
which is not blank is said to be filled . A partial latin square with every cell filled is a
latin square. The set of partial latin squares of order n is denoted by PLS(n), and the
set of latin squares of order n by LS(n). We say that P1 ∈ PLS(n) contains P2 ∈ PLS(n)
if every filled cell of P2 agrees with the corresponding cell of P1. P ∈ PLS(n) is said to
be completable if there is some L ∈ LS(n) such that L contains P . On the other hand,
P is said to be maximal if the only partial latin square which contains P is P itself.

We coin the name k-plex of order n for a K ∈ PLS(n) in which each row and column
of K contains exactly k filled cells and each symbol occurs exactly k times in K. The
entries on a transversal of a latin square form a 1-plex. In the statistical literature (eg.
Finney [10-12]) a transversal is sometimes called a directrix; while the terms duplex,
triplex and quadruplex are used for a 2-plex, 3-plex and 4-plex respectively. This is
the motivation for our terminology, which permits a natural extension to arbitrarily
large k. We use the plural form “k-plexes” (sometimes dropping the k in statements
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of a general nature) rather than following the classical pattern which dictates that the
plurals of duplex and triplex are duplices and triplices. Note that plexes are defined
without being named in [8, p.34]. Also, some other names have been used for k-plexes.
For example, Colbourn and Dinitz [5] use the name k-transversal while Burton [3] uses
k-stagger. The former name is problematic since it has been used in other senses (see
[7, p.453] and [8, p.23]), besides which we feel that k-plex is more faithful to historical
context.

There are some natural ways to combine plexes. Suppose that K1 and K2 are
k-plexes of respective orders n1 and n2. For convenience, we assume that the symbols
occurring in K1 are disjoint from those in K2 (if not, label each symbol with a subscript
denoting which k-plex it belongs to). Then the direct sum of K1 and K2 is defined by

K1 ⊕ K2 =
(

K1 ∅1

∅2 K2

)
,

where ∅1 and ∅2 respectively denote n1 × n2 and n2 × n1 blocks in which every cell is
empty. It should be obvious that K1 ⊕ K2 is a k-plex of order n1 + n2.

Following Finney [12], we say that two plexes in the same square are parallel if
they have no filled cells in common. The union of an a-plex and a parallel b-plex of
a latin square L is an (a + b)-plex of L. However it is not in general possible to split
an (a + b)-plex into an a-plex and a parallel b-plex. Consider for example a duplex
which consists of 1

2
n disjoint intercalates (latin subsquares of order 2). Such a duplex

does not contain a partial transversal of length more than 1
2n, so it is a long way from

containing a 1-plex. Another example can be found in (4) below, which shows a 3-plex
which contains no 1-plex, and some more general examples are discussed in §5.

The entries not included in a k-plex of a latin square L of order n form a (n−k)-plex
of L. Together the k-plex and its complementary (n − k)-plex are an example of what
is called an orthogonal partition of L. More generally, if L is decomposed into disjoint
parts K1, K2, . . . , Kd where Ki is a ki-plex then we call this a (k1, k2, . . . , kd)-partition
of L. The notation (kα1

1 , kα2
2 , . . .) can be used as shorthand for a partition with α1 parts

which are k1-plexes, α2 parts which are k2-plexes, etc. A case of particular interest is
when all parts are the same size. We call a (kn/k)-partition a k-partition.

The concept of orthogonal partitions in latin squares goes at least as far back
as Finney [10]. The idea is discussed in a more general setting by Gilliland [16] and
Bailey [2]. Orthogonal partitions are also related to orthogonal frequency squares as
discussed, for example, in [5] and [8].

Two latin squares are said to be isotopic if one can be obtained from the other by
permuting the rows, columns and symbols. The main class of a latin square L is the set
of squares which can be obtained from L by isotopies, and also by permuting the roles
played by rows, columns and symbols. The definition of k-plex implies that, for each
k, the number of k-plexes is a main class invariant. Indeed, this is true more generally
for other types of orthogonal partitions, which is one of the reasons why they are an
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interesting concept. We will discuss the utility of plexes for distinguishing main classes
in §4.

In the next section we deal with the question of which plexes are completable to latin
squares. Following that is a section on the existence of plexes in Cayley tables of groups.
Section 4 looks at plexes in latin squares of orders up to 8 and the last section before
the final summary proves that some plexes cannot be split into non-trivial subplexes.

§2. Completability of plexes

It is easily established that there is no completable 1-plex of order 2. This is just
a small order anomaly, as shown by our first result.

Theorem 1. If n > 2 then there exists L ∈ LS(n) which contains a k-plex for each k

satisfying 0 ≤ k ≤ n.

Proof: If n > 2 and n 6= 6, a celebrated result says that there are two orthogonal latin
squares of order n. A square with an orthogonal mate has a 1-partition and the union
of any k of these parts gives us a k-plex.

For n = 6 there is no pair of orthogonal squares, however we can get close enough for
present purposes. Finney [10] found the following example from LS(6) which contains
4 parallel transversals. 



1a 2 3b 4c 5 6d

2c 1d 6 5b 4a 3
3 4b 1 2d 6c 5a

4 6a 5c 1 3d 2b

5d 3c 2a 6 1b 4
6b 5 4d 3a 2 1c




The four separate transversals are indicated by the subscripts a, b, c and d. The symbols
without a subscript form a 2-plex which together with k − 2 of the transversals yields a
k-plex for k = 2, 3, 4, 5, 6. The four marked transversals supply examples for k = 1. �

A corollary of the result just proved is that if 0 ≤ k ≤ n and n > 2 then there is a
completable k-plex of order n. However, our next result shows that not all k-plexes are
completable.

Theorem 2. If 1 < k < n and k > 1
4n there exists an uncompletable k-plex of order n.

Proof: Our construction divides into three cases.

Case 1. 1
4n < k ≤ 1

2n.

Let m = b1
2
nc. Let K = A ⊕ D ∈ PLS(n),

K =
(

A B
C D

)
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where A is a k-plex of order m on the symbols {1, 2, . . . , m}, D is a k-plex of order n−m

on the symbols {m + 1, m + 2, . . . , n}, and both B and C are empty. Suppose that K

has a completion to L ∈ LS(n), and let B′ be the submatrix of L corresponding to B.
We count the number of occurrences of each symbol in B′. The symbols {1, 2, . . . , m}
already occur k times in A within the first m rows of K, so they can occur at most
m − k times each in B′. Similarly the symbols {m + 1, m + 2, . . . , n} already occur k

times in D within the last n − m columns of K, so they can occur at most n − m − k

times each in B′. But B′ has m(n − m) cells, so it must be that

0 ≤ m(m − k) + (n − m)(n − m − k) − m(n − m) = 3b1
2nc(b1

2nc − n
)

+ n2 − kn

≤ 3( 1
4
− 1

4
n2) + n2 − 1

4
(n + 1)n = 1

4
(3 − n)

which means n ≤ 3. However, this contradicts 2 ≤ k ≤ 1
2n so we conclude that K is

not completable.

Case 2. 1
2
n < k < n and n is even.

Let m = 1
2
n and j = k−m. By Theorem 1 we can find M ∈ LS(m) which uses the

symbols {1, 2, . . . , m} and which is the disjoint union of a j-plex J and an (m− j)-plex
which we denote M \ J . Let K ∈ PLS(n) be composed of four m × m blocks thus:(

A B
C D

)

where A is a copy of M , B = C is a copy of J with each symbol increased by m and D

is a copy of M in which each of the cells in M \ J has had its symbol increased by m.
Notice that each of the symbols {1, 2, . . . , m} occurs within every row of A, while

each of the symbols {m+1, m+2, . . . , 2m = n} occurs in each of the last m columns of
K. Hence none of the blank cells in B can be filled without breaching the latin property.
A similar argument applies to the only other blank cells in K, namely those in C. It
is apparent then that K is maximal, in which case it is certainly not completable. (In
fact this construction is a special case of one for maximal partial latin squares given by
Horák and Rosa [18].)

Case 3. 1
2n < k < n and n is odd.

We index our rows, columns and symbols with the congruence classes of integers
modulo n. Let K ′ be the order n matrix defined by K ′

ij ≡ i+ j if j− i ∈ {0, 1, . . . k−1}
with K ′

ij not being filled otherwise. Thus K ′ consists of k broken diagonals from a
cyclic square of order n. As n is odd, each of these diagonals is a 1-plex and K ′ is a
k-plex. Now form K as follows

Kij =




0 if i = 1, j = 0,
k + 1 if i = 0, j = k,
unfilled if i = j = 0,
unfilled if i = 1, j = k,
K ′

ij otherwise.
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So K is constructed from K ′ by performing the following surgery on rows 0 and 1:
(

0 1 2 . . . k − 1 ↑
↓ 2 3 . . . k k + 1

)

Note that the cells K ′
10 and K ′

0k are necessarily empty since k < n. It is clear then, that
our surgery preserves the number of filled cells in each row and column and the number
of occurrences of each symbol. Also K must be latin since we are either swapping the
zeroes in rows 0 and 1 (in the case k = n − 1) or else 0 does not occur in row 1 of K ′,
nor does k + 1 occur in row 0. So K, like K ′, is a k-plex. However, while K ′ is clearly
completable to a cyclic square, we claim that K is not completable.

The symbols 1, 2, . . . k − 1 already occur in row 0, while symbols n− k + 1, n− k +
2, . . . , n − 1, 0 occur in column 0. But n − k + 1 ≤ k because 2k > n, so this leaves no
symbol available to fill cell 00.

This completes the case, and the proof of the theorem. �
Theorem 2 provides a partial answer to a problem posed by Donovan [9, p.255],

who asked for which n and k does there exist a non-completable k-plex of order n. It
has been suggested by several people (eg Burton [3], and Daykin and Häggkvist [6])
that Theorem 2 encompasses the whole answer to this question. In other words, they
conjecture that if k ≤ 1

4
n then every k-plex is completable. It seems certain that for

k << n every k-plex is completable. This has already been proved when n ≡ 0 mod16
in [6]. Also, an as yet unpublished result of Chetwynd and Häggkvist [4] shows the
result for all even n. The following partial extension result due to Burton [3] is also
relevant.

Theorem 3. For k ≤ 1
4n every k-plex of order n is contained in a (k + 1)-plex of order

n.

Proof: Let K be the k-plex to be extended. By direct application of Hall’s condition
it can be seen that any n sets, each with at least m elements chosen from {1, 2, . . . , n}
have a system of distinct representatives if m ≥ 1

2n and each symbol occurs at least
m times among the n sets. We use this result twice. Firstly, for each row we select a
column which is not used in that row in K, with the columns chosen being distinct for
different rows. Once we have chosen the positions we apply the result again to choose
the symbols occupying those positions. In each position there are at least n − 2k ≥ 1

2n

symbols which can be used, so we can find a 1-plex which can be used to extend K to
a (k + 1)-plex. �

We caution that the plexes in Theorem 3 are not situated in a particular latin
square; conceivably they are not completable at all. We shall meet in the next section
plenty of latin squares which have k-plexes which are not included in (k + 1)-plexes of
the same square, even for k << n. Then in §5 we will see that no converse of Theorem 3
is possible.
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§3. Cayley tables of groups

Let G = {g1, g2, . . . , gn} be a finite group. The Cayley table for (this enumeration
of) G is the matrix of order n whose entry in row r and column c is grgc. The existence
of inverses in G guarantees that any Cayley table of G is a latin square. In this section
we examine the existence question for plexes in Cayley tables. We say that a group
possesses a k-plex if its Cayley table does. We first dispose of one easy case. It is well
known (see below or [7]) that if the Cayley table of a group has a transversal then it
has a 1-partition. We can simply take the union of k of these transversals, to yield:

Theorem 4. If the Cayley table of a group possesses a transversal then it has a

1-partition and hence a k-plex for every possible k.

“Translation” using the group’s multiplication operation is the key to finding par-
allel transversals, once one has been found. Suppose we know of a transversal that
comprises a choice from each row i of an element gi. Let g be any fixed element of
G. Then if we select from each row i the element gig this will give a new transversal
and as g ranges over G the transversals so produced will be mutually parallel and thus
provide a 1-partition of L. The crucial point is that this translation respects collinearity
in columns in the following sense. If gi and gj are two entries which get translated to,
respectively, gig and gjg then gig is in the same column as gjg if and only if gi was
in the same column as gj. It follows that if we have any k-plex and translate it by a
fixed group element we get another k-plex. However, if k > 1 the new k-plex need not
be parallel to the original one. As an example, consider the following Cayley table for
S3 in which the six translates of a duplex D (which is marked in bold) are shown. No
three of these six translates decompose the table, although some pairs of translates are
parallel. 



12,5 23,6 31,4 43,6 51,4 62,5

24,6 34,5 15,6 61,2 42,3 51,3

31,3 11,2 22,3 54,5 65,6 44,6

41,2 52,3 61,3 14,6 24,5 35,6

55,6 64,6 44,5 32,3 11,3 21,2

63,4 41,5 52,6 21,5 32,6 13,4




The interpretation of this Cayley table is as follows. The mapping

(1)(2)(3) → 1, (123) → 2, (132) → 3,

(12)(3) → 4, (13)(2) → 5, (1)(23) → 6,

has been chosen for S3 and permutations act on the left. The subscripts on the entries
indicate which translates of D they are included in. D itself consists of the 12 entries
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which have 1 among their subscripts, denoting translation by the identity. The duplex
obtained by translating D by the group element (123) consists of entries with subscript
2, etc. Note that the intersection between translates can be empty (eg, translates 1 and
6) but is usually non-trivial (eg, translates 1 and 3 overlap in four places).

Hall and Paige [17] proved that a finite soluble group G possesses a transversal
if and only if the Sylow 2-subgroups of G are trivial or non-cyclic. They conjectured
that the stipulation that G is soluble can be dropped, in which case it would follow
that all non-soluble groups have a transversal. By Theorem 4 then, the only case that
would remain for us would be groups with a non-trivial cyclic Sylow 2-subgroup. We
shall resolve the existence question for plexes in that case below, but first we need some
preliminary results. The first was noted by Hall and Paige [17], and also appears in
[7, p.36].

Theorem 5. If G is a finite group with a non-trivial cyclic Sylow 2-subgroup S then

G has a normal subgroup K of odd order such that S is a set of coset representatives

for K.

A latin square of order mq is said to be of q-step type if it can be represented by a
matrix of q × q blocks Aij as follows




A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
Am1 Am2 · · · Amm


 (1)

where each block Aij is a latin subsquare of order q and two blocks Aij and Ai′j′ contain
the same symbols if and only if i + j ≡ i′ + j′ mod m.

Theorem 6. Suppose that q and k are odd integers and m is even. No q-step type

latin square of order mq possesses a k-plex.

Proof: Our proof is based on that of Theorem 12.3.1 in [7], which treats the case
k = 1. Suppose that L is a q-step type latin square of order n = mq, as shown in (1).
By relabelling if necessary we may assume that L uses the symbols {1, 2, . . . , n} and
that each subsquare Aij contains the symbols {hq − q + 1, hq − q + 2, . . . , hq − 1, hq}
where h ≡ i + j modm.

Let us suppose that the theorem fails and that K is a k-plex of L. We arbitrarily fix
an order of the kn entries in K. For i = 1, 2, . . . , kn let the i-th entry in K be the symbol
aiq − bi (where 0 ≤ bi < q) chosen from the block Acidi

. Note that ai ≡ ci + di mod m

by the way we chose our labelling.
Now each symbol occurs k times in K, and for a fixed j ∈ {1, 2, . . . , m} there are q

integers in the range {1, 2, . . . , n} of the form jq − b where 0 ≤ b < q. Hence if we add
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ai over the entries of K we get

kn∑
i=1

ai = kq
m∑

j=1

j = 1
2kqm(m + 1). (2)

Fix any j ∈ {1, 2, . . . , m}. The k-plex K must contain exactly kq entries from the
q columns of L represented by the blocks A1j, A2j , . . . , Amj . Thus there are kq indices
for which di takes the value j. Likewise, there are kq entries from the q rows of L

represented by the blocks Aj1, Aj2, . . . , Ajm, so there are kq indices for which ci takes
the value j. Thus, modulo m,

kn∑
i=1

ai ≡
kn∑
i=1

ci +
kn∑
i=1

di = 2kq

m∑
j=1

j = kqm(m + 1) ≡ 0.

Combining this result with (2) we deduce that 2 divides kq(m + 1) which contradicts
the parities chosen for k, q and m. We conclude that L has no k-plex. �

Theorem 6 shows that some latin squares do not contain a k-plex for any odd k.
A particularly important special case of this result is included in our next theorem.

Theorem 7. Let G be a group of finite order n with a non-trivial cyclic Sylow 2-

subgroup. The Cayley table of G contains no k-plex for any odd k but has a 2-partition

and hence contains a k-plex for every even k in the range 0 ≤ k ≤ n.

Let n = mq where q is odd and m ≥ 2 is a power of 2. Let S = 〈s〉 be a Sylow
2-subgroup of G. By Theorem 5 there exists a normal subgroup N of G such that S is
a set of coset representatives for N . Note that N = {g1, g2, . . . , gq} has order q and S

has order m. We can order the elements of G as follows:

{g1, g2, . . . , gq, sg1, sg2, . . . , sgq, s2g1, s
2g2, . . . , s

2gq, . . . , sm−1g1, s
m−1g2, . . . , s

m−1gq}

Using this enumeration for G we build a Cayley table, the body of which is a latin
square L. We claim that L is of q-step type. To see this, break L up into blocks Aij as
follows 


A00 A01 · · · A0,m−1

A10 A11 · · · A1,m−1

...
...

. . .
...

Am−1,0 Am−1,1 · · · Am−1,m−1


 . (3)

By the chosen enumeration, every element in Aij belongs to the set siNsjN , which is
just si+jN since N is normal. Since si+jN consists of only q symbols and Aij is a block
of order q we see that Aij must in fact be a latin subsquare of L and the remaining
requirement in the definition of q-step type is immediate from the fact that S = 〈s〉 is a

the electronic journal of combinatorics 9 (2002), #R12 8



set of coset representatives for N . At this point we can apply Theorem 6 and rule out
L having a k-plex for any odd k.

The existence of a k-plex in a Cayley table of G is invariant with the enumeration
chosen for G, so to complete the proof of the theorem it suffices to exhibit a 2-partition
of L. We do this by first arguing that each of the subsquares Aij has a 1-partition. For
A11 this follows from Theorem 4 since A11 is a Cayley table for N , which is a group of
odd order (the main diagonal is always a transversal of the Cayley table of a group of
odd order). Also, for any given i and j, the subsquare Aij can be obtained from A11 by
permuting the rows and relabelling the symbols. To see this consider the row bordered
by siga. Since N is normal in G there is some ga′ = s−jgasj ∈ N . Now, the entry
in the column bordered by sjgb is sigasjgb = si+js−jgas

jgb = si+jga′gb. This means
that the row of Aij bordered by siga can be obtained from the row of A11 bordered by
ga′ by applying the map x → si+jx. Thus Aij is isotopic to A11 and must also have a
1-partition.

Arbitrarily fix an order on the transversals we have just found in each block of
L, and choose a and b in the ranges 0 ≤ a < 1

2
m and 1 ≤ b ≤ q. We form a duplex

Da,b by taking the b-th transversal from each of the blocks A2a+i,i and A2a+1+i,i for
i = 0, 1, 2, . . . , m − 1, where subscripts are taken modulo m. The blocks chosen to
figure in Da,b correspond to a duplex of the cyclic latin square of order m obtained by
replacing each block in (3) by a single symbol specific to the symbols used in that block.
Hence it should be clear that Da,b is indeed a duplex. Also, Da,b and Dc,d are parallel
unless a = c and b = d, so the Da,b decompose L. This completes the proof. �

With the aid of Theorem 7 and the results of Hall and Paige [17] we have resolved
the existence question for plexes in soluble groups. Depending on whether such a group
has a non-trivial cyclic Sylow 2-subgroup it either has a k-plex for all possible k, or has
them for all possible even k but no odd k. If the Hall-Paige conjecture could be proved
it would completely resolve the existence question of plexes in groups, and these would
remain the only two possibilities.

It is worth noting that other scenarios occur for latin squares which are not based
on groups. For example, the following square has no transversal, but the marked entries
form a 3-plex. 



1∗ 2 3 4∗ 5 6∗

2∗ 1 4 3∗ 6∗ 5
3 5∗ 1 6 2∗ 4∗

4 6 2∗ 5 3∗ 1∗

5∗ 4∗ 6∗ 2 1 3
6 3∗ 5∗ 1∗ 4 2




(4)

It would be of interest to determine whether there exist arbitrarily large latin squares
(presumably of even order) of this type. We conjecture that there are.

Conjecture 1. For all even n > 4 there exists a latin square of order n which has no
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transversal but does contain a 3-plex.

§4. Small orders

Finney [10-12], Freeman [13-15], and Johnston and Fullerton [19] between them
have made a very detailed study of the plexes in squares of orders up to 6. Killgrove et
al. [20] studied orders 6 and 7. In this section we report, for the first time, results for
order 8 squares.

We first present a table showing the range of the number of k-plexes (for k = 1, 2, 3)
in squares of orders 6, 7, and 8. Since commutative group tables tend to have exceptional
numbers of plexes, they have been separated in the results. We use C(n) to denote the
set of commutative groups of order n.

fewest most fewest most fewest most
1-plexes 1-plexes 2-plexes 2-plexes 3-plexes 3-plexes

LS(6) \ C(6) 0 32 239 621 0 1792
C(6) 0 0 1539 1539 0 0

LS(7) \ C(7) 3 63 2676 4295 42731 54288
C(7) 133 133 23184 23184 310198 310198

LS(8) \ C(8) 0 384 23592 263208 ≤ 2211280 ≥ 15205248
C(8) 0 384 460096 465976 0 28979840

There are 147 main classes of order 7 latin squares (see eg. [5]). Killgrove et al.
[20] reported that, except for two pairs of order 7 squares, the number of transversals
together with the number of duplexes was enough to distinguish all main classes up to
order 7. It turns out that the two ties that they reported can be broken by considering
the number of 3-plexes. In other words the numbers of plexes completely discriminate
between all main classes up to order 7.

There are 283657 main classes of order 8 latin square. Counting 1 and 2-plexes
partitions the order 8 squares into 60224 equivalence classes, of which 26717 consist
of a single main class, (which can thereby be identified by counting transversals and
duplexes). Counting 3 and 4-plexes can discriminate further but is computationally
expensive. The author’s program took forty minutes to count the 3-plexes in a single
square, and hence was too slow to establish whether all main classes could be distin-
guished simply on the basis of k-plex counts. However, it did establish that in a number
of cases it will be necessary to look as far as 4-plexes. The following two squares both
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have 60 transversals, 57510 duplexes and 3620999 triplexes:



1 8 6 4 7 3 5 2
5 1 2 8 3 7 6 4
6 3 4 1 2 5 7 8
7 5 8 6 4 2 3 1
4 7 5 2 8 6 1 3
2 6 3 5 1 4 8 7
8 2 7 3 5 1 4 6
3 4 1 7 6 8 2 5







4 7 8 1 3 2 5 6
3 6 1 7 5 4 8 2
6 2 4 8 7 5 1 3
7 3 5 4 8 6 2 1
8 4 7 3 2 1 6 5
1 5 6 2 4 7 3 8
5 8 2 6 1 3 7 4
2 1 3 5 6 8 4 7




(5)

It is easily established that they are not from the same main class by, for example,
counting subsquares. It seems more expedient to check such criteria than it does to
establish that the square on the left has 14245160 4-plexes while the one on the right
has 14250382.

An interesting observation is that these squares have an odd number (in fact, a
prime number) of 3-plexes. The significance of this remark is that Balasubramanian [1]
has shown that squares of even order have an even number of transversals. It might
be hoped that this result would generalise to (2a + 1)-plexes for a > 0, much as the
parity argument in Theorem 6 generalises an earlier result for transversals. However,
our examples in (5) deny this possibility and are of the minimum order to do so. It is
worth remarking further that Balasubramanian made a conjecture aimed at proving an
earlier conjecture of Ryser that the number of transversals of a latin square always equals
its order modulo 2. However, both conjectures fail, since there are many examples of
squares of order 7 which have an even number of transversals (see [5] for examples). It
seems that the result Balasubramanian proved does not generalise in any of the obvious
directions.

The next table shows the squares of order n, for 4 ≤ n ≤ 8, counted according to
their maximum number of parallel transversals. That is, each main class representative
M is scored by the maximum m such that M has a (1m, n − m) partition. Recall that
if m = n then M has a 1-partition and hence an orthogonal mate.

m \ n 4 5 6 7 8

0 1 0 6 0 33
1 0 1 0 1 0
2 0 0 2 5 7
3 - 0 0 24 46
4 1 - 4 68 712
5 - 1 - 43 71330
6 - - 0 - 209505
7 - - - 6 -
8 - - - - 2024

total 2 2 12 147 283657
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So we see that there are 6 main classes of order 6 and 33 main classes of order 8
squares which have no transversal. There are 2024 main classes of order 8 which permit
a 1-partition. Most of these are comparatively rich in transversals, but 4 of them have
the bare minimum number of transversals, namely 8. One example is this square, in
which subscripts denote the transversals,




1a 2b 3c 4d 5e 6f 7g 8h

7b 8a 5d 6c 2f 4e 1h 3g

2c 1d 6a 3b 4g 5h 8e 7f

8d 7c 4b 5a 6h 2g 3f 1e

4f 3e 1g 2h 7a 8b 5c 6d

6e 5f 7h 8g 1b 3a 2d 4c

3h 6g 2e 1f 8c 7d 4a 5b

5g 4h 8f 7e 3d 1c 6b 2a




We next give the table for 3-plexes, corresponding to the one above for 1-plexes.
Each square is scored by the maximum m such that it has a (3m, n − 3m) partition, is
this:

m \ n 4 5 6 7 8

0 1 0 4 0 1
1 1 2 - 0 0
2 - - 8 147 283656

Interestingly, up to order 8 the only squares without the maximum possible number
of parallel 3-plexes are the step-type squares covered by Theorem 6. It would be of some
interest to establish for larger orders whether any other type of square can fail to have
a 3-plex.

We turn finally to 2-plexes, where the results are very simple. Every square of
order n ≤ 8 contains the maximum possible number, bn/2c, of parallel 2-plexes (a
result previously shown by Finney [10, 11] for n ≤ 6). This suggests the following
conjectures:

Conjecture 2. Every latin square of even order has a 2-partition.

Conjecture 3. Every latin square of odd order has a (1, 2, 2, 2, . . . , 2)-partition.

Note that these conjectures strengthen Rodney’s conjecture [5, p.105] that every
latin square has a duplex. Conjecture 3 also strengthens Ryser’s conjecture that every
odd order latin square has a transversal. Rodney’s conjecture was proved for Cayley
tables of soluble groups in [21]. We proved Conjectures 2 and 3 for the same groups
in §3 above. All Cayley tables for groups of odd order have a 1-partition and hence
Conjecture 3 is certainly true for them. Also, Theorem 7 proves Conjecture 2 for all
groups with a cyclic Sylow 2-subgroup. It follows that this conjecture is true for all
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soluble groups, and would be established for all groups if the Hall-Paige conjecture were
proved.

One obstacle to attempts to prove our conjectures are the indivisible plexes dis-
cussed next. They mean it is not reasonable to indiscriminately extract 2-plexes and
expect this to lead to a 2-partition.

§5. Indivisible plexes

Say that a k-plex is indivisible if it contains no c-plex for 0 < c < k. For example,
the 3-plex given in (4) is indivisible. Also, the majority of squares (at least for the
small orders we studied in the preceding section) do not have a 1-partition, and it
follows immediately that they must contain an indivisible k-plex for some k ≥ 2. The
existence of indivisible plexes is an obstacle to some obvious attacks on the conjectures
we formulated in §4. In this light, the following result is bad news.

Theorem 8. For arbitrary k and n ≥ k2 there exists an indivisible k-plex of order n.

Proof: Let m = k−1. Below we build an indivisible k-plex K of order km. The theorem
will then follow easily from the following observation. If n ≥ k2 then n− km ≥ k so we
can find a k-plex of order n − km and take the direct sum with K to produce a k-plex
K ′ of order n. Any c-plex of K ′ would necessarily contain a c-plex of K, which we know
does not exist if 0 < c < k.

We construct K as a k × k arrangement of square blocks each of order m:




A1 B1 0 0 · · · 0
0 A2 B2 0 · · · 0
0 0 A3 B3 · · · 0
0 0 0 A4 · · · 0
...

...
...

...
. . .

...
Bk 0 0 0 · · · Ak




(6)

Each of the blocks Ai on the main diagonal is a matrix A which contains each of the
symbols 1, 2, . . . , m2 exactly once (the exact position of symbols being immaterial). The
blocks Bi on the diagonal above the main diagonal each equal B ∈ PLS(m), the only
filled cells of which lie on its main diagonal and are given by

Bjj = m2 + jj for j = 1, 2, . . . , m.

The remaining blocks, marked with a 0, are all empty. It should be immediately appar-
ent that K is a k-plex of order mk. As an aside, we note that K is easily completable.

Suppose that K contains a c-plex C. Let α be the number of entries of C which
lie in the block A1. Since there are c entries of C in each of the first m rows, there
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must be β = mc − α entries of C in B1. But now counting the entries in the columns
through B1 we see that there must be mc − β = α entries of C in A2. Proceeding in
this way, we ascertain that there must be α entries of C in each Ai, and β entries of C

in each Bi. Hence the total number of entries chosen from the Bi’s is kβ, and this must
equal the total number of occurrences of the symbols m2 + 1, m2 + 2, . . . , m2 + m in C,
namely cm. But m = k − 1 so m and k are relatively prime, which means the equation
kβ = cm implies that k divides c. Thus the c-plex that we found in K can only be a
trivial one; either a 0-plex or a k-plex. �

We make no claim as to the optimality of the bound k2 in the theorem just proved.
Another question which we leave open is the existence, for a fixed k, of latin squares
in which every k-plex is indivisible. Some examples for the case k = 2 can be found
amongst the group tables discussed in §3, and (4) gives one example for k = 3. If
Conjectures 2 and 3 hold then the only examples would be of even order and we must
also have k odd or equal to 2.

§6. Summary

We have defined plexes, which are generalised transversals of latin squares. Some re-
sults about transversals (1-plexes) generalise to k-plexes for other k. The non-existence
result in Theorem 6 is in this category. Other parity arguments which might be expected
to behave similarly, such as Balasubramanian’s theorem discussed in §4, turn out not
to generalise. (We also noted in the same section the falsity of a conjecture by Balasub-
ramanian and a related one by Ryser on the parity of the number of transversals).

The existence question for plexes in Cayley tables of finite groups was almost com-
pletely settled in §3. We also proved the existence of plexes that cannot be completed
to a latin square (in §2) and which cannot be subdivided (in §5). In §4 we gave results
on plexes in squares of orders up to 8, and conjectured that all squares have orthogonal
partitions of a particular type. In doing so we strengthened Ryser’s conjecture that
every latin square has a transversal. Two other directions for future research that we
left open are (1) A conjecture that there exist arbitrarily large even order squares with
a 3-plex but no transversal and (2) a question as to whether there are squares without
3-plexes other than those covered by Theorem 6.
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[7] J. Dénes and A. D. Keedwell, Latin squares and their applications, Akadémiai
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