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Abstract

We give two lower bound formulas for multicolored Ramsey numbers. These formu-
las improve the bounds for several small multicolored Ramsey numbers.

1. INTRODUCTION

In this short article we give two new lower bound formulas for edgewise r-colored
Ramsey numbers, R(ki, ko, ..., k.), r > 3, defined below. Both formulas are derived via
construction.

We will make use of the following notation. Let G be a graph, V(G) the set of vertices
of G, and E(G) the set of edges of G. An r-coloring, y, will be assumed to be an edgewise
coloring, i.e. x(G) : E(G) — {1,2,...,r}. If u,v € V(G), we take x(u,v) to be the color
of the edge connecting v and v in G. We denote by K,, the complete graph on n vertices.

Definition 1.1 Let r > 2. Let k; > 2, 1 < i <r. The number R = R(ky, ks, ..., k) is
defined to be the minimal integer such that any edgewise r-coloring of Kr must contain,
for some j, 1 < j < r, a monochromatic Ky, of color j. If we are considering the
diagonal Ramsey numbers, i.e. ky = ko = -+ =k, = k, we will use R,(k) to denote the
corresponding Ramsey number.

The numbers R(ky, ks, . . ., k,) are well-defined as a result of Ramsey’s theorem [Ram)].
Using Definition 1.1 we make the following definition.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R13 1



Definition 1.2 A Ramsey r-coloring for R = R(ky, ko, ..., k) is an r-coloring of the
complete graph on V- < R vertices which does not admit any monochromatic Ky, subgraph
of color j for 7 = 1,2,...,r. For V. = R — 1 we call the coloring a mazimal Ramsey
r-coloring.

2. THE LOWER BOUNDS

We start with an easy bound which nonetheless improves upon some current best lower
bounds.

Theorem 2.1 Letr > 3. Forany k; > 3,1=1,2,...,r, we have

R(kl, kfg, ey kr) > (k’l - 1)(R(k27 k37 RS kr) - 1)

Proof. Let ¢(G) be a maximal Ramsey (r — 1)-coloring for R(ks, ks, ..., k) with colors
2,3,...,r. Let k; > 3. Define graphs G;, i = 1,2,...,k; — 1, with |V(G;)| = |V(G)| on
distinct vertices (from each other), each with the coloring ¢. Let H be the complete graph
on the vertices V(H) = UF'V(G,). Let v; € Gy, v; € G, and define x(H) as follows:

o) i
X(vi,v5) = { g125(%%) ifi%;

We now show that x(H) is a Ramsey r-coloring for R(ky, ks, ..., k). Forj € {2,3,...,r},
X(H) does not admit any monochromatic K}, of color j by the definition of ¢. Hence, we
need only consider color 1. Since ¢(G;), 1 <1i < k; — 1, is void of color 1, any monochro-
matic K, of color 1 may only have one vertex in G; for 1 < ¢ < k; — 1. By the pigeonhole
principle, however, there exists « € {1,2,...,k; — 1} such that G, contains two vertices
of Kj,, a contradiction. O

Ezamples. Theorem 2.1 implies that R5(4) > 1372, R5(5) > 7329, R4(6) > 5346, and
R4(7) > 19261, all of which beat the current best known bounds given in [Rad].

We now look at an off-diagonal bound. This uses and generalizes methods found in
[Chu] and [Rob].

Theorem 2.2 Letr > 3. For any 3 < ki < ko, and k; > 3, j = 3,4,...,7, we have

R(ki, ko, .. ky) > (ki 4+ 1) (R(ko — k1 + 1, ks, ..., k) — 1).

Before giving the proof of this theorem, we have need of the following definition.
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Definition 2.3 We say that the n x n symmetric matriz
T = T(.CI?(], T1y... ,.Tr) = (aij>1§i,j§n

is a Ramsey incidence matrixz for R(ky, ke,... k.) if T is obtained by using a Ramsey
r-coloring for R(ki, ko, ..., k), x : E(K,) — {z1,22,...,2,}, as follows. Define a;; =
x(i,7) if i # j and az; = xo.

From Definition 2.3 we see that an n x n Ramsey incidence matrix T'(xg, 21, ..., x,)
for R(k1, ka, ..., k,) gives rise to an r-colored K, which does not contain K}, of color x;
fori=1,2,...,r.

Proof of Theorem 2.2. We will be using Ramsey incidence matrices to construct an
r-colored Ramsey graph on (ky +1)(R(ko — k1 + 1, k3, ..., k) — 1) vertices which does not
admit monochromatic subgraphs Kj, of color ¢, i = 1,2,...,7. We start the proof with
R(t, k,1) and then generalize to an arbitrary number of colors.

Let [ > ¢ and consider a maximal Ramsey 2-coloring for R = R(k,l —t+1). Let T =
T(xo, x1, x2) denote the associated Ramsey incidence matrix. Define A = A* = T'(0, 2, 3),
B =DB*=T(3,2,1),and C =T(1,2,3), and consider the symmetric (t+1)(R—1) x (t +
1)(R—1) matrix, M, below (so that there are ¢+ 1 instances of 7" in each row and in each
column). We note that in the definitions of A and A* we have the color 0 present. This is
valid since, as M is defined in equation (1), the color 0 only occurs on the main diagonal of
M and the main diagonal entries correspond to nonexistent edges in the complete graph.

A B C C C C
B* A*x C C C C
¢ C A B B B
M= C C B A B B (1)
¢ C B B A
: : Do . . B
¢ ¢ B B ... B A

We will show that M defines a 3-coloring which contains no monochromatic K; of
color 1, no monochromatic K}, of color 2, and, for [ > ¢, no monochromatic K; of color 3,
to show that R(t,k,1) > (t + 1)(R(k,l —t+ 1) —1).

Note 1: We will use the phrase diagonal of X, where X = A, A*, B, B*, or (', to mean
the diagonal of X when X is viewed as a matrix by itself.

Note 2: For ease of reading, we will use (7, j) to represent the matrix entry a;;.

No monochromatic K; of color 1. Let V(K;) = {i1,1a,...,0} with i1 <iy < -+ <y,
so that we can view E(K;) as corresponding to the entries in M given by Ujsy (45, 4%).
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We now argue that not all of these entries can be equal to 1. Assume, for a contradiction,
that all entries are equal to 1.

First, we cannot have two distinct entries in the collection of C’s. Assume otherwise
and let (i;,,i,) and (ij,,k,) both be in the collection of C’s with either i;, # i;, or

Uy F Uy

Case L. (4;, # 1;,) Let 4;, < 4;,. Note that the entry 1 occurs only on the diagonal of C.
We have two subcases to consider.

Subcasei. (ix, = ix,) In this subcase, (ij,,17;,) is on the diagonal of B, a contradiction.

Subcase ii. (i, # ir,) In this subcase, one of (i, i, ), (ij,, 7%, ) is not on the diagonal
of C, but is in C', a contradiction.

Case II. (i;, = ij, and iy, # ix,) Letting iy, < iy, forces (i,, i, ) to be on the diagonal of
B*, a contradiction.

The above cases show that we can have at most one entry in the collection of C’s.

Next, since A does not contain 1, we must have at least (;) — 1 entries in the collection
of B’s (including B*). If there exists an entry in B* then, since we can have at most one
entry in the collection of C’s, we must have all of the entries Uy<;<; (;,1) in B*. Since
t > 3, we must have 1 = (4;_1,i;_2) € A*, a contradiction. Hence, there cannot exist an
entry in B*.

Thus, we must have (;) — 1 entries in the collection of B’s, but not in B*. Now, if we

assume that (i;,, 1, ) and (ij,,7,), 7;, < ij,, are both in the same B, then we must have
(i4,,15,) € A, a contradiction. Furthermore, we cannot have i;, = i;, since this implies
that (ix,,ix,) € A. Hence, each B contains at most one entry for a total of at most (tgl)
entries. Since (tgl) < (;) — 1 for t > 3, we cannot have all entries equal to 1, and hence
we cannot have a monochromatic K; of color 1.

No monochromatic Ky of color 2. For this case we will use the following lemma.

Lemma 2.3 Let S(xo, 21, ...,x,) be a Ramsey incidence matrixz for R(ky, ks, ..., k.). Let
N be a block matriz defined by instances of S (for example, equation (1)). Fory > 3, let
V(Ky) = {i1,i2,...,0} with iy < iy < --- < iy, so that we can associate with E(K,) the
entries of N given by Ujsi (i;,1). Fiz x¢ for some 1 < f < r. If vy = (ij,i) for all
1<k<j<uy, and z¢ as an argument of S is in the same (argument) position, but not
the first (argument) position, for all instances of S then y < ky.

Proof. Let m = R(ky, ..., k,)—1. By assumption of identical argument positions of z;
in all instances of S, for any entry (¢, j) = 2y we must have (i (mod m), j (mod m)) = ;.
Provided all (i; (mod m), i (mod m)), 1 < k < j <y, are distinct, this would imply that
a monochromatic K, of color f exists in a maximal Ramsey r-coloring for R(ky, ..., k),
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thus giving y < ky.

It remains to show that all (i; (mod m),i, (mod m)), 1 < k < j < y, are distinct.
Assume not and consider (i;,, i, ) and (i;,, iy, ) With either i;, # i, or ig, # ig,.

Case L. (i;, # 1;,) Let ij, < j,. Since i;, = i, (mod m) this implies that (i;,,7; ) must be
on the diagonal of some instance of .S, a contradiction, since the first argument denotes
the diagonal, and all entries are not on the diagonal of any instance of S.

Case II. (i, # ix,) Let ix, < ig,. As in Case I, this implies that (ix,,ix,) must be on the
diagonal of some instance of S, a contradiction. O

Applying Lemma 2.3 with N = M, S =T, and f = 2 we see that we cannot have a
monochromatic K of color 2.

No monochromatic K, of color 3. Let V(K)) = {iy,ia,...,4} with iy < iy < -+ <1y,
so that we can view E(K]) as corresponding to the entries in M given by U;s (4;,7). We
now argue that not all of these entries can be equal to 3. Suppose, for a contradiction,
that all of these entries are equal to 3.

If there are no entries in the collection of B’s (including B*), then by Lemma 2.3 (with
N=M,S =T, and f = 3) we must have [ < — ¢+ 1, a contradiction. Hence, there
exists an entry in some B or B*.

Next, note that 3 only occurs on the diagonals of B and B*. Thus, we cannot have
(4j,,0k, ) and (ij,,4,), i, < ij,, both be in the same B or the same B*, for otherwise
(4j,,1k, ) is not on the diagonal of B or B*, a contradiction. Hence, each B and B*
contains at most one entry.

Consider the complete subgraph K; ;.1 of K on the vertices {iy, i3, ...,4_s12}, so that
we can view E(Kj_;41) as corresponding to the entries in M given by Uj_yyo5jsk>2 (45, k).
By construction, none of these entries are in the collection of B’s and B*’s. To see this,
note that we may have (iy, 1) € B* for at most one 2 < k < t and we may have (i, ;) € B
for each [ — (t —2) +1 < k < [ for at most one 1 < j < k (i.e. one entry in each of
the bottom t — 2 rows of M). Hence, none of the edges of K;_;11 on {ia,...,ij_412} are
associated with an entry in B or B*.

Applying Lemma 2.3 (with N =M, S=T,and f =3) weget [ —t+1<l—t+1,a
contradiction. Thus, no monochromatic K; of color 3 exists.

The full theorem. To generalize the above argument to an arbitrary number of
colors we change the definitions of A, A*, B, B*, and C; A = A* =7T7(0,2,3,4,5,...,r),
B = B* = T(3,2,1,4,5,...,r), C = T(1,2,3,4,5,...,7). To see that there is no
monochromatic Ky, of color j for j = 4,5,...,7, see the argument for no monochro-
matic K} of color 2 above. O
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Ezample. Theorem 2.2 implies that R(3,3,3,11) > 437, beating the previous best lower
bound of 433 as given in [Rad].
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